# Certamen 1 de Representación del Conocimiento

Save this PDF as:

Size: px
Start display at page:

## Transcription

1 Certamen 1 de Representación del Conocimiento Segundo Semestre 2012 Question: Total Points: / 2 1 / / / 2 12 Here we show one way to solve each question, but there might be other ways to solve them. Propositional Logic 1. [2 ptos] Use structural induction to prove that a propositional formula has the same number of left parenthesis as right parenthesis. TIP: The syntax of propositional formulas is given in the appendix of this test. Solution: Let LP (ϕ) and RP (ϕ) denote the number of left and right parenthesis of ϕ Base case: for proposition p we have LP (p) = RP (p) = 0. Inductive cases: assume we have formulas φ 1 and φ 2 such that LP (φ 1 ) = RP (φ 1 ) = c 1 and LP (φ 2 ) = RP (φ 2 ) = c 2 : 1. Given a formula φ such that LP (φ) = RP (φ), prove that for ϕ = φ, it holds LP (ϕ) = RP (ϕ). Proof: LP (ϕ) = LP ( φ) = LP (φ) = RP (φ) = RP ( ϕ) = RP (ϕ) 2. Given formulas φ 1 and φ 2 such that LP (φ 1 ) = RP (φ 1 ) and LP (φ 2 ) = RP (φ 2 ), prove that for ϕ = (φ 1 φ 2 ) where {,,, }, it holds LP (ϕ) = RP (ϕ). Proof: LP (ϕ) = LP ((φ 1 φ 2 )) = 1+LP (φ 1 )+LP (φ 2 ) = 1+RP (φ 1 )+RP (φ 2 ) = RP ((φ 1 φ 2 )) = rp (ϕ) 2. Consider Σ = { (( p q) (r p)), q}. (a) [1 pto] Prove in precise semantic 1 terms that Σ = r. Solution: The following table shows that Σ is inconsistent and therefore r is a logical consequence. 1 Using truth tables 1

2 p q r t 1 = ( p q) t 2 = (r p) t 1 t 2 (t 1 t 2 ) Σ (b) [1 pto] Prove by resolution that Σ = (r s). Solution: We will prove that Σ { (r s)} is inconsistent. To apply resolution we need to put the formulas in CNF: (( p q) (r p)) q ( r s) = ( ( p q) ( r p)) q r s = ((p q) (r p)) q r s = (p q) r p q r s Though, we need to apply resolution with the following clauses {p q, r, p, q, r, s}. By resolution between the first and third clause we get q. By applying resolution with the fourth clause we get an inconsistency. 3. Prove using the set of natural deduction rules that: (a) [ 1 / 2 pto] {(p q) r, q p, q} = r Solution: 1. (p q) r 2. q p 3. q 4. p (result of applying rule (F) to 2 and 3) 5. p q (result of applying rule (A) to 3 and 4) 6. r (result of applying rule (F) to 1 and 5) (b) [ 1 / 2 pto] {p} = (q p) Solution: 1. p 2. Assume q a) p (true from 1) Página 2 de 7 Pase a la siguiente página...

3 3. q p (result of applying rule (M) to 2) In your proofs you should say which deductive rules you are using. TIP: use the natural deduction rules in the appendix with the given names. 4. [ 1 / 2 pto] Prove that {(p (q r)) (s u), r} = u Solution: For an assignment that makes s true and the rest of the variables false (in particular r), makes {(p (q r)) (s u), r} true but u is false. Thus, u is not a logical consequence. 5. [ 1 / 2 pto] Provide a short proof showing that for an inconsistent knowledge base Σ in propositional logic, every formula ϕ is a logical consequence of Σ. Solution: A formula ϕ is a logical consequence of a knowledge base Σ if every model that satisfies Σ it holds also that ϕ is true. In the case in which Σ is inconsistent, it has no model and therefore the requirement is trivially true for any formula ϕ. First Order Logic 6. Tony, Shi-Kuo and Ellen belong to the Hoofers Club. Every member of the Hoofers Club is either a skier or a mountain climber or both. No mountain climber likes rain, and all skiers like snow. Ellen dislikes whatever Tony likes and likes whatever Tony dislikes. Tony likes rain and snow. Prove via the resolution method and unification (where needed) that Ellen is a mountain climber but not a skier. More precisely: (a) [1 pto] Translate the sentences above into FOL Sentences. Solution: We can transform the knowledge base into the following rules (it is not the only solution): Tony, Shi-Kuo and Ellen belong to the Hoofers Club. HClub(T ony) HClub(ShiKuo) HClub(Ellen) Every member of the Hoofers Club is either a skier or a mountain climber or both. x(hclub(x) (Skier(x) Climber(x))) Página 3 de 7 Pase a la siguiente página...

