Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Fuzzy Active Queue Management for Assured Forwarding Traffic in Differentiated Services Network"

Transcription

1 Fuzzy Active Management for Assured Forwarding Traffic in Differentiated Services Network E.S. Ng, K.K. Phang, T.C. Ling, L.Y. Por Department of Computer Systems & Technology Faculty of Computer Science and Information Technology, University of Malaya kkphang, tchaw, Abstract-Congestion control mechanism such as Random Early Detect (RED) allows more efficient usage of network resources. RED uses static s (high and low) in combating congestion. However, as network becomes more dynamic with the introduction of multimedia and real time application, this static approach becomes inefficient. This paper proposed a dynamic RED mechanism, namely, Fuzzy Active Management (FuzAQM). FuzAQM monitors the condition of a network in real time and changes its RED parameters based on the congestion level using fuzzy control. FuzAQM is implemented and tested using Ns2 network simulator. The simulation results showed that the proposed mechanism improves the total network throughput. FuzAQM also ensures a fairer treatment of lower priority packets and at the same time maintains the throughput of higher priority packets in the network. I. Introduction The increasing important of Internet and the introduction of multimedia contents and web applications triggers the requirement of higher bandwidth and quality of service. There is a need to redesign the Internet architecture to ensure better utilization of the Internet resources. More efficient congestion control algorithms and Quality of service (QoS) mechanisms are needed [1]. This has initiated the proposition of Internet services such as Integrated Services Architecture (ISA), Random Early Detection (RED) and Differentiated Services (DiffServ) [2]. The purpose of DiffServ is to deliver an aggregated quality of service in IP networks. Further advancement has been witnessed for DiffServ framework with the integration of Active Management such as RED to preferentially drop packets before serious congestion begins [3]. The combination of DiffServ with RED is an good way of realizing service differentiation. RED uses two s to control drop probability of a packet. These s, once set, will remain unchanged (static). However, as network traffic is dynamic in nature, the static nature of RED makes it unable to cope with the dynamic nature of the network. In view of this, in this paper a dynamic queue management mechanism for DiffServ network is proposed. This enables the queue management to be more dynamic and responsive towards changes in the network. The rest of the paper is structured as follows. Section II presents the related works. Section III discusses the proposed FuzAQM mechanism in details. Section IV tables the simulation environment and results. Section V analyzes the simulation result and Section VI is the conclusion. II. Related works The proposed FuzAQM model uses fuzzy logic to determine the condition of the network and manipulate the queue management accordingly. Several researches in this area using fuzzy logic have been proposed. [4] focused on developing a drop based congestion control mechanism, which control or drop packets upon its arrival and drop those packets with lower service precedence first before dropping packets with higher service precedence. Reference [5] presented an active queue management scheme called Fuzzy Explicit Marking in DiffServ framework. This model uses a fuzzy controller to examine the dynamic network changes and drops packets or resets packets Explicit Congestion Notification (ECN) bit accordingly. Reference [6] defined a congestion index to indicate the degree of network congestion. An intelligent packet dropping mechanism based on fuzzy logic is then

2 being used to optimize router performance. Reference [7] examined a fuzzy based Connection/Call Admission Control to provide effective congestion control in ATM network. It is clear from these researches that fuzzy based approach gives better control than conventional systems and in maintaining network QoS. III. Proposed FuzAQM Mechanism The proposed Fuzzy Active Management (FuzAQM) model uses fuzzy logic to convert the traditional static queue management model into a dynamic model. FuzAQM uses the current queue occupancy and the rate of change of queue as input to its rules to determine whether to pass or drop a packet. Fig. 1 shows the current queue length membership function graph and Fig. 2 shows the rate of change of queue membership function graph. These membership functions are derived directly from empirical tests. Fig. 1: Current Length Membership Function. Fig. 2: Rate of Change of Membership Function. It should be noted that at the beginning, a set of initial values of the RED minimum and maximum s and drop probability is assigned to each type of packet. As packets begin their transmission in the network, these values are reset and fine tuned dynamically according to the degree of seriousness congestion in the network. In this way, a dynamic active queue management mechanism is created. Parameters used in the inference proves are: the current queue length and average queue length. The latter will be used to find out the rate of change of queue. A typical fuzzy inference rule takes the following form: If Input X and Input Y, then Output is Z Eight rules have been defined and listed as follow: Change of is Decreasing Fast, then Output is Z 1 Change of is Decreasing, then Output is Z 2 Change of is Increasing, then Output is Z 3 Change of is Increasing Fast, then Output is Z 4 Change of is Decreasing Fast, then Output is Z 5 Change of is Decreasing, then Output is Z 6 Change of is Increasing, then Output is Z 7 Change of is Increasing Fast, then Output is Z 8 where X and Y represents the current queue length and the rate of change of queue respectively. Each input will be inference to produce the weighted output. The final output will be defuzzified using the summation of all rule output (w i z i ) and averaged by the summation of all the output strength (z i ).and the value produced will reflect the current congestion situation at the bottleneck link and further assessed. //sugeno method From the fuzzy inference process based on these two inputs, a final output will determine the condition of the bottleneck link. The first step in assessment step taken is to cast the value into 9 categories of seriousness of the bottleneck link. The value used is from 1 to 9 where 1 represents the least serious bottleneck link condition and 9 represents the most serious. Further action could be then taken to reconfigure. the RED s to adapt to the condition of the bottleneck link accordingly. Based on these 9

