Certamen 1 de Representación del Conocimiento


 Lynette Lyons
 3 years ago
 Views:
Transcription
1 Certamen 1 de Representación del Conocimiento Segundo Semestre 2012 Question: Total Points: / 2 1 / / / 2 12 Here we show one way to solve each question, but there might be other ways to solve them. Propositional Logic 1. [2 ptos] Use structural induction to prove that a propositional formula has the same number of left parenthesis as right parenthesis. TIP: The syntax of propositional formulas is given in the appendix of this test. Solution: Let LP (ϕ) and RP (ϕ) denote the number of left and right parenthesis of ϕ Base case: for proposition p we have LP (p) = RP (p) = 0. Inductive cases: assume we have formulas φ 1 and φ 2 such that LP (φ 1 ) = RP (φ 1 ) = c 1 and LP (φ 2 ) = RP (φ 2 ) = c 2 : 1. Given a formula φ such that LP (φ) = RP (φ), prove that for ϕ = φ, it holds LP (ϕ) = RP (ϕ). Proof: LP (ϕ) = LP ( φ) = LP (φ) = RP (φ) = RP ( ϕ) = RP (ϕ) 2. Given formulas φ 1 and φ 2 such that LP (φ 1 ) = RP (φ 1 ) and LP (φ 2 ) = RP (φ 2 ), prove that for ϕ = (φ 1 φ 2 ) where {,,, }, it holds LP (ϕ) = RP (ϕ). Proof: LP (ϕ) = LP ((φ 1 φ 2 )) = 1+LP (φ 1 )+LP (φ 2 ) = 1+RP (φ 1 )+RP (φ 2 ) = RP ((φ 1 φ 2 )) = rp (ϕ) 2. Consider Σ = { (( p q) (r p)), q}. (a) [1 pto] Prove in precise semantic 1 terms that Σ = r. Solution: The following table shows that Σ is inconsistent and therefore r is a logical consequence. 1 Using truth tables 1
2 p q r t 1 = ( p q) t 2 = (r p) t 1 t 2 (t 1 t 2 ) Σ (b) [1 pto] Prove by resolution that Σ = (r s). Solution: We will prove that Σ { (r s)} is inconsistent. To apply resolution we need to put the formulas in CNF: (( p q) (r p)) q ( r s) = ( ( p q) ( r p)) q r s = ((p q) (r p)) q r s = (p q) r p q r s Though, we need to apply resolution with the following clauses {p q, r, p, q, r, s}. By resolution between the first and third clause we get q. By applying resolution with the fourth clause we get an inconsistency. 3. Prove using the set of natural deduction rules that: (a) [ 1 / 2 pto] {(p q) r, q p, q} = r Solution: 1. (p q) r 2. q p 3. q 4. p (result of applying rule (F) to 2 and 3) 5. p q (result of applying rule (A) to 3 and 4) 6. r (result of applying rule (F) to 1 and 5) (b) [ 1 / 2 pto] {p} = (q p) Solution: 1. p 2. Assume q a) p (true from 1) Página 2 de 7 Pase a la siguiente página...
3 3. q p (result of applying rule (M) to 2) In your proofs you should say which deductive rules you are using. TIP: use the natural deduction rules in the appendix with the given names. 4. [ 1 / 2 pto] Prove that {(p (q r)) (s u), r} = u Solution: For an assignment that makes s true and the rest of the variables false (in particular r), makes {(p (q r)) (s u), r} true but u is false. Thus, u is not a logical consequence. 5. [ 1 / 2 pto] Provide a short proof showing that for an inconsistent knowledge base Σ in propositional logic, every formula ϕ is a logical consequence of Σ. Solution: A formula ϕ is a logical consequence of a knowledge base Σ if every model that satisfies Σ it holds also that ϕ is true. In the case in which Σ is inconsistent, it has no model and therefore the requirement is trivially true for any formula ϕ. First Order Logic 6. Tony, ShiKuo and Ellen belong to the Hoofers Club. Every member of the Hoofers Club is either a skier or a mountain climber or both. No mountain climber likes rain, and all skiers like snow. Ellen dislikes whatever Tony likes and likes whatever Tony dislikes. Tony likes rain and snow. Prove via the resolution method and unification (where needed) that Ellen is a mountain climber but not a skier. More precisely: (a) [1 pto] Translate the sentences above into FOL Sentences. Solution: We can transform the knowledge base into the following rules (it is not the only solution): Tony, ShiKuo and Ellen belong to the Hoofers Club. HClub(T ony) HClub(ShiKuo) HClub(Ellen) Every member of the Hoofers Club is either a skier or a mountain climber or both. x(hclub(x) (Skier(x) Climber(x))) Página 3 de 7 Pase a la siguiente página...
