Whitepaper. Innovations in Business Intelligence Database Technology.

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Whitepaper. Innovations in Business Intelligence Database Technology. www.sisense.com"

Transcription

1 Whitepaper Innovations in Business Intelligence Database Technology

2 The State of Database Technology in 2015 Database technology has seen rapid developments in the past two decades. Online Analytical Processing (OLAP and its derivatives, MOLAP, ROLAP and HOLAP), which gained prominence in the 1990s, gradually lost altitude in favor of in-memory databases at the start of the 21 st century. However, the requirements of modern business intelligence have set a challenge that in-memory databases will have a very difficult time responding to. This, in turn, has brought on the next generation of databases and querying in-chip analytics. This newly developed technology makes use of the CPU, RAM and disk storage in innovative ways in order to tackle the complexity and size of data sets that current BI software is forced to handle in order to provide effective insights to end users at a reasonable timeframe. This guide will cover: OLAP Cubes history and overview In-memory databases advantages and shortcomings In-chip technology development, overview and promise

3 OLAP Cubes Summary OLAP technology provided a great basis for business intelligence 20 years ago, but suffers from several limitations which make it a less than ideal fit for most modern BI projects. It allows users to receive quick answers to specific pre-defined queries but is resource intensive and problematic when it comes to larger data sets and ad-hoc querying. Leading Provider: Oracle Pros Cons Centralized data integration Fast data retrieval for specific queries Resource intensive Inflexibility, limited support for ad-hoc queries Long build times

4 Overview History OLAP is a database technology was first developed in the late 1960s, but only gained widespread commercial use in the 1990s with Microsoft s first release of their OLAP Services product (now Analysis Services), based on technology acquired from Panorama Software. At that point in time, when computer hardware wasn t nearly as powerful as it is today, OLAP was groundbreaking. It introduced a spectacular way for business users (typically analysts) to easily perform multidimensional analysis of large volumes of business data. When Microsoft s Multidimensional Expressions language (MDX) came closer to becoming a standard, more and more client tools (e.g., Panorama NovaView, ProClarity) started popping up to provide even more power to these users. How it Works An OLAP database converts table based datasets into multidimensional arrays called Cubes in order to optimize querying and data retrieval. Users can then access specific dimensions of the data for analysis purposes. For a simplified example, let s think of a chain of pet stores that tracks sales of various items across cities and over time. It might track these figures in a series of spreadsheets such as these:

5 Whereas in an OLAP cube, the same information would be stored multi-dimensionally: Note that this illustration is somewhat over-simplified. In reality there can be a virtually endless amount of dimensions, which are not necessarily symmetrical. To answer queries, an OLAP cube typically includes roll-up cells which contain aggregated data, according to certain perimeters (in our example, sales over time, or item sales by location). These aggregations are pre-calculated when the system is at rest (i.e. not being used by end-users).

6 Thus, once a query is made, the answer is already within the data cube and retrieved instantaneously. However, OLAP cubes have their drawbacks, the main ones being: Each additional query requires a new dimension to be added to the cube, which means duplicating the entire cube in terms of data storage. This means that OLAP databases quickly become resource intensive when it comes to data storage and management. Aggregating data requires the CPU to process every cell of the data, which means that each new build (such as when additional data is added) takes a relatively long time to produce. OLAP cubes are very fast when it comes to specific, pre-designed queries. However if a user wants to make a NEW query (e.g., avg. sales of hamsters-per-year), this data is not pre-calculated and will require additional dimensions to be added to the cube a lengthy process.

7 In-Memory Databases Summary In-memory technology i.e., loading the entire database into RAM and from there transferring it to the CPU to perform calculations has become a leading solution for business intelligence, as it provides users with the ability to receive fast answers to their queries, without the need for lengthy builds and pre-calculations; but the size and complexity of modern data is forcing in-memory databases to face their limitations. Leading Provider: Qlik Pros Cons Fast data retrieval Support for ad-hoc queries Expensive to implement and maintain Scalability issues Overview History In-memory databases became popular in the start of the 21 st century with the proliferation of cheap and widely available 64-bit PCs and the

8 adoption of columnar databases as an alternative to the row-based systems which were the basis for OLAP cubes. More RAM on a PC meant that more data can be quickly queried. If crunching a million rows of data on a machine with only 2GB of RAM was a drag, users could now add more gigabytes of RAM to their PCs and store data in relational databases which could be queried much faster than before. In-memory databases have become much more prominent in recent years. However OLAP-based solutions can still be found in massive organization-wide implementations. How it Works Generally speaking, a computer has two types of data storage mechanisms disk (often called a hard disk) and RAM (random access memory). The important differences between them are outlined in the following table: DISK Abundant Slow Cheap Long term RAM Scarce Fast Expensive Short term Most modern computers have times more available disk storage than they do RAM.