3 situations or degree of seriousness, the corresponding action will be taken. In this case, two virtual queues, vq1 and vq2 are maintained for the higher priority (DiffServ Code point 20) and lower priority packets (DiffServ Code point 21) respectively. Each queue maintains its minimum and maximum as well as its drop probability. Vq1 in general will have higher value for minimum and maximum and lower drop probability compared to vq2. Each time, when a packet enters the physical queue, the fuzzy rules will be fired and return a value. Based on the return value and the type of packet (higher or lower, the s of the virtual queues are reset. In other words, dynamic s are used in the proposed mechanism instead of the static one as in RED. In RED these s will remain unchanged once they are set. If the packet is a higher priority packet, the s of the high priority virtual queue will be readjusted to a higher value (as shown in Fig. 3) before the packet enters that virtual queue. This will result in more high priority to be queued and the queue utilization will be higher. Note that in this case, the s of the lower priority virtual queue are unaffected. Similarly, if a low priority packet enters the physical queue and if the network in not congested, the of the low priority virtual queue will be reset to a higher value. Fig. 4: Resetting of Thresholds when the network is congested. IV. Simulation The simulation is carried out using the ns2 network simulator [8]. The simulation uses a dumb-bell topology with 14 routers and varying numbers of source nodes depending on the traffic load to be generated. For light traffic, the number of source node is limited to 24 nodes. For heavy traffic, the number of sources is doubled. Fig. 5 shows the network topology for the simulation of light traffic. Fig. 5: Network Topology Used for Simulation Initial minimum Initial maximum Table 1 below summarizes the number of nodes and its respective roles for both simulations. New minimum New maximum Fig. 3: Resetting of Thresholds when the network is not congested Conversely, if the network is congested, the set of s will be reset to a lower value as in Fig. 4. Table 1 Type of Nodes and Traffic Load Type Quantity Light Traffic Heavy Traffic Routers VoIP 8 16 FTP Clients 4 8 FTP Servers 4 8 HTTP Clients 4 8 HTTP Servers 4 8 Total Two types of traffic are used: DiffServ Code point 20 and 21 representing high priority packets and low priority packets respectively. Simulations are carried out to study and compare the performance of FuzAQM under light and heavy traffic. V. Results Analysis Initial minimum Initial maximum

4 Throughput = Total packets successfully traveled through the bottleneck link Total packets received at the bottleneck link Fig. 6 shows the throughput of packets going from r6 to r7. On the other hand, Fig. 7 the throughput of packets going in the reverse direction i.e. from r7 to r r7r6 Throughput age for Heavy Traffic Simulation results showed that when traffic is light, FuzAQM outperforms the non fuzzy counter part r6r7 Throughput age for Light Traffic r6r7 Fig. 6 r7r6 Throughput age for Light Traffic r7r6 r7r6 Fuzzy Fig. 7 r6r7 Fuzzy Similarly, in the case of heavy traffic, simulation results depicted in Fig. 8 and 9, FuzAQM also outperforms the non fuzzy counter part Fig. 9 Table 2 Average packets successfully traveled through the bottleneck link for light traffic CodePoint R6r7 R6r7 fuzzy R7r6 R7r6 Fuzzy 20 (high (low Table 3 Average packets successfully traveled through the bottleneck link for heavy traffic CodePoint R6r7 R6r7 fuzzy R7r6 R7r6 Fuzzy 20 (high (low The throughput of packet of higher and lower priority is depicted in table 2 and 3. In table 2, when the traffic is light, the fuzzy approach demonstrated higher throughput for both high and low priority r7r6 r7r6 Fuzzy r6r7 Throughput age for Heavy Traffic r6r7 r6r7 Fuzzy Fig. 8 packets. In table 3, when the traffic is heavy, using the non-fuzzy approach, the low priority packets are choked out by higher priority packets-- from

5 approximately packets to packets. However, when the fuzzy approach is used, there is a small drop in the high priority throughput but a large increase in the lower priority packets. The overall throughput of higher priority packets is still much higher than the lower priority packet but without choking out the lower priority packets. VI. Conclusion The simulation results showed that the proposed FuzAQM model achieved its objectives. It is clear from the simulation results that FuzAQM improves the total throughput by 0.79% to 6.46% depending on the traffic load and maintaining fair treatment for lower priority packets while maintaining at least 87% of throughput for higher priority packets in the network. It can be concluded that FuzAQM, an active queue management for DiffServ traffic, works better than classic type of non-responsive queue management model. Future enhancement includes expanding the research to include various types of packet metering scheme such as time sliding window with 3 color marking, token bucket and etc. The dynamic scheme can also be used to reset the parameter of the token, leaky bucket and other metering mechanism in conjunction with the network congestion level. [2] Blake, S. et al. An Architecture for Differentiated Services, RFC 2475, December [3] Floyd, S., and Jacobson, V.,Random Early Detection gateways for congestion avoidance IEEE/ACM Trans. on Networking, 1(4) August, 1993, pp [4] Zhang, R. and Ma, J. Congestion control using fuzzy logic in differentiated services networks. IN: Fourth International Conference, Proceedings of the Computational Intelligence and Multimedia Applications, 30 October-1 November 2001, Yokusika City Japan, IEEE. pp [5] Chrysostomou, C. et al. Fuzzy Explicit Marking for Congestion Control in Differentiated Services Networks. IN: Eighth IEEE International Symposium on Computers and Communications June 30 - July , Kemer-Antalya, Turkey, IEEE, pp [6] Yanfei, F., Fengyuan, R., and Chuang, L. Design of an active queue management algorithm based fuzzy logic decision. IN: Communication Technology Proceedings, International Conference on, 9-11 April 2003, China, IEEE, pp [7] Karthik, S., Venkatesh, C., and Natarajan, A.M. Congestion control in ATM networks using fuzzy logic IN: Proceedings of the18th International Parallel and Distributed Processing Symposium, April 2004, New Mexico, USA, IEEE Computer Society Press. pp.162. [8] The ns Manual, The VINT Project, December References [1] Orda, A, QoS Routing: Challenges and Solution Approaches, Second International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks, 2005.