4 No mountain climber likes rain, and all skiers like snow. x(climber(x) Like(x, Rain)) x(skier(x) Like(x, Snow)) Ellen dislikes whatever Tony likes and likes whatever Tony dislikes. xy(likes(t ony, y) Like(Ellen, y)) Tony likes rain and snow. Likes(T ony, Rain) Likes(T ony, Snow) Ellen is a mountain climber but not a skier (our goal) Climber(Ellen) Skier(Ellen) (b) [1 pto] Convert to Clause Forms. Solution: The sentences are already in prenex normal form and there is no need to skolemize so they can be translate into the following clauses: 1. HClub(T ony) 2. HClub(ShiKuo) 3. HClub(Ellen) 4. HClub(x) Skier(x) Climber(x) 5. Skier(x) Like(x, Snow) 6. Climber(x) Like(x, Rain) 7. Likes(T ony, y) Like(Ellen, y) 8. Likes(T ony, Rain) 9. Likes(T ony, Snow) (c) [1 pto] Prove, using resolution, the goal sentence: Ellen is a mountain climber but not a skier. Solution: To prove it we will find a contradiction between the knowledge base and the negation of our goal. 10. Climber(Ellen) Skier(Ellen) The inconsistency can be achieved by doing the following: 11. HClub(Ellen) Skier(Ellen) (resolution between ) 12. Skier(Ellen) (resolution between ) 13. Like(Ellen, Snow) (resolution between ) 14. Like(T ony, Snow) (resolution between ) 15. (resolution between ) 7. Given a knowledge base Σ = { x(p (A, x) yr(x, y)), P (A, B)} 2 2 Note that A and B are constants Página 4 de 7 Pase a la siguiente página...
5 (a) [ 1 / 2 pto] Define a FOL signature S = {Ω, Π} for which formulas in Σ are wellformed. Solution: Ω = {A/0, B/0} and Π = {R/2, P/2} (b) [ 1 / 2 pto] Show that Σ is valid (provide an interpretation for S). Solution: Consider the interpretation I = (U, A I, B I, R I, P I ) where U = {A, B}, A I = A, B I = B, R I = {(B, B)} and P I = {(A, B)}. This interpretation is a model of Σ and therefore it is valid. (c) [ 1 / 2 pto] Is R(A, B) a logical consequence of Σ? Prove your answer. Solution: It is not. To prove it, it suffices to show a model of Σ for which R(A, B) is false. The model given in the previous question is such a model. FirstOrder Logic Programming 8. [1 pto] Consider the logic program P (x) R(x), not Q(x). Q(x) S(x). P (x) S(x). Q(a). S(a). R(b). Find all the answers to query P (x)? Show the resolution tree with the unifiers that are used. Solution: To simplify the presentation we will present the different branches of the tree. 1. Branch 1: P (x) R(x), not Q(x) not Q(b) (unifier b/x) We try to prove Q(b): S(b) Q(b) is false, therefore not Q(b) is true. Thus b is an answer to the query. 2. Branch 2: P (x) S(x) (unified for a/x) Thus a is an answer to the query. Página 5 de 7 Pase a la siguiente página...
6 9. [ 1 / 2 pto] Show by means of an example that firstorder logic programming with negation as failure is nonmonotonic. Solution: A logic is nonmonotonic if an answer that was obtained from a knowledge base continues to be true after adding more knowledge. In the case of FOLprogramming this is not the case as the following example shows. Consider a logic program with a single fact: P (a). The answer to the query P (x), notq(x) is x = a. But now, if we add Q(a) to the knowledge base we get that the query has no answers. Página 6 de 7 Pase a la siguiente página...