9 However, reading data from disk is much slower than reading the same data from RAM. This is one of the reasons why 1GB of RAM costs approximately 320 times that of 1GB of disk space. In a disk-based RDBMS, there are two things that cause heavy disk operations and therefore poor performance: 1. Table Scans: Loading of an entire table from disk to RAM (for calculations) 2. Complex Data: Querying data scattered across many tables and/or fields (joins) In-memory technology aims to address both these issues by preloading the entire database into RAM, and loading data from RAM to the CPU to perform calculations and data retrieval. All In-memory technologies share the same premise: that it is simply much faster to perform calculations over data that is stored in RAM than it is when that same data is stored in a table on a disk. These technologies also benefit from the fact that 64-bit computers are currently considered commodity hardware. Additionally, it is relatively cheaper to add more RAM to both commodity and proprietary hardware today than it previously was.

10 Illustration: Disk/RAM utilization when querying 2 fields This technology enables a much faster time to value and significantly less effort and money invested in developing, setting up and maintaining analytics infrastructure. The problem In-memory technology performs beautifully, at small scales. When datasets are simple and small, it enables speedy development compared to a solution built on top of an RDBMS. However, its main inhibitor to wide enterprise adoption has been scalability. The challenge it continues to face is that RAM, when used to store and analyze raw business data, tends to run out quickly and unexpectedly. As storage sizes go, RAM is tiny and many data sets

11 these days are too large to fit. Moreover, each query to the database uses up additional RAM for intermediate calculations. Complex scenarios still require that data be extensively modified, or even loaded into an RDBMS data warehouse, prior to being loaded into the memory-based storage. This can happen when data sets are complex and/or when there are many users querying the database simultaneously and repeatedly. In such cases, the added value of such technology is debatable and cost-saving benefits of using it become less significant. The fact of the matter is, data sets are getting bigger and bigger, with companies generating more information than ever both from internal sources and from external ones which business executives look to in order to gain a competitive advantage. This exponential growth in the size of data has not been mirrored by a similar reduction in RAM prices while it is indeed cheaper than it was 15 years ago, it s still relatively expensive storage that cannot be scaled indefinitely without procuring significant costs. And so, at this point in time it seems that in-memory technology might just have hit its glass ceiling, and can no longer promise reasonable performance considering the amounts and complexity of the data that is currently being gathered, aggregated and analyzed by modern businesses.

12 ElastiCubes and In-Chip Analytics Summary In-Chip Technology is the latest development in database technology. It combines the flexibility of in-memory based querying with the speed and robustness of OLAP cubes, without the hardware costs and difficult implementation of traditional solutions. Although only recently developed and released, In- Chip is quickly gaining popularity due to its increased performance and ability to tackle complex and large data sets. Leading Provider: Sisense Advantages Fastest data retrieval Does not require proprietary hardware or extensive RAM Full support for ad-hoc queries Overview History You might not have heard of ElastiCubes In-Chip Technology yet, as it has only been released for commercial use a few short years ago. However it has already become the data analytics platform of choice for such companies as ebay, Samsung and NASA and is growing

13 rapidly as an alternative and solution to the limitations imposed by traditional OLAP database technologies. ElastiCube is a unique form of database developed by SIsense, the result of thoroughly analyzing the strengths and weaknesses of both OLAP and in-memory technologies, while taking into consideration the off-the-shelf hardware of today and tomorrow. The vision was to provide a true alternative to OLAP technology, without compromising the speediness of the development cycle and query response times for which in-memory technologies are lauded. This would allow a single technology to be used in BI solutions of any scale, in any industry. How it Works In-Chip Analytics is the latest generation of in-memory technology for business analytics and sets itself apart by being fast as well as scalable. The name ElastiCube comes from the database s unique ability to stretch beyond the hard limitations imposed by older generation technologies. This technology employs a disk-based columnar database for storage to provide fast disk reads and is able to load data from disk to RAM (and vice versa) when is needed. The queries themselves are processed entirely in-memory without any disk-reads throughout. And most importantly, there is only a subset of the data physically stored in RAM at any given time, leaving more space for other operations to take place in parallel in other words, RAM limitations are not as big an issue as with previous in-memory technologies, as there is no need to keep the entire data in RAM on a permanent basis.

14 This is achieved via advanced compression as well as identification of the parts of the dataset which are not being used on a regular basis and can be left at rest typically this is around 80 percent of the data businesses collect. In-Chip Technology also has a unique way of handling joins. Instead of joining tables, it uses columnar algebra to merge between fields. This way, the join operation can be processed entirely in the CPU cache. Illustration: Disk/RAM utilization when querying 2 fields The table below compares between RDBMS technology, In-Memory technology and Sisense s In-Chip Technology by a set of several technical aspects: Columnar Storage: whether the technology supports storage of columns rather than tables.

15 In-Memory Query Processing: whether the technology typically requires reads from disk during query execution Performance Upon Installation: Fast query response to queries involving joining, grouping and aggregating data without lengthy preparation work or specialized configuration. Data Capacity: Is there a cap on data capacity beyond what can be stored on a single hard disk (TBs of data). Scalability Level: The ability of the technology to support growing data volumes and concurrent usage without having to significantly modify/re-build the solution. Feature RDBMS In-Memory In-Chip Associative Technology Columnar Storage Some No Yes In Memory Query Processing Performance Upon Installation Data Capacity No Yes Yes Slow Fast Fast Unlimited Limited (by size and RAM) Scalability Level Large scale Small scale Unlimited Small / Large scale In-Chip technology further optimizes data processing by making the most of the built-in components of today s 64-bit commodity hardware. Using algorithms that run beneath the OS and replace its set of instructions, In-Chip manages to utilize the CPU to its fullest, thus achieving unparalleled performance rates even on huge, complex data sets that would previously have required massive hardware upgrades to even consider handling.