4 No mountain climber likes rain, and all skiers like snow. x(climber(x) Like(x, Rain)) x(skier(x) Like(x, Snow)) Ellen dislikes whatever Tony likes and likes whatever Tony dislikes. xy(likes(t ony, y) Like(Ellen, y)) Tony likes rain and snow. Likes(T ony, Rain) Likes(T ony, Snow) Ellen is a mountain climber but not a skier (our goal) Climber(Ellen) Skier(Ellen) (b) [1 pto] Convert to Clause Forms. Solution: The sentences are already in prenex normal form and there is no need to skolemize so they can be translate into the following clauses: 1. HClub(T ony) 2. HClub(ShiKuo) 3. HClub(Ellen) 4. HClub(x) Skier(x) Climber(x) 5. Skier(x) Like(x, Snow) 6. Climber(x) Like(x, Rain) 7. Likes(T ony, y) Like(Ellen, y) 8. Likes(T ony, Rain) 9. Likes(T ony, Snow) (c) [1 pto] Prove, using resolution, the goal sentence: Ellen is a mountain climber but not a skier. Solution: To prove it we will find a contradiction between the knowledge base and the negation of our goal. 10. Climber(Ellen) Skier(Ellen) The inconsistency can be achieved by doing the following: 11. HClub(Ellen) Skier(Ellen) (resolution between ) 12. Skier(Ellen) (resolution between ) 13. Like(Ellen, Snow) (resolution between ) 14. Like(T ony, Snow) (resolution between ) 15. (resolution between ) 7. Given a knowledge base Σ = { x(p (A, x) yr(x, y)), P (A, B)} 2 2 Note that A and B are constants Página 4 de 7 Pase a la siguiente página...

5 (a) [ 1 / 2 pto] Define a FOL signature S = {Ω, Π} for which formulas in Σ are well-formed. Solution: Ω = {A/0, B/0} and Π = {R/2, P/2} (b) [ 1 / 2 pto] Show that Σ is valid (provide an interpretation for S). Solution: Consider the interpretation I = (U, A I, B I, R I, P I ) where U = {A, B}, A I = A, B I = B, R I = {(B, B)} and P I = {(A, B)}. This interpretation is a model of Σ and therefore it is valid. (c) [ 1 / 2 pto] Is R(A, B) a logical consequence of Σ? Prove your answer. Solution: It is not. To prove it, it suffices to show a model of Σ for which R(A, B) is false. The model given in the previous question is such a model. First-Order Logic Programming 8. [1 pto] Consider the logic program P (x) R(x), not Q(x). Q(x) S(x). P (x) S(x). Q(a). S(a). R(b). Find all the answers to query P (x)? Show the resolution tree with the unifiers that are used. Solution: To simplify the presentation we will present the different branches of the tree. 1. Branch 1: P (x) R(x), not Q(x) not Q(b) (unifier b/x) We try to prove Q(b): S(b) Q(b) is false, therefore not Q(b) is true. Thus b is an answer to the query. 2. Branch 2: P (x) S(x) (unified for a/x) Thus a is an answer to the query. Página 5 de 7 Pase a la siguiente página...

6 9. [ 1 / 2 pto] Show by means of an example that first-order logic programming with negation as failure is non-monotonic. Solution: A logic is non-monotonic if an answer that was obtained from a knowledge base continues to be true after adding more knowledge. In the case of FOLprogramming this is not the case as the following example shows. Consider a logic program with a single fact: P (a). The answer to the query P (x), notq(x) is x = a. But now, if we add Q(a) to the knowledge base we get that the query has no answers. Página 6 de 7 Pase a la siguiente página...

