SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011

Size: px
Start display at page:

Download "SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011"

Transcription

1 SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011

2 Why In-Memory? Information at the Speed of Thought Imagine access to business data, supporting analytical queries on the transactional data, no need for data replication, and zero response time How would this change the way you work with data? How would this change your perception of information availability? How would this new information influence your decisions? In-memory databases are a technology with huge disruption potential, we need to assume a competitive leadership position SAP AG. All rights reserved. 2

3 Motivation: Make Use of Modern Hardware Game Changing Hardware Trends Disk is Tape Main memory affordable CPU: more cores, no clock rate increase Software makers need to react Past CPU clock rate growing Software runs faster without change Today CPU clock rate growth is flat Number of cores increases Write software that scales with number of cores! 2011 SAP AG. All rights reserved. 3

4 Massive amount of memory and parallel processing power for under $1M 1 server...8 CPUs, each CPU with 8 cores for $100,000 can execute 64 threads in parallel A A A A A A A A A A A A A A A A can hold memory modules adding up to ~2TB today 100GB/sec data throughput per server 8 blades...for less than $1M can execute 512 threads in parallel A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A A can hold memory modules adding up to ~16TB 2011 SAP AG. All rights reserved. 4

5 Simplified Memory Hierarchy (based on Intel Nehalem) CPU Core Core Core Core Size Latency 1 st Level Cache 2 nd Level Cache 1 st Level Cache 2 nd Level Cache 1 st Level Cache 2 nd Level Cache Shared 3 rd Level Cache 1 st Level Cache 2 nd Level Cache 64KB 256KB 8MB ~4 cycles 2 ns ~10 cycles 5 ns cycles 20 ns Main Memory several GBs up to TBs ~ 200 cycles ~ 100ns Disk several TB several million cycles several ms 2011 SAP AG. All rights reserved. 5

6 Main Memory Bottleneck Disk is Tape 10 5 times slower compared to main memory access No disk access during normal operation Use disk as kind of archive CPU Core CPU Cache CPU Cache MainMemory Performance bottleneck today: CPU waiting for data to be loaded from memory into cache Memory Price / MB AM is going down 64 bit architectures make maximum limit of 4GB main memory obsolete Disk Performance bottleneck in the past: Disk I/O Memory Access Access to main memory is not arbitrarily fast Memory bandwidth increases but memory access latency remains the same Cache misses limit performance Traditional database: CPU spends 50% of time waiting after cache misses (1999) Transfer memory-cache is block wise (cache lines), for example 64 bytes Main memory access benefits from data locality, random access is slow 2011 SAP AG. All rights reserved. 6

7 In-Memory Computing In-Memory Computing Keep all required data in main memory arely accessed data can be moved to disk (e.g. after 1 year) Compress data in memory Disk I/O no longer an optimization target Cache sensitive data layout High locality (data that is needed together is stored together) Compression (decompress in cache) Parallelization Data structures allow splitting into pieces that can be processed in parallel Avoid locks Unify OLAP and OLTP systems : combinte column and row store Column store for reporting like access ow store for OLTP like access 2011 SAP AG. All rights reserved. 7

8 ow Based and Column Based Data Storage Country Product Sales US US US JP UK Alpha Beta Alpha Alpha ow-based Aggregate sales figures: andom access! US Alpha US Beta JP Alpha 700 UK Alpha 450 Sum(sales): Sales: 4 byte, country: 2 byte, product: 10 byte Cache line: 64 Byte 48 byte waste = 75% Columnar US US JP UK Alpha Beta Alpha Alpha data stored in contiguous memory High locality 2011 SAP AG. All rights reserved. 8

9 ow Based and Column Based Data Storage? Column Store Many calculations on single or few columns only Searches based on values of a few columns Big number of columns Big number of rows and columnar operations are required aggregate, scan, etc. High compression rates possible Most columns contain only few distinct values ow Store Application often needs to process single records at one time many selects and /or updates of single records Application typically needs to access the complete record Columns contain mainly distinct values Aggregations and fast searching not required Small number of rows (e.g. configuration tables) 2011 SAP AG. All rights reserved. 9