16 Illustration: Latencies of CPU cache, RAM and disk storage Summary: The Future of Databases? We ve reviewed three major database technologies employed by BI software in the past few decades: OLAP cubes, in-memory databases, and up and coming In-Chip Analytics. As we have seen, both OLAP and in-memory technology suffer from scalability issues, and there are significant doubts as to their ability to provide a reasonable solution for the requirements of 21 st century business intelligence, in terms of data size, complexity, and cost to implement. In-Chip Technology is currently the most advanced way to store and query data in rapidly changing business environments, and is

17 expected to be adopted by more and more companies in coming years. Want to learn more about In-Chip technology? Visit sisense.com Join a Sisense Analytics Expert for a Weekly Live Demo of In-Chip technology at work Questions, notes, or comments on the contents of this document? We d love to hear them! Contact us

Jet Enterprise Frequently Asked Questions Pg. 1 03/18/2011 JEFAQ - 02/13/2013 - Copyright 2013 - Jet Reports International, Inc.

Jet Enterprise Frequently Asked Questions Pg. 1 03/18/2011 JEFAQ - 02/13/2013 - Copyright 2013 - Jet Reports International, Inc. Pg. 1 03/18/2011 JEFAQ - 02/13/2013 - Copyright 2013 - Jet Reports International, Inc. Regarding Jet Enterprise What are the software requirements for Jet Enterprise? The following components must be installed

More information

Understanding the Value of In-Memory in the IT Landscape

Understanding the Value of In-Memory in the IT Landscape February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to

More information

The Technology Evaluator s Cheat Sheets. Business Intelligence & Analy:cs

The Technology Evaluator s Cheat Sheets. Business Intelligence & Analy:cs The Technology Evaluator s Cheat Sheets Business Intelligence & Analy:cs Summary So1ware Stacks Full Stacks (DB + ETL Tools + Front- End So1ware) Back- End Stacks (DB and/or ETL Tools Only) Front- End

More information

Drivers to support the growing business data demand for Performance Management solutions and BI Analytics

Drivers to support the growing business data demand for Performance Management solutions and BI Analytics Drivers to support the growing business data demand for Performance Management solutions and BI Analytics some facts about Jedox Facts about Jedox AG 2002: Founded in Freiburg, Germany Today: 2002 4 Offices

More information

QLIKVIEW ARCHITECTURE AND SYSTEM RESOURCE USAGE

QLIKVIEW ARCHITECTURE AND SYSTEM RESOURCE USAGE QLIKVIEW ARCHITECTURE AND SYSTEM RESOURCE USAGE QlikView Technical Brief April 2011 www.qlikview.com Introduction This technical brief covers an overview of the QlikView product components and architecture

More information

Report Model (SMDL) Alternatives in SQL Server 2012. A Guided Tour of Microsoft Business Intelligence

Report Model (SMDL) Alternatives in SQL Server 2012. A Guided Tour of Microsoft Business Intelligence Report Model (SMDL) Alternatives in SQL Server 2012 A Guided Tour of Microsoft Business Intelligence Technical Article Author: Mark Vaillancourt Published: August 2013 Table of Contents Report Model (SMDL)

More information

Introducing Oracle Exalytics In-Memory Machine

Introducing Oracle Exalytics In-Memory Machine Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle

More information

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases. Are my applications accelerated without manual intervention and tuning?.

More information

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved. Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any

More information

Qlik Sense scalability

Qlik Sense scalability Qlik Sense scalability Visual analytics platform Qlik Sense is a visual analytics platform powered by an associative, in-memory data indexing engine. Based on users selections, calculations are computed

More information

THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS

THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS WHITE PAPER Successfully writing Fast Data applications to manage data generated from mobile, smart devices and social interactions, and the

More information

PowerPivot Microsoft s Answer to Self-Service Reporting

PowerPivot Microsoft s Answer to Self-Service Reporting PowerPivot Microsoft s Answer to Self-Service Reporting Microsoft s Latest Foray in the Business Intelligence Arena COLLABORATIVE WHITEPAPER SERIES In the last quarter of 2010, Microsoft first introduced

More information

Data Warehouse: Introduction

Data Warehouse: Introduction Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of Base and Mining Group of base and data mining group,

More information

Innovative technology for big data analytics

Innovative technology for big data analytics Technical white paper Innovative technology for big data analytics The HP Vertica Analytics Platform database provides price/performance, scalability, availability, and ease of administration Table of

More information

Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances

Well packaged sets of preinstalled, integrated, and optimized software on select hardware in the form of engineered systems and appliances INSIGHT Oracle's All- Out Assault on the Big Data Market: Offering Hadoop, R, Cubes, and Scalable IMDB in Familiar Packages Carl W. Olofson IDC OPINION Global Headquarters: 5 Speen Street Framingham, MA