7 Appendix Syntaxis of Propositional Formulas ϕ ::= p ϕ (ϕ ϕ) (ϕ ϕ) (ϕ ϕ) (ϕ ϕ) Natural Deduction Rules Non-hypothetical rules (with no assumptions) (A) (B) (C) ϕ, ψ ϕ ψ ϕ ψ ϕ ϕ ψ ψ (D) (E) (F) ϕ ϕ ψ ψ ϕ ψ ϕ, ϕ ψ ψ (G) (H) (I) ϕ, ϕ φ ϕ ϕ ϕ ψ ϕ φ (J) (K) ϕ ψ φ ϕ ϕ φ, φ ϕ ϕ φ Hypothetical rules (that require assumption) (L) ϕ ψ, ϕ φ, ψ φ φ (M) ψ ϕ ψ ϕ (N) ψ F alse ψ Página 7 de 7 Fin del certamen.

### Resolution in Propositional and First-Order Logic

Resolution in Propositional and First-Order Logic Inference rules Logical inference creates new sentences that logically follow from a set of sentences (KB) An inference rule is sound if every sentence

### CHAPTER 7 GENERAL PROOF SYSTEMS

CHAPTER 7 GENERAL PROOF SYSTEMS 1 Introduction Proof systems are built to prove statements. They can be thought as an inference machine with special statements, called provable statements, or sometimes

### Lecture 8: Resolution theorem-proving

Comp24412 Symbolic AI Lecture 8: Resolution theorem-proving Ian Pratt-Hartmann Room KB2.38: email: ipratt@cs.man.ac.uk 2014 15 In the previous Lecture, we met SATCHMO, a first-order theorem-prover implemented

### Knowledge Representation and Reasoning

Knowledge Representation and Reasoning Logic and Resolution - Example and Exercises Please read the relevant sections in the chapter Logic and Resolution that is available on the web (http://www.cs.ru.nl/

### Foundations of Artificial Intelligence

Foundations of Artificial Intelligence 7. Propositional Logic Rational Thinking, Logic, Resolution Wolfram Burgard, Bernhard Nebel and Martin Riedmiller Albert-Ludwigs-Universität Freiburg Contents 1 Agents

### CSI 2101 Discrete Structures Winter 2012

CSI 2101 Discrete Structures Winter 2012 Prof. Lucia Moura University of Ottawa Homework Assignment #1 (100 points, weight 5%) Due: Thursday Feb 9, at 1:00 p.m. (in lecture); assignments with lateness

### Discrete Mathematics, Chapter : Propositional Logic

Discrete Mathematics, Chapter 1.1.-1.3: Propositional Logic Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 1.1-1.3 1 / 21 Outline 1 Propositions

### Inference Rules and Proof Methods

Inference Rules and Proof Methods Winter 2010 Introduction Rules of Inference and Formal Proofs Proofs in mathematics are valid arguments that establish the truth of mathematical statements. An argument

### Discrete Mathematics, Chapter 5: Induction and Recursion

Discrete Mathematics, Chapter 5: Induction and Recursion Richard Mayr University of Edinburgh, UK Richard Mayr (University of Edinburgh, UK) Discrete Mathematics. Chapter 5 1 / 20 Outline 1 Well-founded

### CS510 Software Engineering

CS510 Software Engineering Propositional Logic Asst. Prof. Mathias Payer Department of Computer Science Purdue University TA: Scott A. Carr Slides inspired by Xiangyu Zhang http://nebelwelt.net/teaching/15-cs510-se

### Section 7.1 First-Order Predicate Calculus predicate Existential Quantifier Universal Quantifier.

Section 7.1 First-Order Predicate Calculus Predicate calculus studies the internal structure of sentences where subjects are applied to predicates existentially or universally. A predicate describes a

### Resolution. Informatics 1 School of Informatics, University of Edinburgh

Resolution In this lecture you will see how to convert the natural proof system of previous lectures into one with fewer operators and only one proof rule. You will see how this proof system can be used

### SJÄLVSTÄNDIGA ARBETEN I MATEMATIK

SJÄLVSTÄNDIGA ARBETEN I MATEMATIK MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET Automated Theorem Proving av Tom Everitt 2010 - No 8 MATEMATISKA INSTITUTIONEN, STOCKHOLMS UNIVERSITET, 106 91 STOCKHOLM

### First-Order Predicate Logic (2)

First-Order Predicate Logic (2) Predicate Logic (2) Understanding first-order predicate logic formulas. Satisfiability and undecidability of satisfiability. Tautology, logical consequence, and logical

### (LMCS, p. 317) V.1. First Order Logic. This is the most powerful, most expressive logic that we will examine.

(LMCS, p. 317) V.1 First Order Logic This is the most powerful, most expressive logic that we will examine. Our version of first-order logic will use the following symbols: variables connectives (,,,,