A Policy-Based Admission Control Scheme for Voice over IP Networks

A Policy-Based Admission Control Scheme for Voice over IP Networks Journal of Computer Science 5 (11): 817-821, 2009 ISSN 1549-3636 2009 Science Publications A Policy-Based Admission Control Scheme for Voice over IP Networks Sami Alwakeel and Agung Prasetijo Department

More information

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed.

1. The subnet must prevent additional packets from entering the congested region until those already present can be processed. Congestion Control When one part of the subnet (e.g. one or more routers in an area) becomes overloaded, congestion results. Because routers are receiving packets faster than they can forward them, one

More information

17: Queue Management. Queuing. Mark Handley

17: Queue Management. Queuing. Mark Handley 17: Queue Management Mark Handley Queuing The primary purpose of a queue in an IP router is to smooth out bursty arrivals, so that the network utilization can be high. But queues add delay and cause jitter.

More information

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain

Quality of Service using Traffic Engineering over MPLS: An Analysis. Praveen Bhaniramka, Wei Sun, Raj Jain Praveen Bhaniramka, Wei Sun, Raj Jain Department of Computer and Information Science The Ohio State University 201 Neil Ave, DL39 Columbus, OH 43210 USA Telephone Number: +1 614-292-3989 FAX number: +1

More information

A New Proposal for Assuring Services in Internet

A New Proposal for Assuring Services in Internet A New Proposal for Assuring Services in Internet Maria-Dolores Cano, Fernando Cerdan, Joan Garcia-Haro, Josemaria Malgosa-Sanahuja Department of Information echnologies and Communications Polytechnic University

More information

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions

Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Investigation and Comparison of MPLS QoS Solution and Differentiated Services QoS Solutions Steve Gennaoui, Jianhua Yin, Samuel Swinton, and * Vasil Hnatyshin Department of Computer Science Rowan University

More information

An Adaptive RIO (A-RIO) Queue Management Algorithm

An Adaptive RIO (A-RIO) Queue Management Algorithm An Adaptive RIO (A-RIO) Queue Management Algorithm Julio Orozco 1,2 and David Ros 1 1 GET/ENST Bretagne, Rue de la Châtaigneraie, CS 1767, 35576 Cesson Sévigné Cedex, France 2 IRISA/INRIA Rennes, Campus

More information

The QoS of the Edge Router based on DiffServ

The QoS of the Edge Router based on DiffServ The QoS of the Edge Router based on DiffServ Zhang Nan 1, Mao Pengxuan 1, Xiao Yang 1, Kiseon Kim 2 1 Institute of Information and Science, Beijing Jiaotong University, Beijing 100044, China 2 Dept. of

More information

Analysis of IP Network for different Quality of Service

Analysis of IP Network for different Quality of Service 2009 International Symposium on Computing, Communication, and Control (ISCCC 2009) Proc.of CSIT vol.1 (2011) (2011) IACSIT Press, Singapore Analysis of IP Network for different Quality of Service Ajith

More information

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE

CS/ECE 438: Communication Networks. Internet QoS. Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE CS/ECE 438: Communication Networks Internet QoS Syed Faisal Hasan, PhD (Research Scholar Information Trust Institute) Visiting Lecturer ECE Introduction The Internet only provides a best effort service

More information

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT:

Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: Using Fuzzy Logic Control to Provide Intelligent Traffic Management Service for High-Speed Networks ABSTRACT: In view of the fast-growing Internet traffic, this paper propose a distributed traffic management

More information

Bandwidth Sharing Scheme in DiffServ-aware MPLS Networks

Bandwidth Sharing Scheme in DiffServ-aware MPLS Networks Proceedings of the 2007 IEEE International Conference on Telecommunications and Malaysia International Conference on Communications, 14-17 May 2007, Penang, Malaysia Bandwidth Sharing Scheme in DiffServ-aware

More information

Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming

Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming Provisioning algorithm for minimum throughput assurance service in VPNs using nonlinear programming Masayoshi Shimamura (masayo-s@isnaistjp) Guraduate School of Information Science, Nara Institute of Science

More information

Network congestion, its control and avoidance

Network congestion, its control and avoidance MUHAMMAD SALEH SHAH*, ASIM IMDAD WAGAN**, AND MUKHTIAR ALI UNAR*** RECEIVED ON 05.10.2013 ACCEPTED ON 09.01.2014 ABSTRACT Recent years have seen an increasing interest in the design of AQM (Active Queue

More information

Differentiated Services

Differentiated Services March 19, 1998 Gordon Chaffee Berkeley Multimedia Research Center University of California, Berkeley Email: chaffee@bmrc.berkeley.edu URL: http://bmrc.berkeley.edu/people/chaffee 1 Outline Architecture

More information

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM

CHAPTER 2. QoS ROUTING AND ITS ROLE IN QOS PARADIGM CHAPTER 2 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 22 QoS ROUTING AND ITS ROLE IN QOS PARADIGM 2.1 INTRODUCTION As the main emphasis of the present research work is on achieving QoS in routing, hence this

More information

Australian Journal of Basic and Applied Sciences. Fuzzy Based Active Queue Management In Distributed Wireless Network.