More information

Performance Matters. The best scalability testing and performance optimization tips for your TARGIT solution

Performance Matters. The best scalability testing and performance optimization tips for your TARGIT solution Performance Matters The best scalability testing and performance optimization tips for your TARGIT solution 1 Content 3 Performance Matters 4 What impacts performance? 4 Queries 5 Hardware 6 Data structure

More information

Five Technology Trends for Improved Business Intelligence Performance

Five Technology Trends for Improved Business Intelligence Performance TechTarget Enterprise Applications Media E-Book Five Technology Trends for Improved Business Intelligence Performance The demand for business intelligence data only continues to increase, putting BI vendors

More information

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

Safe Harbor Statement

Safe Harbor Statement Safe Harbor Statement "Safe Harbor" Statement: Statements in this presentation relating to Oracle's future plans, expectations, beliefs, intentions and prospects are "forward-looking statements" and are

More information

The IBM Cognos Platform for Enterprise Business Intelligence

The IBM Cognos Platform for Enterprise Business Intelligence The IBM Cognos Platform for Enterprise Business Intelligence Highlights Optimize performance with in-memory processing and architecture enhancements Maximize the benefits of deploying business analytics

More information

Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov

Unlock your data for fast insights: dimensionless modeling with in-memory column store. By Vadim Orlov Unlock your data for fast insights: dimensionless modeling with in-memory column store By Vadim Orlov I. DIMENSIONAL MODEL Dimensional modeling (also known as star or snowflake schema) was pioneered by

More information

WITH BIGMEMORY WEBMETHODS. Introduction

WITH BIGMEMORY WEBMETHODS. Introduction WEBMETHODS WITH BIGMEMORY Guaranteed low latency for all data processing needs TABLE OF CONTENTS 1 Introduction 2 Key use cases for with webmethods 5 Using with webmethods 6 Next steps webmethods is the

More information

Using In-Memory Data Fabric Architecture from SAP to Create Your Data Advantage

Using In-Memory Data Fabric Architecture from SAP to Create Your Data Advantage SAP HANA Using In-Memory Data Fabric Architecture from SAP to Create Your Data Advantage Deep analysis of data is making businesses like yours more competitive every day. We ve all heard the reasons: the

More information

Large Telecommunications Company Gains Full Customer View, Boosts Monthly Revenue, Cuts IT Costs by $3 Million

Large Telecommunications Company Gains Full Customer View, Boosts Monthly Revenue, Cuts IT Costs by $3 Million Microsoft Business Intelligence Customer Solution Case Study Large Telecommunications Company Gains Full Customer View, Boosts Monthly Revenue, Cuts IT Costs by $3 Million Overview Country or Region: United

More information

Business Intelligence in SharePoint 2013

Business Intelligence in SharePoint 2013 Business Intelligence in SharePoint 2013 Empowering users to change their world Jason Himmelstein, MVP Senior Technical Director, SharePoint @sharepointlhorn http://www.sharepointlonghorn.com Gold Sponsor

More information

BI, Analytics and Big Data A Modern-Day Perspective

BI, Analytics and Big Data A Modern-Day Perspective BI, Analytics and Big Data A Modern-Day Perspective By: Elad Israeli, Co-Founder, SiSense http://www.sisense.com Business Intelligence (Analytics) A set of theories, methodologies, processes, architectures,

More information

Why DBMSs Matter More than Ever in the Big Data Era

Why DBMSs Matter More than Ever in the Big Data Era E-PAPER FEBRUARY 2014 Why DBMSs Matter More than Ever in the Big Data Era Having the right database infrastructure can make or break big data analytics projects. TW_1401138 Big data has become big news

More information

Fact Sheet In-Memory Analysis

Fact Sheet In-Memory Analysis Fact Sheet In-Memory Analysis 1 Copyright Yellowfin International 2010 Contents In Memory Overview...3 Benefits...3 Agile development & rapid delivery...3 Data types supported by the In-Memory Database...4

More information

SQL Server 2012 Performance White Paper

SQL Server 2012 Performance White Paper Published: April 2012 Applies to: SQL Server 2012 Copyright The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.

More information

Data Warehouse design

Data Warehouse design Data Warehouse design Design of Enterprise Systems University of Pavia 21/11/2013-1- Data Warehouse design DATA PRESENTATION - 2- BI Reporting Success Factors BI platform success factors include: Performance

More information

Whitepaper. 5 Dos and Don ts of Embedded Analytics. www.sisense.com

Whitepaper. 5 Dos and Don ts of Embedded Analytics. www.sisense.com Whitepaper 5 Dos and Don ts of Embedded Analytics Who Needs Embedded Analytics? Whether you re producing automation software, SaaS products or cloud applications, it s likely to assume you re collecting

More information

QLIKVIEW SERVER MEMORY MANAGEMENT AND CPU UTILIZATION

QLIKVIEW SERVER MEMORY MANAGEMENT AND CPU UTILIZATION QLIKVIEW SERVER MEMORY MANAGEMENT AND CPU UTILIZATION QlikView Scalability Center Technical Brief Series September 2012 qlikview.com Introduction This technical brief provides a discussion at a fundamental

More information

CS2032 Data warehousing and Data Mining Unit II Page 1

CS2032 Data warehousing and Data Mining Unit II Page 1 UNIT II BUSINESS ANALYSIS Reporting Query tools and Applications The data warehouse is accessed using an end-user query and reporting tool from Business Objects. Business Objects provides several tools

More information

SQL Server 2012 Parallel Data Warehouse. Solution Brief

SQL Server 2012 Parallel Data Warehouse. Solution Brief SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...