### The Predicate Calculus in AI

Last time, we: The Predicate Calculus in AI Motivated the use of Logic as a representational language for AI (Can derive new facts syntactically - simply by pushing symbols around) Described propositional

### Non-Classical Logics: An Introduction

Non-Classical Logics: n Introduction Modal and description logics Viorica Sofronie-Stokkermans 1 Motivation Propositional/first-order logic: formulae either true or false in any model. no other possibilities

### Logic in general. Inference rules and theorem proving

Logical Agents Knowledge-based agents Logic in general Propositional logic Inference rules and theorem proving First order logic Knowledge-based agents Inference engine Knowledge base Domain-independent

### Math 3000 Running Glossary

Math 3000 Running Glossary Last Updated on: July 15, 2014 The definition of items marked with a must be known precisely. Chapter 1: 1. A set: A collection of objects called elements. 2. The empty set (

### CSL105: Discrete Mathematical Structures. Ragesh Jaiswal, CSE, IIT Delhi

Propositional Logic: logical operators Negation ( ) Conjunction ( ) Disjunction ( ). Exclusive or ( ) Conditional statement ( ) Bi-conditional statement ( ): Let p and q be propositions. The biconditional

### The Foundations: Logic and Proofs. Chapter 1, Part III: Proofs

The Foundations: Logic and Proofs Chapter 1, Part III: Proofs Rules of Inference Section 1.6 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments

### Problems on Discrete Mathematics 1

Problems on Discrete Mathematics 1 Chung-Chih Li 2 Kishan Mehrotra 3 L A TEX at July 18, 2007 1 No part of this book can be reproduced without permission from the authors 2 Illinois State University, Normal,

### Likewise, we have contradictions: formulas that can only be false, e.g. (p p).

CHAPTER 4. STATEMENT LOGIC 59 The rightmost column of this truth table contains instances of T and instances of F. Notice that there are no degrees of contingency. If both values are possible, the formula

### Math 55: Discrete Mathematics

Math 55: Discrete Mathematics UC Berkeley, Fall 2011 Homework # 1, due Wedneday, January 25 1.1.10 Let p and q be the propositions The election is decided and The votes have been counted, respectively.

### PREDICATE LOGIC. 1 Basic Concepts. Jorma K. Mattila LUT, Department of Mathematics and Physics

PREDICATE LOGIC Jorma K. Mattila LUT, Department of Mathematics and Physics 1 Basic Concepts In predicate logic the formalism of propositional logic is extended and is made it more finely build than propositional

### Truth Conditional Meaning of Sentences. Ling324 Reading: Meaning and Grammar, pg

Truth Conditional Meaning of Sentences Ling324 Reading: Meaning and Grammar, pg. 69-87 Meaning of Sentences A sentence can be true or false in a given situation or circumstance. (1) The pope talked to

### First Order Predicate Logic. Lecture 4

First Order Predicate Logic Lecture 4 First Order Predicate Logic Limitation of Propositional Logic The facts: peter is a man, paul is a man, john is a man can be symbolized by P, Q and R respectively

### Predicate Logic. Example: All men are mortal. Socrates is a man. Socrates is mortal.

Predicate Logic Example: All men are mortal. Socrates is a man. Socrates is mortal. Note: We need logic laws that work for statements involving quantities like some and all. In English, the predicate is

### Review Name Rule of Inference

CS311H: Discrete Mathematics Review Name Rule of Inference Modus ponens φ 2 φ 2 Modus tollens φ 2 φ 2 Inference Rules for Quantifiers Işıl Dillig Hypothetical syllogism Or introduction Or elimination And

### Handout #1: Mathematical Reasoning

Math 101 Rumbos Spring 2010 1 Handout #1: Mathematical Reasoning 1 Propositional Logic A proposition is a mathematical statement that it is either true or false; that is, a statement whose certainty or

### Satisfiability Checking

Satisfiability Checking First-Order Logic Prof. Dr. Erika Ábrahám RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems WS 14/15 Satisfiability Checking Prof. Dr. Erika Ábrahám (RWTH Aachen

### 2. The Language of First-order Logic

2. The Language of First-order Logic KR & R Brachman & Levesque 2005 17 Declarative language Before building system before there can be learning, reasoning, planning, explanation... need to be able to