Australian Journal of Basic and Applied Sciences. Fuzzy Based Active Queue Management In Distributed Wireless Network. ISSN:1991-8178 Australian Journal of Basic and Applied Sciences Journal home page: www.ajbasweb.com Fuzzy Based Active Queue Management In Distributed Wireless Network. B.Shajahan Associate Professor /

More information

Enhanced Content Delivery Network to Improve the QoE

Enhanced Content Delivery Network to Improve the QoE Enhanced Content Delivery Network to Improve the QoE 1 Sachendra Singh Solanky, 2 Sandra Brigit Johnson, 3 Vakkalagadda Eswar Praphul 1 M.Tech Student SCSE, VIT University Chennai-600048, 2 M.Tech Student

More information

Comparative Analysis of Congestion Control Algorithms Using ns-2

Comparative Analysis of Congestion Control Algorithms Using ns-2 www.ijcsi.org 89 Comparative Analysis of Congestion Control Algorithms Using ns-2 Sanjeev Patel 1, P. K. Gupta 2, Arjun Garg 3, Prateek Mehrotra 4 and Manish Chhabra 5 1 Deptt. of Computer Sc. & Engg,

More information

The Network Layer Functions: Congestion Control

The Network Layer Functions: Congestion Control The Network Layer Functions: Congestion Control Network Congestion: Characterized by presence of a large number of packets (load) being routed in all or portions of the subnet that exceeds its link and

More information

Performance improvement of active queue management with per-flow scheduling

Performance improvement of active queue management with per-flow scheduling Performance improvement of active queue management with per-flow scheduling Masayoshi Nabeshima, Kouji Yata NTT Cyber Solutions Laboratories, NTT Corporation 1-1 Hikari-no-oka Yokosuka-shi Kanagawa 239

More information

PRIORITY-BASED NETWORK QUALITY OF SERVICE

PRIORITY-BASED NETWORK QUALITY OF SERVICE PRIORITY-BASED NETWORK QUALITY OF SERVICE ANIMESH DALAKOTI, NINA PICONE, BEHROOZ A. SHIRAZ School of Electrical Engineering and Computer Science Washington State University, WA, USA 99163 WEN-ZHAN SONG

More information

Path Selection Methods for Localized Quality of Service Routing

Path Selection Methods for Localized Quality of Service Routing Path Selection Methods for Localized Quality of Service Routing Xin Yuan and Arif Saifee Department of Computer Science, Florida State University, Tallahassee, FL Abstract Localized Quality of Service

More information

What if the end systems knew the bandwidth available in the network?

What if the end systems knew the bandwidth available in the network? > FOR CONFERENCE-RELATED PAPERS, REPLACE THIS LINE WITH YOUR SESSION NUMBER, E.G., AB-02 (DOUBLE-CLICK HERE) < 1 What if the end systems knew the bandwidth available in the network? Paulo Loureiro 1, Edmundo

More information

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow

Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow International Journal of Soft Computing and Engineering (IJSCE) Performance Analysis of AQM Schemes in Wired and Wireless Networks based on TCP flow Abdullah Al Masud, Hossain Md. Shamim, Amina Akhter

More information

QoS in Axis Video Products

QoS in Axis Video Products Table of contents 1 Quality of Service...3 1.1 What is QoS?...3 1.2 Requirements for QoS...3 1.3 A QoS network scenario...3 2 QoS models...4 2.1 The IntServ model...4 2.2 The DiffServ model...5 2.3 The

More information

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION

Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012. Network Chapter# 19 INTERNETWORK OPERATION Faculty of Engineering Computer Engineering Department Islamic University of Gaza 2012 Network Chapter# 19 INTERNETWORK OPERATION Review Questions ٢ Network Chapter# 19 INTERNETWORK OPERATION 19.1 List

More information

A Hysteretic Model of Queuing System with Fuzzy Logic Active Queue Management

A Hysteretic Model of Queuing System with Fuzzy Logic Active Queue Management A Hysteretic Model of Queuing System with Fuzzy Logic Active Queue Management Vladimir Deart, Andrey Maslennikov Moscow Technical University of Communications and Informatics Moscow, Russia vdeart@mail.ru,

More information

King Fahd University of Petroleum & Minerals Computer Engineering g Dept

King Fahd University of Petroleum & Minerals Computer Engineering g Dept King Fahd University of Petroleum & Minerals Computer Engineering g Dept COE 543 Mobile and Wireless Networks Term 111 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: ashraf@kfupm.edu.sa 12/24/2011

More information

6.6 Scheduling and Policing Mechanisms

6.6 Scheduling and Policing Mechanisms 02-068 C06 pp4 6/14/02 3:11 PM Page 572 572 CHAPTER 6 Multimedia Networking 6.6 Scheduling and Policing Mechanisms In the previous section, we identified the important underlying principles in providing

More information

Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort Traffic

Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort Traffic Telecommunication Systems 24:2 4, 275 292, 2003 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. Router Scheduling Configuration Based on the Maximization of Benefit and Carried Best Effort

More information

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS

QoS Parameters. Quality of Service in the Internet. Traffic Shaping: Congestion Control. Keeping the QoS Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Real-time apps and Quality of Service

Real-time apps and Quality of Service Real-time apps and Quality of Service Focus What transports do applications need? What network mechanisms provide which kinds of quality assurances? Topics Real-time versus Elastic applications Adapting

More information

Distributed Systems 3. Network Quality of Service (QoS)

Distributed Systems 3. Network Quality of Service (QoS) Distributed Systems 3. Network Quality of Service (QoS) Paul Krzyzanowski pxk@cs.rutgers.edu 1 What factors matter for network performance? Bandwidth (bit rate) Average number of bits per second through

More information

RBA-RIO Rate Based Adaptive Red With In and Out. Algorithm for DiffServ AF PHB

RBA-RIO Rate Based Adaptive Red With In and Out. Algorithm for DiffServ AF PHB RBA-RIO Rate Based Adaptive Red With In and Out Algorithm for DiffServ AF PHB Zhang Mgjie Zhu Peidong Su Jshu Lu Xicheng School of Computer, National University of Defense Technology, Changsha 410073,