7 Appendix Syntaxis of Propositional Formulas ϕ ::= p ϕ (ϕ ϕ) (ϕ ϕ) (ϕ ϕ) (ϕ ϕ) Natural Deduction Rules Nonhypothetical rules (with no assumptions) (A) (B) (C) ϕ, ψ ϕ ψ ϕ ψ ϕ ϕ ψ ψ (D) (E) (F) ϕ ϕ ψ ψ ϕ ψ ϕ, ϕ ψ ψ (G) (H) (I) ϕ, ϕ φ ϕ ϕ ϕ ψ ϕ φ (J) (K) ϕ ψ φ ϕ ϕ φ, φ ϕ ϕ φ Hypothetical rules (that require assumption) (L) ϕ ψ, ϕ φ, ψ φ φ (M) ψ ϕ ψ ϕ (N) ψ F alse ψ Página 7 de 7 Fin del certamen.
Resolution in Propositional and FirstOrder Logic
Resolution in Propositional and FirstOrder Logic Inference rules Logical inference creates new sentences that logically follow from a set of sentences (KB) An inference rule is sound if every sentence
More informationCHAPTER 7 GENERAL PROOF SYSTEMS
CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes
More informationLecture 8: Resolution theoremproving
Comp24412 Symbolic AI Lecture 8: Resolution theoremproving Ian PrattHartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2014 15 In the previous Lecture, we met SATCHMO, a firstorder theoremprover implemented
More informationKnowledge Representation and Reasoning
Knowledge Representation and Reasoning Logic and Resolution  Example and Exercises Please read the relevant sections in the chapter Logic and Resolution that is available on the web (http://www.cs.ru.nl/
More informationFoundations of Artificial Intelligence
Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Bernhard Nebel and Martin Riedmiller AlbertLudwigsUniversität Freiburg Contents 1 Agents
More informationCSI 2101 Discrete Structures Winter 2012
CSI 2101 Discrete Structures Winter 2012 Prof. Lucia Moura University of Ottawa Homework Assignment #1 (100 points, weight 5%) Due: Thursday Feb 9, at 1:00 p.m. (in lecture); assignments with lateness
More informationDiscrete Mathematics, Chapter : Propositional Logic
Discrete Mathematics, Chapter 1.1.1.3: Propositional Logic Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.11.3 1 / 21 Outline 1 Propositions
More informationInference Rules and Proof Methods
Inference Rules and Proof Methods Winter 2010 Introduction Rules of Inference and Formal Proofs Proofs in mathematics are valid arguments that establish the truth of mathematical statements. An argument
More informationDiscrete Mathematics, Chapter 5: Induction and Recursion
Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Wellfounded
More informationCS510 Software Engineering
CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15cs510se
More informationSection 7.1 FirstOrder Predicate Calculus predicate Existential Quantifier Universal Quantifier.
Section 7.1 FirstOrder Predicate Calculus Predicate calculus studies the internal structure of sentences where subjects are applied to predicates existentially or universally. A predicate describes a
More informationResolution. Informatics 1 School of Informatics, University of Edinburgh
Resolution In this lecture you will see how to convert the natural proof system of previous lectures into one with fewer operators and only one proof rule. You will see how this proof system can be used
More informationSJÄLVSTÄNDIGA ARBETEN I MATEMATIK
SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Automated Theorem Proving av Tom Everitt 2010  No 8 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM
More informationFirstOrder Predicate Logic (2)
FirstOrder Predicate Logic (2) Predicate Logic (2) Understanding firstorder predicate logic formulas. Satisfiability and undecidability of satisfiability. Tautology, logical consequence, and logical
More information(LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.