More information

Driving Peak Performance. 2013 IBM Corporation

Driving Peak Performance. 2013 IBM Corporation Driving Peak Performance 1 Session 2: Driving Peak Performance Abstract We know you want the fastest performance possible for your deployments, and yet that relies on many choices across data storage,

More information

Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778

Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778 Implementing Data Models and Reports with Microsoft SQL Server 2012 MOC 10778 Course Outline Module 1: Introduction to Business Intelligence and Data Modeling This module provides an introduction to Business

More information

Big Fast Data Hadoop acceleration with Flash. June 2013

Big Fast Data Hadoop acceleration with Flash. June 2013 Big Fast Data Hadoop acceleration with Flash June 2013 Agenda The Big Data Problem What is Hadoop Hadoop and Flash The Nytro Solution Test Results The Big Data Problem Big Data Output Facebook Traditional

More information

Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011

Scalable Data Analysis in R. Lee E. Edlefsen Chief Scientist UserR! 2011 Scalable Data Analysis in R Lee E. Edlefsen Chief Scientist UserR! 2011 1 Introduction Our ability to collect and store data has rapidly been outpacing our ability to analyze it We need scalable data analysis

More information

QLIKVIEW INTEGRATION TION WITH AMAZON REDSHIFT John Park Partner Engineering

QLIKVIEW INTEGRATION TION WITH AMAZON REDSHIFT John Park Partner Engineering QLIKVIEW INTEGRATION TION WITH AMAZON REDSHIFT John Park Partner Engineering June 2014 Page 1 Contents Introduction... 3 About Amazon Web Services (AWS)... 3 About Amazon Redshift... 3 QlikView on AWS...

More information

Maximize MicroStrategy Speed and Throughput with High Performance Tuning

Maximize MicroStrategy Speed and Throughput with High Performance Tuning Maximize MicroStrategy Speed and Throughput with High Performance Tuning Jochen Demuth, Director Partner Engineering Maximize MicroStrategy Speed and Throughput with High Performance Tuning Agenda 1. Introduction

More information

In-Memory Business Intelligence

In-Memory Business Intelligence In-Memory Business Intelligence Ranwood Paper April 2009 1 CONTENTS 1 Contents... 1-1 2 In-memory BI...... 2-2 3 In-Memory BI solutions and architecture... 3-5 4 Advantages of In-memory BI... 4-10 5 Disadvantages

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

WINDOWS AZURE DATA MANAGEMENT

WINDOWS AZURE DATA MANAGEMENT David Chappell October 2012 WINDOWS AZURE DATA MANAGEMENT CHOOSING THE RIGHT TECHNOLOGY Sponsored by Microsoft Corporation Copyright 2012 Chappell & Associates Contents Windows Azure Data Management: A

More information

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011 SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,

More information

Speeding ETL Processing in Data Warehouses White Paper

Speeding ETL Processing in Data Warehouses White Paper Speeding ETL Processing in Data Warehouses White Paper 020607dmxwpADM High-Performance Aggregations and Joins for Faster Data Warehouse Processing Data Processing Challenges... 1 Joins and Aggregates are

More information

Reporting trends and pain points of current and new customers. 2013 IBM Corporation

Reporting trends and pain points of current and new customers. 2013 IBM Corporation Reporting trends and pain points of current and new customers 2013 IBM Corporation Three main area of problems 1. Slow reporting performance But it is about the data source, not about reporting tool 2.

More information

Monitoring Genebanks using Datamarts based in an Open Source Tool

Monitoring Genebanks using Datamarts based in an Open Source Tool Monitoring Genebanks using Datamarts based in an Open Source Tool April 10 th, 2008 Edwin Rojas Research Informatics Unit (RIU) International Potato Center (CIP) GPG2 Workshop 2008 Datamarts Motivation

More information

OLAP (Online Analytical Processing) G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT

OLAP (Online Analytical Processing) G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT OLAP (Online Analytical Processing) G.Lakshmi Priya & Razia Sultana.A Assistant Professor/IT OVERVIEW INTRODUCTION OLAP CUBE HISTORY OF OLAP OLAP OPERATIONS DATAWAREHOUSE DATAWAREHOUSE ARCHITECHTURE DIFFERENCE

More information

Microsoft Analytics Platform System. Solution Brief

Microsoft Analytics Platform System. Solution Brief Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal

More information

Bringing Big Data Modelling into the Hands of Domain Experts

Bringing Big Data Modelling into the Hands of Domain Experts Bringing Big Data Modelling into the Hands of Domain Experts David Willingham Senior Application Engineer MathWorks david.willingham@mathworks.com.au 2015 The MathWorks, Inc. 1 Data is the sword of the

More information

hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau

hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau Powered by Vertica Solution Series in conjunction with: hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau The cost of healthcare in the US continues to escalate. Consumers, employers,

More information

Real Life Performance of In-Memory Database Systems for BI

Real Life Performance of In-Memory Database Systems for BI D1 Solutions AG a Netcetera Company Real Life Performance of In-Memory Database Systems for BI 10th European TDWI Conference Munich, June 2010 10th European TDWI Conference Munich, June 2010 Authors: Dr.