More information

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman

A Preferred Service Architecture for Payload Data Flows. Ray Gilstrap, Thom Stone, Ken Freeman A Preferred Service Architecture for Payload Data Flows Ray Gilstrap, Thom Stone, Ken Freeman NASA Research and Engineering Network NASA Advanced Supercomputing Division NASA Ames Research Center Outline

More information

PART III. OPS-based wide area networks

PART III. OPS-based wide area networks PART III OPS-based wide area networks Chapter 7 Introduction to the OPS-based wide area network 7.1 State-of-the-art In this thesis, we consider the general switch architecture with full connectivity

More information

MEASUREMENT-BASED MULTICAST ADMISSION CONTROL IN DIFFSERV NETWORKS

MEASUREMENT-BASED MULTICAST ADMISSION CONTROL IN DIFFSERV NETWORKS MASURMNT-BASD MULTICAST ADMISSION CONTROL IN DIFFSRV NTWORKS Olli Alanen, Mikko Pääkkönen, Timo Hämäläinen, Mikko Ketola and Jyrki Joutsensalo Department of Mathematical Information Technology University

More information

Quality of Service (QoS) on Netgear switches

Quality of Service (QoS) on Netgear switches Quality of Service (QoS) on Netgear switches Section 1 Principles and Practice of QoS on IP networks Introduction to QoS Why? In a typical modern IT environment, a wide variety of devices are connected

More information

Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742. Vol 2 No 3 (May-2015) Active Queue Management

Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742. Vol 2 No 3 (May-2015) Active Queue Management Protagonist International Journal of Management And Technology (PIJMT) Online ISSN- 2394-3742 Vol 2 No 3 (May-2015) Active Queue Management For Transmission Congestion control Manu Yadav M.Tech Student

More information

Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71

Chapter 7 outline. 7.5 providing multiple classes of service 7.6 providing QoS guarantees RTP, RTCP, SIP. 7: Multimedia Networking 7-71 Chapter 7 outline 7.1 multimedia networking applications 7.2 streaming stored audio and video 7.3 making the best out of best effort service 7.4 protocols for real-time interactive applications RTP, RTCP,

More information

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks

Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Seamless Congestion Control over Wired and Wireless IEEE 802.11 Networks Vasilios A. Siris and Despina Triantafyllidou Institute of Computer Science (ICS) Foundation for Research and Technology - Hellas

More information

A Novel Approach for Providing Quality of Service in Multiservice IP Networks

A Novel Approach for Providing Quality of Service in Multiservice IP Networks FACTA UNIVERSITATIS (NIŠ) SER.: ELEC. ENERG. vol. 17, August 2004, 261-274 A Novel Approach for Providing Quality of Service in Multiservice IP Networks Mirjana Stojanović and Vladanka Aćimović-Raspopović

More information

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth.

5 Performance Management for Web Services. Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology. stadler@ee.kth. 5 Performance Management for Web Services Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se April 2008 Overview Service Management Performance Mgt QoS Mgt

More information

Performance Evaluation of the Impact of QoS Mechanisms in an IPv6 Network for IPv6-Capable Real-Time Applications

Performance Evaluation of the Impact of QoS Mechanisms in an IPv6 Network for IPv6-Capable Real-Time Applications Journal of Network and Systems Management, Vol. 12, No. 4, December 2004 ( C 2004) DOI: 10.1007/s10922-004-0672-5 Performance Evaluation of the Impact of QoS Mechanisms in an IPv6 Network for IPv6-Capable

More information

A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks

A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks A Power Efficient QoS Provisioning Architecture for Wireless Ad Hoc Networks Didem Gozupek 1,Symeon Papavassiliou 2, Nirwan Ansari 1, and Jie Yang 1 1 Department of Electrical and Computer Engineering

More information

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation

Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation Improving the Performance of TCP Using Window Adjustment Procedure and Bandwidth Estimation R.Navaneethakrishnan Assistant Professor (SG) Bharathiyar College of Engineering and Technology, Karaikal, India.

More information

Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project

Effects of Filler Traffic In IP Networks. Adam Feldman April 5, 2001 Master s Project Effects of Filler Traffic In IP Networks Adam Feldman April 5, 2001 Master s Project Abstract On the Internet, there is a well-documented requirement that much more bandwidth be available than is used

More information

02-QOS-ADVANCED-DIFFSRV

02-QOS-ADVANCED-DIFFSRV IP QoS DiffServ Differentiated Services Architecture Agenda DiffServ Principles DS-Field, DSCP Historical Review Newest Implementations Per-Hop Behaviors (PHB) DiffServ in Detail DiffServ in other Environments

More information

Quality of Service (QoS)) in IP networks

Quality of Service (QoS)) in IP networks Quality of Service (QoS)) in IP networks Petr Grygárek rek 1 Quality of Service (QoS( QoS) QoS is the ability of network to support applications without limiting it s s function or performance ITU-T T

More information

Presentation Outline

Presentation Outline Feedback-based Congestion Control Gateway Router in Home M2M Network Lee Chin KHO Yasuo TAN Azman Osman LIM Japan Advanced Institute of Science and Technology School of Information Science Ishikawa 2 Presentation

More information

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS?