### Generalized Modus Ponens

Generalized Modus Ponens This rule allows us to derive an implication... True p 1 and... p i and... p n p 1... p i-1 and p i+1... p n implies p i implies q implies q allows: a 1 and... a i and... a n implies

### Chapter I Logic and Proofs

MATH 1130 1 Discrete Structures Chapter I Logic and Proofs Propositions A proposition is a statement that is either true (T) or false (F), but or both. s Propositions: 1. I am a man.. I am taller than

### Chapter 1. Logic and Proof

Chapter 1. Logic and Proof 1.1 Remark: A little over 100 years ago, it was found that some mathematical proofs contained paradoxes, and these paradoxes could be used to prove statements that were known

### THREE DIMENSIONAL GEOMETRY

Chapter 8 THREE DIMENSIONAL GEOMETRY 8.1 Introduction In this chapter we present a vector algebra approach to three dimensional geometry. The aim is to present standard properties of lines and planes,

### Mathematics for Computer Science/Software Engineering. Notes for the course MSM1F3 Dr. R. A. Wilson

Mathematics for Computer Science/Software Engineering Notes for the course MSM1F3 Dr. R. A. Wilson October 1996 Chapter 1 Logic Lecture no. 1. We introduce the concept of a proposition, which is a statement

### CSE 459/598: Logic for Computer Scientists (Spring 2012)

CSE 459/598: Logic for Computer Scientists (Spring 2012) Time and Place: T Th 10:30-11:45 a.m., M1-09 Instructor: Joohyung Lee (joolee@asu.edu) Instructor s Office Hours: T Th 4:30-5:30 p.m. and by appointment

### CS 2336 Discrete Mathematics

CS 2336 Discrete Mathematics Lecture 2 Logic: Predicate Calculus 1 Outline Predicates Quantifiers Binding Applications Logical Equivalences 2 Predicates In mathematics arguments, we will often see sentences

### First-Order Logic: Review

First-Order Logic: Review First-order logic First-order logic (FOL) models the world in terms of Objects, which are things with individual identities Properties of objects that distinguish them from other

### 4 Domain Relational Calculus

4 Domain Relational Calculus We now present two relational calculi that we will compare to RA. First, what is the difference between an algebra and a calculus? The usual story is that the algebra RA is

### Section 3 Sequences and Limits

Section 3 Sequences and Limits Definition A sequence of real numbers is an infinite ordered list a, a 2, a 3, a 4,... where, for each n N, a n is a real number. We call a n the n-th term of the sequence.

### Consistency, completeness of undecidable preposition of Principia Mathematica. Tanmay Jaipurkar

Consistency, completeness of undecidable preposition of Principia Mathematica Tanmay Jaipurkar October 21, 2013 Abstract The fallowing paper discusses the inconsistency and undecidable preposition of Principia

### 4. FIRST-ORDER LOGIC

4. FIRST-ORDER LOGIC Contents 4.1: Splitting the atom: names, predicates and relations 4.2: Structures 4.3: Quantification:, 4.4: Syntax 4.5: Semantics 4.6: De Morgan s laws for and 4.7: Truth trees for

### 3. Predicates and Quantifiers

3. PREDICATES AND QUANTIFIERS 45 3. Predicates and Quantifiers 3.1. Predicates and Quantifiers. Definition 3.1.1. A predicate or propositional function is a description of the property (or properties)

### Lecture 13 of 41. More Propositional and Predicate Logic

Lecture 13 of 41 More Propositional and Predicate Logic Monday, 20 September 2004 William H. Hsu, KSU http://www.kddresearch.org http://www.cis.ksu.edu/~bhsu Reading: Sections 8.1-8.3, Russell and Norvig

### Artificial Intelligence Automated Reasoning

Artificial Intelligence Automated Reasoning Andrea Torsello Automated Reasoning Very important area of AI research Reasoning usually means deductive reasoning New facts are deduced logically from old ones

### From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back

From Causes for Database Queries to Repairs and Model-Based Diagnosis and Back Babak Salimi 1 and Leopoldo Bertossi 2 1 Carleton University, School of Computer Science, Ottawa, Canada bsalimi@scs.carleton.ca

### Fixed-Point Logics and Computation

1 Fixed-Point Logics and Computation Symposium on the Unusual Effectiveness of Logic in Computer Science University of Cambridge 2 Mathematical Logic Mathematical logic seeks to formalise the process of

### Computational Methods for Database Repair by Signed Formulae

Computational Methods for Database Repair by Signed Formulae Ofer Arieli (oarieli@mta.ac.il) Department of Computer Science, The Academic College of Tel-Aviv, 4 Antokolski street, Tel-Aviv 61161, Israel.