(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of firstorder logic will use the following symbols: variables connectives (,,,,
More informationThe Predicate Calculus in AI
Last time, we: The Predicate Calculus in AI Motivated the use of Logic as a representational language for AI (Can derive new facts syntactically  simply by pushing symbols around) Described propositional
More informationNonClassical Logics: An Introduction
NonClassical Logics: n Introduction Modal and description logics Viorica SofronieStokkermans 1 Motivation Propositional/firstorder logic: formulae either true or false in any model. no other possibilities
More informationLogic in general. Inference rules and theorem proving
Logical Agents Knowledgebased agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledgebased agents Inference engine Knowledge base Domainindependent
More informationMath 3000 Running Glossary
Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (
More informationCSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi
Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Biconditional statement ( ): Let p and q be propositions. The biconditional
More informationThe Foundations: Logic and Proofs. Chapter 1, Part III: Proofs
The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments
More informationProblems on Discrete Mathematics 1
Problems on Discrete Mathematics 1 ChungChih Li 2 Kishan Mehrotra 3 L A TEX at July 18, 2007 1 No part of this book can be reproduced without permission from the authors 2 Illinois State University, Normal,
More informationLikewise, we have contradictions: formulas that can only be false, e.g. (p p).
CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula
More informationMath 55: Discrete Mathematics
Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 1, due Wedneday, January 25 1.1.10 Let p and q be the propositions The election is decided and The votes have been counted, respectively.
More informationPREDICATE LOGIC. 1 Basic Concepts. Jorma K. Mattila LUT, Department of Mathematics and Physics
PREDICATE LOGIC Jorma K. Mattila LUT, Department of Mathematics and Physics 1 Basic Concepts In predicate logic the formalism of propositional logic is extended and is made it more finely build than propositional
More informationTruth Conditional Meaning of Sentences. Ling324 Reading: Meaning and Grammar, pg
Truth Conditional Meaning of Sentences Ling324 Reading: Meaning and Grammar, pg. 6987 Meaning of Sentences A sentence can be true or false in a given situation or circumstance. (1) The pope talked to
More informationFirst Order Predicate Logic. Lecture 4
First Order Predicate Logic Lecture 4 First Order Predicate Logic Limitation of Propositional Logic The facts: peter is a man, paul is a man, john is a man can be symbolized by P, Q and R respectively
More informationPredicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.
Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is
More informationReview Name Rule of Inference
CS311H: Discrete Mathematics Review Name Rule of Inference Modus ponens φ 2 φ 2 Modus tollens φ 2 φ 2 Inference Rules for Quantifiers Işıl Dillig Hypothetical syllogism Or introduction Or elimination And
More informationHandout #1: Mathematical Reasoning
Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or
More informationSatisfiability Checking
Satisfiability Checking FirstOrder Logic Prof. Dr. Erika Ábrahám RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems WS 14/15 Satisfiability Checking Prof. Dr. Erika Ábrahám (RWTH Aachen
More information2. The Language of Firstorder Logic
2. The Language of Firstorder Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to
More informationGeneralized Modus Ponens
Generalized Modus Ponens This rule allows us to derive an implication... True p 1 and... p i and... p n p 1... p i1 and p i+1... p n implies p i implies q implies q allows: a 1 and... a i and... a n implies
More informationChapter I Logic and Proofs
MATH 1130 1 Discrete Structures Chapter I Logic and Proofs Propositions A proposition is a statement that is either true (T) or false (F), but or both. s Propositions: 1. I am a man.. I am taller than
More informationChapter 1. Logic and Proof
Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known
More informationTHREE DIMENSIONAL GEOMETRY
Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,
More informationMathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson
Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement
More informationCSE 459/598: Logic for Computer Scientists (Spring 2012)
CSE 459/598: Logic for Computer Scientists (Spring 2012) Time and Place: T Th 10:3011:45 a.m., M109 Instructor: Joohyung Lee (joolee@asu.edu) Instructor s Office Hours: T Th 4:305:30 p.m. and by appointment
More informationCS 2336 Discrete Mathematics
CS 2336 Discrete Mathematics Lecture 2 Logic: Predicate Calculus 1 Outline Predicates Quantifiers Binding Applications Logical Equivalences 2 Predicates In mathematics arguments, we will often see sentences
More informationFirstOrder Logic: Review
FirstOrder Logic: Review Firstorder logic Firstorder logic (FOL) models the world in terms of Objects, which are things with individual identities Properties of objects that distinguish them from other
More information4 Domain Relational Calculus
4 Domain Relational Calculus We now present two relational calculi that we will compare to RA. First, what is the difference between an algebra and a calculus? The usual story is that the algebra RA is
More informationSection 3 Sequences and Limits
Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the nth term of the sequence.