10 SAP HANA database Overall Architecture of the engine NewDB Clients (Application, Analytics Technology, etc) NewDB Connection and Session Management Session Parameters equest Parser SQL Script MDX Planning Engine equest Processing And Execution Control Authorization Optimizer Calc Engine Metadata elational Engines In Memory ow Store Execution Layer In Memory Column Store Disk Based Store Temporary esults In Memory Object Store Transaction Data Aging Persistence Layer Page Management Logger Data Volumes Disk Storage Transaction Log Volumes 2011 SAP AG. All rights reserved. 10

11 ow Store Architecture ecord Level Write Locks Transaction Execution Layer ow Store ow Store Transactional Version Memory owid ecord Versions Index Write Operations ead Operations Index key rowid Intermediate esults Segment Page Header Slot Page Data records managed in pages Temporary versions in separate memory Index only in memory Optimistic latch free index access Loads all tables at startup Incremental transaction logs Parallel write and restart Data persisted during savepoint operation Free Pages, Sparse Pages Page owid ecord Versions Version Memory Consolidation Checkpoint Writer Page Log eplay/ Undo Agent Write log entries invoke checkpoint Write pages Persistence Layer 2011 SAP AG. All rights reserved. 11

12 Column Store Architecture SQL Processor Calc Engine Query (search) Column Store Optimizer Write equest Column Store Column Store Own optimizer and execution control OLAP Optimizer OLAP engine: Special optimizer and operators Column Store Execution Plan Column Store Executor For each column ow Level Locks Compressed main storage Standard Operators Operators optimized for OLAP Column Store Operators (ead) Delta storage with only basic compression Write Operations Write operations go into delta only History Storage Main Storage Delta Merge Operation Delta Storage Consistent View Filter Consistent View Transaction Merge operation re-encodes main area Optional history storage (also main + delta) Delta log written per table Main Delta Load/Unload Agent Per Transaction Change Information Main area persisted during merge operation Write main and delta log virtual files Persistence Layer Load table Write delta log Transaction Status Write and read possible during merge Persistence Interface Logger Loads tables on demand (preload configurable) Virtual Main Files Virtual Delta Log Files edo and Undo Log 2011 SAP AG. All rights reserved. 12

13 Persistence Layer NewDB In-Memory Stores Log eplay/ Undo Agent Page Checkpoint Writer ow Store ow Store Pages Columns in contigous memeory Column Store Load/ Unload Agent Transaction Allocate memory callback Same Memory Location Page Management Persistence Interface Absolute Page API Virtual File API Free Block Page Status Info Consistent Change Lock Undo Converter Converter Table Cache Externally Allocated Data Pages Data Cache Other Data Pages Data Pages of Virtual Files Page Buffer Log Queue edo Log Differential Log Logger Save Point Coordinator Page I/O Disk Storage Data Volumes estart ecord List of open transactions Persisted Converter Table Physical Data Pages Transaction Specific Undo Containers Other Data edo edo Log Log Log Volumes Differential Log estart Agent edo lists Persistence Layer 2011 SAP AG. All rights reserved. 13

14 SAP HANA database - Assets High Performance and Scalability Compression, cache-aware storage Executing application logic inside database Distribution educing Complexity and Cost Hybrid: column based, row based (future: object store and disk based) in one system Analytics and OLTP in one system Support for OLAP MDX, calculation engine, OLAP views Compatibility and Standard DBMS Features SQL, ACID run SAP applications that use Open SQL without changes. Multi Tenant Support Support For Temporal Tables time travel, time slider applications, reporting using historical data, change recording Main memory text search engine 2011 SAP AG. All rights reserved. 14