More information

iservdb The database closest to you IDEAS Institute

iservdb The database closest to you IDEAS Institute iservdb The database closest to you IDEAS Institute 1 Overview 2 Long-term Anticipation iservdb is a relational database SQL compliance and a general purpose database Data is reliable and consistency iservdb

More information

SQL Server 2005 Features Comparison

SQL Server 2005 Features Comparison Page 1 of 10 Quick Links Home Worldwide Search Microsoft.com for: Go : Home Product Information How to Buy Editions Learning Downloads Support Partners Technologies Solutions Community Previous Versions

More information

Running Analytics on SAP HANA and BW with MicroStrategy

Running Analytics on SAP HANA and BW with MicroStrategy Running Analytics on SAP HANA and BW with MicroStrategy Presented by: Trishla Maru Agenda Overview Relationship and Certification with SAP Integration to SAP BW Overview with SAP BW Import process and

More information

Information management software solutions White paper. Powerful data warehousing performance with IBM Red Brick Warehouse

Information management software solutions White paper. Powerful data warehousing performance with IBM Red Brick Warehouse Information management software solutions White paper Powerful data warehousing performance with IBM Red Brick Warehouse April 2004 Page 1 Contents 1 Data warehousing for the masses 2 Single step load

More information

IBM Cognos 10: Enhancing query processing performance for IBM Netezza appliances

IBM Cognos 10: Enhancing query processing performance for IBM Netezza appliances IBM Software Business Analytics Cognos Business Intelligence IBM Cognos 10: Enhancing query processing performance for IBM Netezza appliances 2 IBM Cognos 10: Enhancing query processing performance for

More information

Creating BI solutions with BISM Tabular. Written By: Dan Clark

Creating BI solutions with BISM Tabular. Written By: Dan Clark Creating BI solutions with BISM Tabular Written By: Dan Clark CONTENTS PAGE 3 INTRODUCTION PAGE 4 PAGE 5 PAGE 7 PAGE 8 PAGE 9 PAGE 9 PAGE 11 PAGE 12 PAGE 13 PAGE 14 PAGE 17 SSAS TABULAR MODE TABULAR MODELING

More information

Sawmill Log Analyzer Best Practices!! Page 1 of 6. Sawmill Log Analyzer Best Practices

Sawmill Log Analyzer Best Practices!! Page 1 of 6. Sawmill Log Analyzer Best Practices Sawmill Log Analyzer Best Practices!! Page 1 of 6 Sawmill Log Analyzer Best Practices! Sawmill Log Analyzer Best Practices!! Page 2 of 6 This document describes best practices for the Sawmill universal

More information

Hard Disk Drive vs. Kingston SSDNow V+ 200 Series 240GB: Comparative Test

Hard Disk Drive vs. Kingston SSDNow V+ 200 Series 240GB: Comparative Test Hard Disk Drive vs. Kingston Now V+ 200 Series 240GB: Comparative Test Contents Hard Disk Drive vs. Kingston Now V+ 200 Series 240GB: Comparative Test... 1 Hard Disk Drive vs. Solid State Drive: Comparative

More information

Chapter 2 Why Are Enterprise Applications So Diverse?

Chapter 2 Why Are Enterprise Applications So Diverse? Chapter 2 Why Are Enterprise Applications So Diverse? Abstract Today, even small businesses operate in different geographical locations and service different industries. This can create a number of challenges

More information

Deploying Microsoft SQL Server 2005 Business Intelligence and Data Warehousing Solutions on Dell PowerEdge Servers and Dell PowerVault Storage

Deploying Microsoft SQL Server 2005 Business Intelligence and Data Warehousing Solutions on Dell PowerEdge Servers and Dell PowerVault Storage White Paper Dell Microsoft - Reference Configurations Deploying Microsoft SQL Server 2005 Business Intelligence and Data Warehousing Solutions on Dell PowerEdge Servers and Dell PowerVault Storage Abstract

More information

1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing

1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 1. OLAP is an acronym for a. Online Analytical Processing b. Online Analysis Process c. Online Arithmetic Processing d. Object Linking and Processing 2. What is a Data warehouse a. A database application

More information

RevoScaleR Speed and Scalability

RevoScaleR Speed and Scalability EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution

More information

ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process

ORACLE OLAP. Oracle OLAP is embedded in the Oracle Database kernel and runs in the same database process ORACLE OLAP KEY FEATURES AND BENEFITS FAST ANSWERS TO TOUGH QUESTIONS EASILY KEY FEATURES & BENEFITS World class analytic engine Superior query performance Simple SQL access to advanced analytics Enhanced