Quality of Service versus Fairness. Inelastic Applications. QoS Analogy: Surface Mail. How to Provide QoS? 18-345: Introduction to Telecommunication Networks Lectures 20: Quality of Service Peter Steenkiste Spring 2015 www.cs.cmu.edu/~prs/nets-ece Overview What is QoS? Queuing discipline and scheduling Traffic

More information

PFS scheme for forcing better service in best effort IP network

PFS scheme for forcing better service in best effort IP network Paper PFS scheme for forcing better service in best effort IP network Monika Fudała and Wojciech Burakowski Abstract The paper presents recent results corresponding to a new strategy for source traffic

More information

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP)

A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) A Review on Quality of Service Architectures for Internet Network Service Provider (INSP) Herman and Azizah bte Abd. Rahman Faculty of Computer Science and Information System Universiti Teknologi Malaysia

More information

Integrated Service (IntServ) versus Differentiated Service (Diffserv)

Integrated Service (IntServ) versus Differentiated Service (Diffserv) Integrated Service (IntServ) versus Differentiated Service (Diffserv) Information taken from Kurose and Ross textbook Computer Networking A Top- Down Approach Featuring the Internet ACN: IntServ and DiffServ

More information

Technology Overview. Class of Service Overview. Published: 2014-01-10. Copyright 2014, Juniper Networks, Inc.

Technology Overview. Class of Service Overview. Published: 2014-01-10. Copyright 2014, Juniper Networks, Inc. Technology Overview Class of Service Overview Published: 2014-01-10 Juniper Networks, Inc. 1194 North Mathilda Avenue Sunnyvale, California 94089 USA 408-745-2000 www.juniper.net Juniper Networks, Junos,

More information

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications

Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Modeling and Simulation of Queuing Scheduling Disciplines on Packet Delivery for Next Generation Internet Streaming Applications Sarhan M. Musa Mahamadou Tembely Matthew N. O. Sadiku Pamela H. Obiomon

More information

Improving QOS in IP Networks. Principles for QOS Guarantees. Principles for QOS Guarantees (more) Principles for QOS Guarantees (more)

Improving QOS in IP Networks. Principles for QOS Guarantees. Principles for QOS Guarantees (more) Principles for QOS Guarantees (more) Improving QOS in IP Networks Thus far: making the best of best effort Future: next generation Internet with QoS guarantees RSVP: signaling for resource reservations Differentiated Services: differential

More information

Performance Evaluation of Active Queue Management Using a Hybrid Approach

Performance Evaluation of Active Queue Management Using a Hybrid Approach 1196 JOURNAL OF COMPUTERS, VOL. 7, NO. 5, MAY 2012 Performance Evaluation of Active Queue Management Using a Hybrid Approach Chin-Ling Chen* Chia-Chun Yu Department of Information Management, National

More information

Dynamic Sizing of Label Switching Paths in MPLS Networks

Dynamic Sizing of Label Switching Paths in MPLS Networks Dynamic Sizing of Label Switching Paths in MPLS Networks Gustavo B. Figueiredo 1 José. Augusto. S. Monteiro 2 Nelson. L. S da Fonseca 1 Antônio. A. A. Rocha 3 1 State University of Campinas Institute of

More information

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications

VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications VoIP Network Dimensioning using Delay and Loss Bounds for Voice and Data Applications Veselin Rakocevic School of Engineering and Mathematical Sciences City University, London, UK V.Rakocevic@city.ac.uk

More information

Network management and QoS provisioning - QoS in the Internet

Network management and QoS provisioning - QoS in the Internet QoS in the Internet Inernet approach is based on datagram service (best effort), so provide QoS was not a purpose for developers. Mainly problems are:. recognizing flows;. manage the issue that packets

More information

4 Internet QoS Management

4 Internet QoS Management 4 Internet QoS Management Rolf Stadler School of Electrical Engineering KTH Royal Institute of Technology stadler@ee.kth.se September 2008 Overview Network Management Performance Mgt QoS Mgt Resource Control

More information

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg

Management of Telecommunication Networks. Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Management of Telecommunication Networks Prof. Dr. Aleksandar Tsenov akz@tu-sofia.bg Part 1 Quality of Services I QoS Definition ISO 9000 defines quality as the degree to which a set of inherent characteristics

More information

The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback

The network we see so far. Internet Best Effort Service. Is best-effort good enough? An Audio Example. Network Support for Playback The network we see so far CSE56 - Lecture 08 QoS Network Xiaowei Yang TCP saw-tooth FIFO w/ droptail or red Best-effort service Web-surfing, email, ftp, file-sharing Internet Best Effort Service Our network

More information

A Study of Network Security Systems

A Study of Network Security Systems A Study of Network Security Systems Ramy K. Khalil, Fayez W. Zaki, Mohamed M. Ashour, Mohamed A. Mohamed Department of Communication and Electronics Mansoura University El Gomhorya Street, Mansora,Dakahlya

More information

Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services

Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services 1 Achieving QoS for TCP traffic in Satellite Networks with Differentiated Services Arjan Durresi 1, Sastri Kota 2, Mukul Goyal 1, Raj Jain 3, Venkata Bharani 1 1 Department of Computer and Information

More information

18: Enhanced Quality of Service

18: Enhanced Quality of Service 18: Enhanced Quality of Service Mark Handley Traditional best-effort queuing behaviour in routers Data transfer: datagrams: individual packets no recognition of flows connectionless: no signalling Forwarding:

More information

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm

Quality of Service in the Internet. QoS Parameters. Keeping the QoS. Traffic Shaping: Leaky Bucket Algorithm Quality of Service in the Internet Problem today: IP is packet switched, therefore no guarantees on a transmission is given (throughput, transmission delay, ): the Internet transmits data Best Effort But:

More information

Multimedia Requirements. Multimedia and Networks. Quality of Service

Multimedia Requirements. Multimedia and Networks. Quality of Service Multimedia Requirements Chapter 2: Representation of Multimedia Data Chapter 3: Multimedia Systems Communication Aspects and Services Multimedia Applications and Transfer/Control Protocols Quality of Service

More information

An Intelligent Agent Based QoS Provisioning and Network Management System

An Intelligent Agent Based QoS Provisioning and Network Management System An Intelligent Agent Based QoS Provisioning and Network Management System ANGELOS MICHALAS 1, MALAMATI LOUTA 2, GEORGE KOUZAS 1 1 School of Electrical and Computer Engineering National Technical University

More information

IP Marking, Metering, and Management

IP Marking, Metering, and Management ENSC 833 High Performance Networks IP Marking, Metering, and Management Jason Uy 953011932 Alison Xu - 200113578 April 14, 2003 Dr. Ljiljana Trajkovic Table of Contents TABLE OF CONTENTS... 2 LIST OF FIGURES...