15 SAP HANA database A Distributed Database Different Options Data Distribution No Tenant Separation Host Host Host NewDB System Database Process Database Process Database Process Data Partition Data Partition Data Partition Multi Tenant System Host Host Host Tenant 1 Tenant 2 Tenant 3 Tenant 4 Tenant 5 Tenant N NewDB System Database Process Database Process Database Process Database Process Database Process Database Process Tenant Data Tenant Data Tenant Data Tenant Data Tenant Data Tenant Data Default: tenants are not distributed across multiple servers 2011 SAP AG. All rights reserved. 15

16 SAP HANA database A Distributed Database Topology Information / metadata Host Slave Name NewDB Database Topology and distribution Information (replicated) Fast read access via shared memory Topology And distribution Information Master Name Host Slave Name NewDB Database Topology and distribution Information (replicated) Host Slave Name NewDB Database Topology and distribution Information (replicated) 2011 SAP AG. All rights reserved. 16

17 Tenant Separation Table T1 T1 in Tenant 100 T1 in Tenant 200 T1 in Tenant 300 Client A B C A B C A B C A B C y c 765 y c 770 z a 733 x b z a 701 w c 800 z b 777 z a w c x b z a z b defined by central metadata ABAP client concept NewDB tenant concept NewDB tenant Separate database process Separate data volumes Separate instances of tenant-dependent tables Separate transaction domain 2011 SAP AG. All rights reserved. 17

18 Temporal Tables Temporal Table (Logical View) ow ID Text Size Shirt XL Shoe M Hat L ow ID Text Size Shirt XL Shoe M Hat L Valid-From : : :11 Valid-To UPDATE article SET SIZE = S WHEE ID= 712 Valid-From : : :11 Valid-To : Hat S :05 Currently only in column store historical insert ow ID Text Size Shirt XL Shoe M Hat L DELETE FOM article WHEE ID= 546 Valid-From : : :11 Valid-To : : Hat S :05 historical 2011 SAP AG. All rights reserved. 18

19 In-Memory Computing Business Database Move data-intensive operations to the data layer Do the relational operations at database level ( i.e. select for all entries ) Hierarchy handling ( i.e H cost center hierarchy ) eporting and planning functionality Planning engine Transactional behavior Unify DB and application transaction Push snapshot isolation to the database / remove transactional buffer in the appserver layer Business Function Library Provide business functions in the DB layer like Currency /Unit conversion Date / time /fiscal period /calendar calculation Statistical functionality Deep integration with the application server Fast communication layer SQL extensions ( SQL script ) New data types ( text, GUID, ) 2011 SAP AG. All rights reserved. 19

20 Thank You! Questions? Jürgen Primsch SAP AG

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013 SAP HANA SAP s In-Memory Database Dr. Martin Kittel, SAP HANA Development January 16, 2013 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase

More information

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller

In-Memory Databases Algorithms and Data Structures on Modern Hardware. Martin Faust David Schwalb Jens Krüger Jürgen Müller In-Memory Databases Algorithms and Data Structures on Modern Hardware Martin Faust David Schwalb Jens Krüger Jürgen Müller The Free Lunch Is Over 2 Number of transistors per CPU increases Clock frequency

More information

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here

SAP HANA PLATFORM Top Ten Questions for Choosing In-Memory Databases. Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases Start Here PLATFORM Top Ten Questions for Choosing In-Memory Databases. Are my applications accelerated without manual intervention and tuning?.

More information

In-Memory Data Management for Enterprise Applications

In-Memory Data Management for Enterprise Applications In-Memory Data Management for Enterprise Applications Jens Krueger Senior Researcher and Chair Representative Research Group of Prof. Hasso Plattner Hasso Plattner Institute for Software Engineering University

More information

IN-MEMORY DATABASE SYSTEMS. Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1

IN-MEMORY DATABASE SYSTEMS. Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1 IN-MEMORY DATABASE SYSTEMS Prof. Dr. Uta Störl Big Data Technologies: In-Memory DBMS - SoSe 2015 1 Analytical Processing Today Separation of OLTP and OLAP Motivation Online Transaction Processing (OLTP)

More information

2009 Oracle Corporation 1

2009 Oracle Corporation 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material,

More information

SAP HANA Power of In-Memory Computing. Boonchu Chumsantivut Solution Advisor, SAP Thailand Ltd.