### Foundational Proof Certificates

An application of proof theory to computer science INRIA-Saclay & LIX, École Polytechnique CUSO Winter School, Proof and Computation 30 January 2013 Can we standardize, communicate, and trust formal proofs?

### CS 441 Discrete Mathematics for CS Lecture 5. Predicate logic. CS 441 Discrete mathematics for CS. Negation of quantifiers

CS 441 Discrete Mathematics for CS Lecture 5 Predicate logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Negation of quantifiers English statement: Nothing is perfect. Translation: x Perfect(x)

### Computational Logic and Cognitive Science: An Overview

Computational Logic and Cognitive Science: An Overview Session 1: Logical Foundations Technical University of Dresden 25th of August, 2008 University of Osnabrück Who we are Helmar Gust Interests: Analogical

### Mathematical Logic. Tableaux Reasoning for Propositional Logic. Chiara Ghidini. FBK-IRST, Trento, Italy

Tableaux Reasoning for Propositional Logic FBK-IRST, Trento, Italy Outline of this lecture An introduction to Automated Reasoning with Analytic Tableaux; Today we will be looking into tableau methods for

### Introduction to Predicate Logic. Ling324 Reading: Meaning and Grammar, pg

Introduction to Predicate Logic Ling324 Reading: Meaning and Grammar, pg. 113-141 Usefulness of Predicate Logic for Natural Language Semantics While in propositional logic, we can only talk about sentences

### First-Order Logics and Truth Degrees

First-Order Logics and Truth Degrees George Metcalfe Mathematics Institute University of Bern LATD 2014, Vienna Summer of Logic, 15-19 July 2014 George Metcalfe (University of Bern) First-Order Logics

### Rigorous Software Development CSCI-GA 3033-009

Rigorous Software Development CSCI-GA 3033-009 Instructor: Thomas Wies Spring 2013 Lecture 11 Semantics of Programming Languages Denotational Semantics Meaning of a program is defined as the mathematical

### Artificial Intelligence. 5. First-Order Logic

Artificial Intelligence Artificial Intelligence 5. First-Order Logic Lars Schmidt-Thieme Information Systems and Machine Learning Lab (ISMLL) Institute of Economics and Information Systems & Institute

### DISCRETE MATHEMATICS W W L CHEN

DISCRETE MATHEMATICS W W L CHEN c W W L Chen, 1982, 2008. This chapter originates from material used by the author at Imperial College, University of London, between 1981 and 1990. It is available free

### AI Principles, Semester 2, Week 2, Lecture 4 Introduction to Logic Thinking, reasoning and deductive logic Validity of arguments, Soundness of

AI Principles, Semester 2, Week 2, Lecture 4 Introduction to Logic Thinking, reasoning and deductive logic Validity of arguments, Soundness of arguments Formal systems Axioms, Inference, and Proof Propositional

### INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS

INTRODUCTION TO PROOFS: HOMEWORK SOLUTIONS STEVEN HEILMAN Contents 1. Homework 1 1 2. Homework 2 6 3. Homework 3 10 4. Homework 4 16 5. Homework 5 19 6. Homework 6 21 7. Homework 7 25 8. Homework 8 28

### Inference in First Order Logic

Inference in First Order Logic Xiaojin Zhu jerryzhu@cs.wisc.edu Computer Sciences Department University of Wisconsin, Madison [Based on slides from Burr Settles] slide 1 The law says that it is a crime

### Summary Last Lecture. Automated Reasoning. Outline of the Lecture. Definition sequent calculus. Theorem (Normalisation and Strong Normalisation)

Summary Summary Last Lecture sequent calculus Automated Reasoning Georg Moser Institute of Computer Science @ UIBK Winter 013 (Normalisation and Strong Normalisation) let Π be a proof in minimal logic

### Correspondence analysis for strong three-valued logic

Correspondence analysis for strong three-valued logic A. Tamminga abstract. I apply Kooi and Tamminga s (2012) idea of correspondence analysis for many-valued logics to strong three-valued logic (K 3 ).