More information

GREEN: Proactive Queue Management over a Best-Effort Network

GREEN: Proactive Queue Management over a Best-Effort Network IEEE GlobeCom (GLOBECOM ), Taipei, Taiwan, November. LA-UR -4 : Proactive Queue Management over a Best-Effort Network Wu-chun Feng, Apu Kapadia, Sunil Thulasidasan feng@lanl.gov, akapadia@uiuc.edu, sunil@lanl.gov

More information

Performance of networks containing both MaxNet and SumNet links

Performance of networks containing both MaxNet and SumNet links Performance of networks containing both MaxNet and SumNet links Lachlan L. H. Andrew and Bartek P. Wydrowski Abstract Both MaxNet and SumNet are distributed congestion control architectures suitable for

More information

Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics:

Quality of Service. Traditional Nonconverged Network. Traditional data traffic characteristics: Quality of Service 1 Traditional Nonconverged Network Traditional data traffic characteristics: Bursty data flow FIFO access Not overly time-sensitive; delays OK Brief outages are survivable 2 1 Converged

More information

Robust Router Congestion Control Using Acceptance and Departure Rate Measures

Robust Router Congestion Control Using Acceptance and Departure Rate Measures Robust Router Congestion Control Using Acceptance and Departure Rate Measures Ganesh Gopalakrishnan a, Sneha Kasera b, Catherine Loader c, and Xin Wang b a {ganeshg@microsoft.com}, Microsoft Corporation,

More information

Internet Quality of Service

Internet Quality of Service Internet Quality of Service Weibin Zhao zwb@cs.columbia.edu 1 Outline 1. Background 2. Basic concepts 3. Supporting mechanisms 4. Frameworks 5. Policy & resource management 6. Conclusion 2 Background:

More information

Research on Video Traffic Control Technology Based on SDN. Ziyan Lin

Research on Video Traffic Control Technology Based on SDN. Ziyan Lin Joint International Mechanical, Electronic and Information Technology Conference (JIMET 2015) Research on Video Traffic Control Technology Based on SDN Ziyan Lin Communication University of China, Beijing

More information

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING

CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING CHAPTER 6 CROSS LAYER BASED MULTIPATH ROUTING FOR LOAD BALANCING 6.1 INTRODUCTION The technical challenges in WMNs are load balancing, optimal routing, fairness, network auto-configuration and mobility

More information

CHAPTER 4 AN IMPROVED PERFORMANCE ANALYSIS OF PRIORITY SCHEDULING ALGORITHM IN MOBILE AD HOC GRID LAYER

CHAPTER 4 AN IMPROVED PERFORMANCE ANALYSIS OF PRIORITY SCHEDULING ALGORITHM IN MOBILE AD HOC GRID LAYER 53 CHAPTER 4 AN IMPROVED PERFORMANCE ANALYSIS OF PRIORITY SCHEDULING ALGORITHM IN MOBILE AD HOC GRID LAYER 4.1 INTRODUCTION Grid computing is one of the developing computing initiatives that involve the

More information

packet retransmitting based on dynamic route table technology, as shown in fig. 2 and 3.

packet retransmitting based on dynamic route table technology, as shown in fig. 2 and 3. Implementation of an Emulation Environment for Large Scale Network Security Experiments Cui Yimin, Liu Li, Jin Qi, Kuang Xiaohui National Key Laboratory of Science and Technology on Information System

More information

Constructing End-to-End Traffic Flows for Managing Differentiated Services Networks

Constructing End-to-End Traffic Flows for Managing Differentiated Services Networks Constructing End-to-End Traffic Flows for Managing Differentiated Services Networks Jae-Young Kim 1, James Won-Ki Hong 1, Sook-Hyun Ryu 1, and Tae-Sang Choi 2 1 Department of Computer Science and Engineering

More information

CSE 3461: Introduction to Computer Networking and Internet Technologies. Packet Switching. Presentation G

CSE 3461: Introduction to Computer Networking and Internet Technologies. Packet Switching. Presentation G CSE 3461: Introduction to Computer Networking and Internet Technologies Packet Switching Presentation G Study: 10.5, 10.6, 12.1, 12.2, 13.1, 13.2, 18.3, 18.4 Gojko Babić 10-09-2012 The Network Core mesh

More information

MENTER Overview. Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001

MENTER Overview. Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001 MENTER Overview Prepared by Mark Shayman UMIACS Contract Review Laboratory for Telecommunications Science May 31, 2001 MENTER Goal MPLS Event Notification Traffic Engineering and Restoration Develop an

More information

QoS in IP networks. Computer Science Department University of Crete HY536 - Network Technology Lab II 2000-2001. IETF Integrated Services (IntServ)

QoS in IP networks. Computer Science Department University of Crete HY536 - Network Technology Lab II 2000-2001. IETF Integrated Services (IntServ) QoS in IP networks Computer Science Department University of Crete HY536 - Network Technology Lab II 2000-2001 IETF Integrated Services (IntServ) Connection-oriented solution (end-to-end) QoS guarantees