SAP HANA Power of In-Memory Computing. Boonchu Chumsantivut Solution Advisor, SAP Thailand Ltd. Power of In-Memory Computing Boonchu Chumsantivut Solution Advisor, SAP Thailand Ltd. Opportunities Speed GPS Emails Reality: Information Explosion Gartner - Enterprise data will grow 650% over the next

More information

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

Oracle Database-Optimized Flash

Oracle Database-Optimized Flash Oracle Database-Optimized Flash Setting New Standards for Database Performance Kothanda Umamageswaran Vice President, Exadata Development Gurmeet Goindi Technical Product Strategist Flash Has Transformed

More information

In-Memory Columnar Databases HyPer. Arto Kärki University of Helsinki 30.11.2012

In-Memory Columnar Databases HyPer. Arto Kärki University of Helsinki 30.11.2012 In-Memory Columnar Databases HyPer Arto Kärki University of Helsinki 30.11.2012 1 Introduction Columnar Databases Design Choices Data Clustering and Compression Conclusion 2 Introduction The relational

More information

Sawmill Log Analyzer Best Practices!! Page 1 of 6. Sawmill Log Analyzer Best Practices

Sawmill Log Analyzer Best Practices!! Page 1 of 6. Sawmill Log Analyzer Best Practices Sawmill Log Analyzer Best Practices!! Page 1 of 6 Sawmill Log Analyzer Best Practices! Sawmill Log Analyzer Best Practices!! Page 2 of 6 This document describes best practices for the Sawmill universal

More information

Exploring the Synergistic Relationships Between BPC, BW and HANA

Exploring the Synergistic Relationships Between BPC, BW and HANA September 9 11, 2013 Anaheim, California Exploring the Synergistic Relationships Between, BW and HANA Sheldon Edelstein SAP Database and Solution Management Learning Points SAP Business Planning and Consolidation

More information

Hypertable Architecture Overview

Hypertable Architecture Overview WHITE PAPER - MARCH 2012 Hypertable Architecture Overview Hypertable is an open source, scalable NoSQL database modeled after Bigtable, Google s proprietary scalable database. It is written in C++ for

More information

SQL Server 2014 New Features/In- Memory Store. Juergen Thomas Microsoft Corporation

SQL Server 2014 New Features/In- Memory Store. Juergen Thomas Microsoft Corporation SQL Server 2014 New Features/In- Memory Store Juergen Thomas Microsoft Corporation AGENDA 1. SQL Server 2014 what and when 2. SQL Server 2014 In-Memory 3. SQL Server 2014 in IaaS scenarios 2 SQL Server

More information

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved. Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any

More information

Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database

Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database WHITE PAPER Improve Business Productivity and User Experience with a SanDisk Powered SQL Server 2014 In-Memory OLTP Database 951 SanDisk Drive, Milpitas, CA 95035 www.sandisk.com Table of Contents Executive

More information

Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option

Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option Optimize Oracle Business Intelligence Analytics with Oracle 12c In-Memory Database Option Kai Yu, Senior Principal Architect Dell Oracle Solutions Engineering Dell, Inc. Abstract: By adding the In-Memory

More information

Infrastructure Matters: POWER8 vs. Xeon x86

Infrastructure Matters: POWER8 vs. Xeon x86 Advisory Infrastructure Matters: POWER8 vs. Xeon x86 Executive Summary This report compares IBM s new POWER8-based scale-out Power System to Intel E5 v2 x86- based scale-out systems. A follow-on report

More information

Architectures for Big Data Analytics A database perspective

Architectures for Big Data Analytics A database perspective Architectures for Big Data Analytics A database perspective Fernando Velez Director of Product Management Enterprise Information Management, SAP June 2013 Outline Big Data Analytics Requirements Spectrum

More information

Oracle Database In-Memory The Next Big Thing

Oracle Database In-Memory The Next Big Thing Oracle Database In-Memory The Next Big Thing Maria Colgan Master Product Manager #DBIM12c Why is Oracle do this Oracle Database In-Memory Goals Real Time Analytics Accelerate Mixed Workload OLTP No Changes