### Mathematical Induction

Mathematical Induction Victor Adamchik Fall of 2005 Lecture 2 (out of three) Plan 1. Strong Induction 2. Faulty Inductions 3. Induction and the Least Element Principal Strong Induction Fibonacci Numbers

### Boolean or Propositional Logic

Boolean or Propositional Logic SET07106 Mathematics for Software Engineering School of Computing Edinburgh Napier University Module Leader: Uta Priss 2010 Copyright Edinburgh Napier University Boolean

### DISCRETE MATH: LECTURE 4

DISCRETE MATH: LECTURE 4 DR. DANIEL FREEMAN 1. Chapter 3.1 Predicates and Quantified Statements I A predicate is a sentence that contains a finite number of variables and becomes a statement when specific

### 2. Propositional Equivalences

2. PROPOSITIONAL EQUIVALENCES 33 2. Propositional Equivalences 2.1. Tautology/Contradiction/Contingency. Definition 2.1.1. A tautology is a proposition that is always true. Example 2.1.1. p p Definition

### Relational Query Languages

Relational Query Languages Universidad de Concepción, 2014 (Slides adapted from Loreto Bravo, who adapted from Werner Nutt who adapted them from Thomas Eiter and Leonid Libkin) Bases de Datos II 1 Queries

### ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physical and Mathematical Sciences 2012 1 p. 43 48 ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS I nf or m at i cs L. A. HAYKAZYAN * Chair of Programming and Information

### Artificial Intelligence

Artificial Intelligence ICS461 Fall 2010 1 Lecture #12B More Representations Outline Logics Rules Frames Nancy E. Reed nreed@hawaii.edu 2 Representation Agents deal with knowledge (data) Facts (believe

### 1.5 Methods of Proof INTRODUCTION

1.5 Methods of Proof INTRODUCTION Icon 0049 Two important questions that arise in the study of mathematics are: (1) When is a mathematical argument correct? (2) What methods can be used to construct mathematical

### Predicate Logic Review

Predicate Logic Review UC Berkeley, Philosophy 142, Spring 2016 John MacFarlane 1 Grammar A term is an individual constant or a variable. An individual constant is a lowercase letter from the beginning

### Predicate logic. Logic in computer science. Logic in Computer Science (lecture) PART II. first order logic

PART II. Predicate logic first order logic Logic in computer science Seminar: INGK401-K5; INHK401; INJK401-K4 University of Debrecen, Faculty of Informatics kadek.tamas@inf.unideb.hu 1 / 19 Alphabets Logical

### CHAPTER 1. Logic, Proofs Propositions

CHAPTER 1 Logic, Proofs 1.1. Propositions A proposition is a declarative sentence that is either true or false (but not both). For instance, the following are propositions: Paris is in France (true), London

### it is easy to see that α = a

21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UF. Therefore

### 1 Proposition, Logical connectives and compound statements

Discrete Mathematics: Lecture 4 Introduction to Logic Instructor: Arijit Bishnu Date: July 27, 2009 1 Proposition, Logical connectives and compound statements Logic is the discipline that deals with the

### MATH20302 Propositional Logic. Mike Prest School of Mathematics Alan Turing Building Room

MATH20302 Propositional Logic Mike Prest School of Mathematics Alan Turing Building Room 1.120 mprest@manchester.ac.uk April 10, 2015 Contents I Propositional Logic 3 1 Propositional languages 4 1.1 Propositional

### CSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo

Propositional Logic CSE 191, Class Note 01 Propositional Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 37 Discrete Mathematics What is Discrete

### Predicate Logic. PHI 201 Introductory Logic Spring 2011

Predicate Logic PHI 201 Introductory Logic Spring 2011 This is a summary of definitions in Predicate Logic from the text The Logic Book by Bergmann et al. 1 The Language PLE Vocabulary The vocabulary of

### 1.3 Induction and Other Proof Techniques

4CHAPTER 1. INTRODUCTORY MATERIAL: SETS, FUNCTIONS AND MATHEMATICAL INDU 1.3 Induction and Other Proof Techniques The purpose of this section is to study the proof technique known as mathematical induction.