More information

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links

An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Wireless Networks 6 (2000) 375 379 375 An enhanced TCP mechanism Fast-TCP in IP networks with wireless links Jian Ma a, Jussi Ruutu b and Jing Wu c a Nokia China R&D Center, No. 10, He Ping Li Dong Jie,

More information

LRU-RED: An active queue management scheme to contain high bandwidth flows at congested routers

LRU-RED: An active queue management scheme to contain high bandwidth flows at congested routers LRU-RED: An active queue management scheme to contain high bandwidth flows at congested routers Smitha A. L. Narasimha Reddy Dept. of Elec. Engg., Texas A & M University, College Station, TX 77843-3128,

More information

VOIP Congestion Control with Adaptable Token Generation Rate

VOIP Congestion Control with Adaptable Token Generation Rate Middle-East Journal of Scientific Research 22 (8): 1150-1156, 2014 ISSN 1990-9233 IDOSI Publications, 2014 DOI: 10.5829/idosi.mejsr.2014.22.08.22055 VOIP Congestion Control with Adaptable Token Generation

More information

A Novel QoS Framework Based on Admission Control and Self-Adaptive Bandwidth Reconfiguration

A Novel QoS Framework Based on Admission Control and Self-Adaptive Bandwidth Reconfiguration Int. J. of Computers, Communications & Control, ISSN 1841-9836, E-ISSN 1841-9844 Vol. V (2010), No. 5, pp. 862-870 A Novel QoS Framework Based on Admission Control and Self-Adaptive Bandwidth Reconfiguration

More information

Programming Assignments for Graduate Students using GENI

Programming Assignments for Graduate Students using GENI Programming Assignments for Graduate Students using GENI 1 Copyright c 2011 Purdue University Please direct comments regarding this document to fahmy@cs.purdue.edu. 1 OVERVIEW 2 1 Overview This document

More information

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross

Sources: Chapter 6 from. Computer Networking: A Top-Down Approach Featuring the Internet, by Kurose and Ross M ultimedia Communication Multimedia Systems(Module 5 Lesson 3) Summary: Beyond Best-Effort Motivating QoS Q uality of Service (QoS) Scheduling and Policing Sources: Chapter 6 from Computer Networking:

More information

Quality of Service for IP Videoconferencing Engineering White Paper

Quality of Service for IP Videoconferencing Engineering White Paper Engineering White Paper Subha Dhesikan Cisco Systems June 1 st, 2001 Copyright 2002 Cisco Systems, Inc. Table of Contents 1 INTRODUCTION 4 2 WHY QOS? 4 3 QOS PRIMITIVES 5 4 QOS ARCHITECTURES 7 4.1 DIFFERENTIATED

More information

QoS for (Web) Applications Velocity EU 2011

QoS for (Web) Applications Velocity EU 2011 QoS for (Web) Applications Velocity EU 2011 Intelligent Activity Metering Self Regulated Software Signals & Control william.louth@jinspired.com Self Adaptive Software Self Adaptive Software evaluates its

More information

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet

Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Joint ITU-T/IEEE Workshop on Carrier-class Ethernet Quality of Service for unbounded data streams Reactive Congestion Management (proposals considered in IEE802.1Qau) Hugh Barrass (Cisco) 1 IEEE 802.1Qau

More information

Highlighting a Direction

Highlighting a Direction IP QoS Architecture Highlighting a Direction Rodrigo Linhares - rlinhare@cisco.com Consulting Systems Engineer 1 Agenda Objective IntServ Architecture DiffServ Architecture Some additional tools Conclusion

More information

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone.

Voice Over IP. MultiFlow 5048. IP Phone # 3071 Subnet # 10.100.24.0 Subnet Mask 255.255.255.0 IP address 10.100.24.171. Telephone. Anritsu Network Solutions Voice Over IP Application Note MultiFlow 5048 CALL Manager Serv # 10.100.27 255.255.2 IP address 10.100.27.4 OC-48 Link 255 255 25 IP add Introduction Voice communications over

More information

Indepth Voice over IP and SIP Networking Course

Indepth Voice over IP and SIP Networking Course Introduction SIP is fast becoming the Voice over IP protocol of choice. During this 3-day course delegates will examine SIP technology and architecture and learn how a functioning VoIP service can be established.

More information

Performance Analysis of Queuing Disciplines for Different Internet Service Protocols

Performance Analysis of Queuing Disciplines for Different Internet Service Protocols Performance Analysis of Queuing Disciplines for Different Internet Service Protocols Neha Ghaisas Department of Computer Engineering, R.R Sedamkar Professor and Dean Academics, Rashmi Thakur Asst. Professor,

More information

Smart Queue Scheduling for QoS Spring 2001 Final Report

Smart Queue Scheduling for QoS Spring 2001 Final Report ENSC 833-3: NETWORK PROTOCOLS AND PERFORMANCE CMPT 885-3: SPECIAL TOPICS: HIGH-PERFORMANCE NETWORKS Smart Queue Scheduling for QoS Spring 2001 Final Report By Haijing Fang(hfanga@sfu.ca) & Liu Tang(llt@sfu.ca)

More information

Quality of Service on the Internet: Evaluation of the IntServ Architecture on the Linux Operative System 1

Quality of Service on the Internet: Evaluation of the IntServ Architecture on the Linux Operative System 1 Quality of Service on the Internet: Evaluation of the IntServ Architecture on the Linux Operative System 1 Elisabete Reis elreis@dei.uc.pt Polytechnic Institute of Coimbra Fernando Melo fmelor@dei.uc.pt

More information