More informationConsistency, completeness of undecidable preposition of Principia Mathematica. Tanmay Jaipurkar
Consistency, completeness of undecidable preposition of Principia Mathematica Tanmay Jaipurkar October 21, 2013 Abstract The fallowing paper discusses the inconsistency and undecidable preposition of Principia
More information4. FIRSTORDER LOGIC
4. FIRSTORDER LOGIC Contents 4.1: Splitting the atom: names, predicates and relations 4.2: Structures 4.3: Quantification:, 4.4: Syntax 4.5: Semantics 4.6: De Morgan s laws for and 4.7: Truth trees for
More information3. Predicates and Quantifiers
3. PREDICATES AND QUANTIFIERS 45 3. Predicates and Quantifiers 3.1. Predicates and Quantifiers. Definition 3.1.1. A predicate or propositional function is a description of the property (or properties)
More informationLecture 13 of 41. More Propositional and Predicate Logic
Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.18.3, Russell and Norvig
More informationArtificial Intelligence Automated Reasoning
Artificial Intelligence Automated Reasoning Andrea Torsello Automated Reasoning Very important area of AI research Reasoning usually means deductive reasoning New facts are deduced logically from old ones
More informationFrom Causes for Database Queries to Repairs and ModelBased Diagnosis and Back
From Causes for Database Queries to Repairs and ModelBased Diagnosis and Back Babak Salimi 1 and Leopoldo Bertossi 2 1 Carleton University, School of Computer Science, Ottawa, Canada bsalimi@scs.carleton.ca
More informationFixedPoint Logics and Computation
1 FixedPoint Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of
More informationComputational Methods for Database Repair by Signed Formulae
Computational Methods for Database Repair by Signed Formulae Ofer Arieli (oarieli@mta.ac.il) Department of Computer Science, The Academic College of TelAviv, 4 Antokolski street, TelAviv 61161, Israel.
More informationFoundational Proof Certificates
An application of proof theory to computer science INRIASaclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?
More informationCS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers
CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)
More informationComputational Logic and Cognitive Science: An Overview
Computational Logic and Cognitive Science: An Overview Session 1: Logical Foundations Technical University of Dresden 25th of August, 2008 University of Osnabrück Who we are Helmar Gust Interests: Analogical
More informationMathematical Logic. Tableaux Reasoning for Propositional Logic. Chiara Ghidini. FBKIRST, Trento, Italy
Tableaux Reasoning for Propositional Logic FBKIRST, Trento, Italy Outline of this lecture An introduction to Automated Reasoning with Analytic Tableaux; Today we will be looking into tableau methods for
More informationIntroduction to Predicate Logic. Ling324 Reading: Meaning and Grammar, pg
Introduction to Predicate Logic Ling324 Reading: Meaning and Grammar, pg. 113141 Usefulness of Predicate Logic for Natural Language Semantics While in propositional logic, we can only talk about sentences
More informationFirstOrder Logics and Truth Degrees
FirstOrder Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 1519 July 2014 George Metcalfe (University of Bern) FirstOrder Logics
More informationRigorous Software Development CSCIGA 3033009
Rigorous Software Development CSCIGA 3033009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical
More informationArtificial Intelligence. 5. FirstOrder Logic
Artificial Intelligence Artificial Intelligence 5. FirstOrder Logic Lars SchmidtThieme Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute
More informationDISCRETE MATHEMATICS W W L CHEN
DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free
More informationAI Principles, Semester 2, Week 2, Lecture 4 Introduction to Logic Thinking, reasoning and deductive logic Validity of arguments, Soundness of
AI Principles, Semester 2, Week 2, Lecture 4 Introduction to Logic Thinking, reasoning and deductive logic Validity of arguments, Soundness of arguments Formal systems Axioms, Inference, and Proof Propositional
More informationINTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS
INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28
More informationInference in First Order Logic
Inference in First Order Logic Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Burr Settles] slide 1 The law says that it is a crime
More informationSummary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)
Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic
More informationCorrespondence analysis for strong threevalued logic
Correspondence analysis for strong threevalued logic A. Tamminga abstract. I apply Kooi and Tamminga s (2012) idea of correspondence analysis for manyvalued logics to strong threevalued logic (K 3 ).