More information

Accelerating Business Intelligence with Large-Scale System Memory

Accelerating Business Intelligence with Large-Scale System Memory Accelerating Business Intelligence with Large-Scale System Memory A Proof of Concept by Intel, Samsung, and SAP Executive Summary Real-time business intelligence (BI) plays a vital role in driving competitiveness

More information

Issues in Information Systems Volume 14, Issue 1, pp.331-338, 2013

Issues in Information Systems Volume 14, Issue 1, pp.331-338, 2013 SQL SERVER TABULAR MODEL: A STEP TOWARDS AGILE BI Stevan Mrdalj, Eastern Michigan University, smrdalj@emich.edu ABSTRACT As data volumes continue to increase the organizations are under constant pressure

More information

Accelerating Business Intelligence with Large-Scale System Memory

Accelerating Business Intelligence with Large-Scale System Memory Accelerating Business Intelligence with Large-Scale System Memory A Proof of Concept by Intel, Samsung, and SAP Executive Summary Real-time business intelligence (BI) plays a vital role in driving competitiveness

More information

Whitepaper. 4 Steps to Successfully Evaluating Business Analytics Software. www.sisense.com

Whitepaper. 4 Steps to Successfully Evaluating Business Analytics Software. www.sisense.com Whitepaper 4 Steps to Successfully Evaluating Business Analytics Software Introduction The goal of Business Analytics and Intelligence software is to help businesses access, analyze and visualize data,

More information

Anwendersoftware Anwendungssoftwares a. Data-Warehouse-, Data-Mining- and OLAP-Technologies. Online Analytic Processing

Anwendersoftware Anwendungssoftwares a. Data-Warehouse-, Data-Mining- and OLAP-Technologies. Online Analytic Processing Anwendungssoftwares a Data-Warehouse-, Data-Mining- and OLAP-Technologies Online Analytic Processing Online Analytic Processing OLAP Online Analytic Processing Technologies and tools that support (ad-hoc)

More information

Main Memory & Near Main Memory OLAP Databases. Wo Shun Luk Professor of Computing Science Simon Fraser University

Main Memory & Near Main Memory OLAP Databases. Wo Shun Luk Professor of Computing Science Simon Fraser University Main Memory & Near Main Memory OLAP Databases Wo Shun Luk Professor of Computing Science Simon Fraser University 1 Outline What is OLAP DB? How does it work? MOLAP, ROLAP Near Main Memory DB Partial Pre

More information

Qlik s Associative Model

Qlik s Associative Model White Paper Qlik s Associative Model See the Whole Story that Lives Within Your Data August, 2015 qlik.com Table of Contents Introduction 3 Qlik s associative model 3 Query-based visualization tools only

More information

Actian Vector in Hadoop

Actian Vector in Hadoop Actian Vector in Hadoop Industrialized, High-Performance SQL in Hadoop A Technical Overview Contents Introduction...3 Actian Vector in Hadoop - Uniquely Fast...5 Exploiting the CPU...5 Exploiting Single

More information

Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect

Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate

More information

Super-Charged Oracle Business Intelligence with Essbase and SmartView

Super-Charged Oracle Business Intelligence with Essbase and SmartView Specialized. Recognized. Preferred. The right partner makes all the difference. Super-Charged Oracle Business Intelligence with Essbase and SmartView By: Gautham Sampath Pinellas County & Patrick Callahan

More information

ANALYTICS BUILT FOR INTERNET OF THINGS

ANALYTICS BUILT FOR INTERNET OF THINGS ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Copyright www.agileload.com 1

Copyright www.agileload.com 1 Copyright www.agileload.com 1 INTRODUCTION Performance testing is a complex activity where dozens of factors contribute to its success and effective usage of all those factors is necessary to get the accurate

More information

Contents Introduction... 5 Deployment Considerations... 9 Deployment Architectures... 11

Contents Introduction... 5 Deployment Considerations... 9 Deployment Architectures... 11 Oracle Primavera Contract Management 14.1 Sizing Guide July 2014 Contents Introduction... 5 Contract Management Database Server... 5 Requirements of the Contract Management Web and Application Servers...

More information

Benefits of Sage SalesLogix Visual Analyzer In-Memory Analysis over OLAP and Static Reporting Solutions

Benefits of Sage SalesLogix Visual Analyzer In-Memory Analysis over OLAP and Static Reporting Solutions Benefits of Sage SalesLogix Visual Analyzer In-Memory Analysis over OLAP and Static Reporting Solutions Table of Contents The Emergence of a New Business Intelligence Space...3 Sage SalesLogix Visual Analyzer...3

More information

SAP HANA Power of In-Memory Computing. Boonchu Chumsantivut Solution Advisor, SAP Thailand Ltd.