### Rigorous. Development. Software. Program Verification. & Springer. An Introduction to. Jorge Sousa Pinto. Jose Bacelar Almeida Maria Joao Frade

Jose Bacelar Almeida Maria Joao Frade Jorge Sousa Pinto Simao Melo de Sousa Rigorous Software Development An Introduction to Program Verification & Springer Contents 1 Introduction 1 1.1 A Formal Approach

### WUCT121. Discrete Mathematics. Logic

WUCT121 Discrete Mathematics Logic 1. Logic 2. Predicate Logic 3. Proofs 4. Set Theory 5. Relations and Functions WUCT121 Logic 1 Section 1. Logic 1.1. Introduction. In developing a mathematical theory,

### University of Ostrava. Reasoning in Description Logic with Semantic Tableau Binary Trees

University of Ostrava Institute for Research and Applications of Fuzzy Modeling Reasoning in Description Logic with Semantic Tableau Binary Trees Alena Lukasová Research report No. 63 2005 Submitted/to

### Basic Proof Techniques

Basic Proof Techniques David Ferry dsf43@truman.edu September 13, 010 1 Four Fundamental Proof Techniques When one wishes to prove the statement P Q there are four fundamental approaches. This document

### Propositional Logic. A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both.

irst Order Logic Propositional Logic A proposition is a declarative sentence (a sentence that declares a fact) that is either true or false, but not both. Are the following sentences propositions? oronto

### Foundations of mathematics

Foundations of mathematics 1. First foundations of mathematics 1.1. Introduction to the foundations of mathematics Mathematics, theories and foundations Sylvain Poirier http://settheory.net/ Mathematics

### Predicates and Quantifiers. Niloufar Shafiei

Predicates and Quantifiers Niloufar Shafiei Review Proposition: 1. It is a sentence that declares a fact. 2. It is either true or false, but not both. Examples: 2 + 1 = 3. True Proposition Toronto is the

### First-Order Stable Model Semantics and First-Order Loop Formulas

Journal of Artificial Intelligence Research 42 (2011) 125-180 Submitted 03/11; published 10/11 First-Order Stable Model Semantics and First-Order Loop Formulas Joohyung Lee Yunsong Meng School of Computing,

### MATH 55: HOMEWORK #2 SOLUTIONS

MATH 55: HOMEWORK # SOLUTIONS ERIC PETERSON * 1. SECTION 1.5: NESTED QUANTIFIERS 1.1. Problem 1.5.8. Determine the truth value of each of these statements if the domain of each variable consists of all

### Deductive Systems. Marco Piastra. Artificial Intelligence. Artificial Intelligence - A.A Deductive Systems [1]

Artificial Intelligence Deductive Systems Marco Piastra Artificial Intelligence - A.A. 2012- Deductive Systems 1] Symbolic calculus? A wff is entailed by a set of wff iff every model of is also model of

### Predicate Logic. M.A.Galán, TDBA64, VT-03

Predicate Logic 1 Introduction There are certain arguments that seem to be perfectly logical, yet they cannot be specified by using propositional logic. All cats have tails. Tom is a cat. From these two

### Beyond Propositional Logic Lukasiewicz s System

Beyond Propositional Logic Lukasiewicz s System Consider the following set of truth tables: 1 0 0 1 # # 1 0 # 1 1 0 # 0 0 0 0 # # 0 # 1 0 # 1 1 1 1 0 1 0 # # 1 # # 1 0 # 1 1 0 # 0 1 1 1 # 1 # 1 Brandon

### Definition 10. A proposition is a statement either true or false, but not both.

Chapter 2 Propositional Logic Contrariwise, continued Tweedledee, if it was so, it might be; and if it were so, it would be; but as it isn t, it ain t. That s logic. (Lewis Carroll, Alice s Adventures

### Predicate Logic. Lucia Moura. Winter Predicates and Quantifiers Nested Quantifiers Using Predicate Calculus

Predicate Logic Winter 2010 Predicates A Predicate is a declarative sentence whose true/false value depends on one or more variables. The statement x is greater than 3 has two parts: the subject: x is

Mathematics 0N1 Solutions 1 1. Write the following sets in list form. 1(i) The set of letters in the word banana. {a, b, n}. 1(ii) {x : x 2 + 3x 10 = 0}. 3(iv) C A. True 3(v) B = {e, e, f, c}. True 3(vi)

### Jaakko Hintikka Boston University. and. Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION

Jaakko Hintikka Boston University and Ilpo Halonen University of Helsinki INTERPOLATION AS EXPLANATION INTERPOLATION AS EXPLANATION In the study of explanation, one can distinguish two main trends. On

### 1.2 The predicate Calculus

1.2 The predicate Calculus In propositional calculus, each atomic symbol (P, 0, etc.) denotes a proposition of some complexity. There is no way to access the components of an individual assertion. Predicate