More informationMathematical Induction
Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers
More informationBoolean or Propositional Logic
Boolean or Propositional Logic SET07106 Mathematics for Software Engineering School of Computing Edinburgh Napier University Module Leader: Uta Priss 2010 Copyright Edinburgh Napier University Boolean
More informationDISCRETE MATH: LECTURE 4
DISCRETE MATH: LECTURE 4 DR. DANIEL FREEMAN 1. Chapter 3.1 Predicates and Quantified Statements I A predicate is a sentence that contains a finite number of variables and becomes a statement when specific
More information2. Propositional Equivalences
2. PROPOSITIONAL EQUIVALENCES 33 2. Propositional Equivalences 2.1. Tautology/Contradiction/Contingency. Definition 2.1.1. A tautology is a proposition that is always true. Example 2.1.1. p p Definition
More informationRelational Query Languages
Relational Query Languages Universidad de Concepción, 2014 (Slides adapted from Loreto Bravo, who adapted from Werner Nutt who adapted them from Thomas Eiter and Leonid Libkin) Bases de Datos II 1 Queries
More informationON FUNCTIONAL SYMBOLFREE LOGIC PROGRAMS
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOLFREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information
More informationArtificial Intelligence
Artificial Intelligence ICS461 Fall 2010 1 Lecture #12B More Representations Outline Logics Rules Frames Nancy E. Reed nreed@hawaii.edu 2 Representation Agents deal with knowledge (data) Facts (believe
More information1.5 Methods of Proof INTRODUCTION
1.5 Methods of Proof INTRODUCTION Icon 0049 Two important questions that arise in the study of mathematics are: (1) When is a mathematical argument correct? (2) What methods can be used to construct mathematical
More informationPredicate Logic Review
Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning
More informationPredicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic
PART II. Predicate logic first order logic Logic in computer science Seminar: INGK401K5; INHK401; INJK401K4 University of Debrecen, Faculty of Informatics kadek.tamas@inf.unideb.hu 1 / 19 Alphabets Logical
More informationCHAPTER 1. Logic, Proofs Propositions
CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: Paris is in France (true), London
More informationit is easy to see that α = a
21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore
More information1 Proposition, Logical connectives and compound statements
Discrete Mathematics: Lecture 4 Introduction to Logic Instructor: Arijit Bishnu Date: July 27, 2009 1 Proposition, Logical connectives and compound statements Logic is the discipline that deals with the
More informationMATH20302 Propositional Logic. Mike Prest School of Mathematics Alan Turing Building Room
MATH20302 Propositional Logic Mike Prest School of Mathematics Alan Turing Building Room 1.120 mprest@manchester.ac.uk April 10, 2015 Contents I Propositional Logic 3 1 Propositional languages 4 1.1 Propositional
More informationCSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo
Propositional Logic CSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 37 Discrete Mathematics What is Discrete
More informationPredicate Logic. PHI 201 Introductory Logic Spring 2011
Predicate Logic PHI 201 Introductory Logic Spring 2011 This is a summary of definitions in Predicate Logic from the text The Logic Book by Bergmann et al. 1 The Language PLE Vocabulary The vocabulary of
More information1.3 Induction and Other Proof Techniques
4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.