SAP HANA Power of In-Memory Computing. Boonchu Chumsantivut Solution Advisor, SAP Thailand Ltd. Power of In-Memory Computing Boonchu Chumsantivut Solution Advisor, SAP Thailand Ltd. Opportunities Speed GPS Emails Reality: Information Explosion Gartner - Enterprise data will grow 650% over the next

More information

Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data

Alexander Nikov. 5. Database Systems and Managing Data Resources. Learning Objectives. RR Donnelley Tries to Master Its Data INFO 1500 Introduction to IT Fundamentals 5. Database Systems and Managing Data Resources Learning Objectives 1. Describe how the problems of managing data resources in a traditional file environment are

More information

CHAPTER 5: BUSINESS ANALYTICS

CHAPTER 5: BUSINESS ANALYTICS Chapter 5: Business Analytics CHAPTER 5: BUSINESS ANALYTICS Objectives The objectives are: Describe Business Analytics. Explain the terminology associated with Business Analytics. Describe the data warehouse

More information

Data Warehousing. Paper 133-25

Data Warehousing. Paper 133-25 Paper 133-25 The Power of Hybrid OLAP in a Multidimensional World Ann Weinberger, SAS Institute Inc., Cary, NC Matthias Ender, SAS Institute Inc., Cary, NC ABSTRACT Version 8 of the SAS System brings powerful

More information

The difference between. BI and CPM. A white paper prepared by Prophix Software

The difference between. BI and CPM. A white paper prepared by Prophix Software The difference between BI and CPM A white paper prepared by Prophix Software Overview The term Business Intelligence (BI) is often ambiguous. In popular contexts such as mainstream media, it can simply

More information

Everything you need to know about flash storage performance

Everything you need to know about flash storage performance Everything you need to know about flash storage performance The unique characteristics of flash make performance validation testing immensely challenging and critically important; follow these best practices

More information

Big Data and Big Data Modeling

Big Data and Big Data Modeling Big Data and Big Data Modeling The Age of Disruption Robin Bloor The Bloor Group March 19, 2015 TP02 Presenter Bio Robin Bloor, Ph.D. Robin Bloor is Chief Analyst at The Bloor Group. He has been an industry

More information

Scalability Results. Select the right hardware configuration for your organization to optimize performance

Scalability Results. Select the right hardware configuration for your organization to optimize performance Scalability Results Select the right hardware configuration for your organization to optimize performance Table of Contents Introduction... 1 Scalability... 2 Definition... 2 CPU and Memory Usage... 2

More information

Emerging Innovations In Analytical Databases TDWI India Chapter Meeting, July 23, 2011, Hyderabad

Emerging Innovations In Analytical Databases TDWI India Chapter Meeting, July 23, 2011, Hyderabad Emerging Innovations In Analytical Databases TDWI India Chapter Meeting, July 23, 2011, Hyderabad Vivek Bhatnagar Agenda Today s Biggest Challenge in BI - SPEED Common Approaches Used Till Date for Performance

More information

University of Gaziantep, Department of Business Administration

University of Gaziantep, Department of Business Administration University of Gaziantep, Department of Business Administration The extensive use of information technology enables organizations to collect huge amounts of data about almost every aspect of their businesses.

More information

Analytics with Excel and ARQUERY for Oracle OLAP

Analytics with Excel and ARQUERY for Oracle OLAP Analytics with Excel and ARQUERY for Oracle OLAP Data analytics gives you a powerful advantage in the business industry. Companies use expensive and complex Business Intelligence tools to analyze their

More information

FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION

FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION FLASH GAINS GROUND AS ENTERPRISE STORAGE OPTION With new management functions placing it closer to parity with hard drives, as well as new economies, flash is gaining traction as a standard media for mainstream

More information

Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence

Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Emerging Technologies Shaping the Future of Data Warehouses & Business Intelligence Appliances and DW Architectures John O Brien President and Executive Architect Zukeran Technologies 1 TDWI 1 Agenda What

More information

Performance with the Oracle Database Cloud

Performance with the Oracle Database Cloud An Oracle White Paper September 2012 Performance with the Oracle Database Cloud Multi-tenant architectures and resource sharing 1 Table of Contents Overview... 3 Performance and the Cloud... 4 Performance

More information

AtScale Intelligence Platform

AtScale Intelligence Platform AtScale Intelligence Platform PUT THE POWER OF HADOOP IN THE HANDS OF BUSINESS USERS. Connect your BI tools directly to Hadoop without compromising scale, performance, or control. TURN HADOOP INTO A HIGH-PERFORMANCE

More information

SAP HANA. SAP HANA Performance Efficient Speed and Scale-Out for Real-Time Business Intelligence

SAP HANA. SAP HANA Performance Efficient Speed and Scale-Out for Real-Time Business Intelligence SAP HANA SAP HANA Performance Efficient Speed and Scale-Out for Real-Time Business Intelligence SAP HANA Performance Table of Contents 3 Introduction 4 The Test Environment Database Schema Test Data System

More information

In-database Analytical Systems: Perspective, Trade-offs and Implementation

In-database Analytical Systems: Perspective, Trade-offs and Implementation In-database Analytical Systems: Perspective, Trade-offs and Implementation Executive summary TIBCO Spotfire is a visualization-based data discovery tool. It has always held its data in memory; this allows

More information

Windows Server Performance Monitoring

Windows Server Performance Monitoring Spot server problems before they are noticed The system s really slow today! How often have you heard that? Finding the solution isn t so easy. The obvious questions to ask are why is it running slowly

More information