More informationRigorous. Development. Software. Program Verification. & Springer. An Introduction to. Jorge Sousa Pinto. Jose Bacelar Almeida Maria Joao Frade
Jose Bacelar Almeida Maria Joao Frade Jorge Sousa Pinto Simao Melo de Sousa Rigorous Software Development An Introduction to Program Verification & Springer Contents 1 Introduction 1 1.1 A Formal Approach
More informationWUCT121. Discrete Mathematics. Logic
WUCT121 Discrete Mathematics Logic 1. Logic 2. Predicate Logic 3. Proofs 4. Set Theory 5. Relations and Functions WUCT121 Logic 1 Section 1. Logic 1.1. Introduction. In developing a mathematical theory,
More informationUniversity of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees
University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to
More informationBasic Proof Techniques
Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document
More informationPropositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.
irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto
More informationFoundations of mathematics
Foundations of mathematics 1. First foundations of mathematics 1.1. Introduction to the foundations of mathematics Mathematics, theories and foundations Sylvain Poirier http://settheory.net/ Mathematics
More informationPredicates and Quantifiers. Niloufar Shafiei
Predicates and Quantifiers Niloufar Shafiei Review Proposition: 1. It is a sentence that declares a fact. 2. It is either true or false, but not both. Examples: 2 + 1 = 3. True Proposition Toronto is the
More informationFirstOrder Stable Model Semantics and FirstOrder Loop Formulas
Journal of Artificial Intelligence Research 42 (2011) 125180 Submitted 03/11; published 10/11 FirstOrder Stable Model Semantics and FirstOrder Loop Formulas Joohyung Lee Yunsong Meng School of Computing,
More informationMATH 55: HOMEWORK #2 SOLUTIONS
MATH 55: HOMEWORK # SOLUTIONS ERIC PETERSON * 1. SECTION 1.5: NESTED QUANTIFIERS 1.1. Problem 1.5.8. Determine the truth value of each of these statements if the domain of each variable consists of all
More informationDeductive Systems. Marco Piastra. Artificial Intelligence. Artificial Intelligence  A.A Deductive Systems [1]
Artificial Intelligence Deductive Systems Marco Piastra Artificial Intelligence  A.A. 2012 Deductive Systems 1] Symbolic calculus? A wff is entailed by a set of wff iff every model of is also model of
More informationPredicate Logic. M.A.Galán, TDBA64, VT03
Predicate Logic 1 Introduction There are certain arguments that seem to be perfectly logical, yet they cannot be specified by using propositional logic. All cats have tails. Tom is a cat. From these two
More informationBeyond Propositional Logic Lukasiewicz s System
Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon
More informationDefinition 10. A proposition is a statement either true or false, but not both.
Chapter 2 Propositional Logic Contrariwise, continued Tweedledee, if it was so, it might be; and if it were so, it would be; but as it isn t, it ain t. That s logic. (Lewis Carroll, Alice s Adventures
More informationPredicate Logic. Lucia Moura. Winter Predicates and Quantifiers Nested Quantifiers Using Predicate Calculus
Predicate Logic Winter 2010 Predicates A Predicate is a declarative sentence whose true/false value depends on one or more variables. The statement x is greater than 3 has two parts: the subject: x is
More information3(vi) B. Answer: False. 3(vii) B. Answer: True
Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)
More informationJaakko Hintikka Boston University. and. Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION
Jaakko Hintikka Boston University and Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION INTERPOLATION AS EXPLANATION In the study of explanation, one can distinguish two main trends. On
More information1.2 The predicate Calculus
1.2 The predicate Calculus In propositional calculus, each atomic symbol (P, 0, etc.) denotes a proposition of some complexity. There is no way to access the components of an individual assertion. Predicate
More information8.7 Mathematical Induction
8.7. MATHEMATICAL INDUCTION 8135 8.7 Mathematical Induction Objective Prove a statement by mathematical induction Many mathematical facts are established by first observing a pattern, then making a conjecture
More informationPredicate logic Proofs Artificial intelligence. Predicate logic. SET07106 Mathematics for Software Engineering
Predicate logic SET07106 Mathematics for Software Engineering School of Computing Edinburgh Napier University Module Leader: Uta Priss 2010 Copyright Edinburgh Napier University Predicate logic Slide 1/24
More information