More information

In-memory databases and innovations in Business Intelligence

In-memory databases and innovations in Business Intelligence Database Systems Journal vol. VI, no. 1/2015 59 In-memory databases and innovations in Business Intelligence Ruxandra BĂBEANU, Marian CIOBANU University of Economic Studies, Bucharest, Romania babeanu.ruxandra@gmail.com,

More information

Inge Os Sales Consulting Manager Oracle Norway

Inge Os Sales Consulting Manager Oracle Norway Inge Os Sales Consulting Manager Oracle Norway Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database Machine Oracle & Sun Agenda Oracle Fusion Middelware Oracle Database 11GR2 Oracle Database

More information

WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE

WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE WITH A FUSION POWERED SQL SERVER 2014 IN-MEMORY OLTP DATABASE 1 W W W. F U S I ON I O.COM Table of Contents Table of Contents... 2 Executive Summary... 3 Introduction: In-Memory Meets iomemory... 4 What

More information

Performance Tuning Guidelines for Relational Database Mappings

Performance Tuning Guidelines for Relational Database Mappings Performance Tuning Guidelines for Relational Database Mappings 1993-2016 Informatica LLC. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying,

More information

Capacity Management for Oracle Database Machine Exadata v2

Capacity Management for Oracle Database Machine Exadata v2 Capacity Management for Oracle Database Machine Exadata v2 Dr. Boris Zibitsker, BEZ Systems NOCOUG 21 Boris Zibitsker Predictive Analytics for IT 1 About Author Dr. Boris Zibitsker, Chairman, CTO, BEZ

More information

The Classical Architecture. Storage 1 / 36

The Classical Architecture. Storage 1 / 36 1 / 36 The Problem Application Data? Filesystem Logical Drive Physical Drive 2 / 36 Requirements There are different classes of requirements: Data Independence application is shielded from physical storage

More information

W I S E. SQL Server 2008/2008 R2 Advanced DBA Performance & WISE LTD.

W I S E. SQL Server 2008/2008 R2 Advanced DBA Performance & WISE LTD. SQL Server 2008/2008 R2 Advanced DBA Performance & Tuning COURSE CODE: COURSE TITLE: AUDIENCE: SQSDPT SQL Server 2008/2008 R2 Advanced DBA Performance & Tuning SQL Server DBAs, capacity planners and system

More information

SAP HANA Storage Requirements

SAP HANA Storage Requirements SAP HANA Storage Requirements As an in-memory database, SAP HANA uses storage devices to save a copy of the data, for the purpose of startup and fault recovery without data loss. The choice of the specific

More information

News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren

News and trends in Data Warehouse Automation, Big Data and BI. Johan Hendrickx & Dirk Vermeiren News and trends in Data Warehouse Automation, Big Data and BI Johan Hendrickx & Dirk Vermeiren Extreme Agility from Source to Analysis DWH Appliances & DWH Automation Typical Architecture 3 What Business

More information

OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni

OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni OLTP Meets Bigdata, Challenges, Options, and Future Saibabu Devabhaktuni Agenda Database trends for the past 10 years Era of Big Data and Cloud Challenges and Options Upcoming database trends Q&A Scope

More information

Performance and scalability of a large OLTP workload

Performance and scalability of a large OLTP workload Performance and scalability of a large OLTP workload ii Performance and scalability of a large OLTP workload Contents Performance and scalability of a large OLTP workload with DB2 9 for System z on Linux..............

More information

CitusDB Architecture for Real-Time Big Data

CitusDB Architecture for Real-Time Big Data CitusDB Architecture for Real-Time Big Data CitusDB Highlights Empowers real-time Big Data using PostgreSQL Scales out PostgreSQL to support up to hundreds of terabytes of data Fast parallel processing

More information

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms

Distributed File System. MCSN N. Tonellotto Complements of Distributed Enabling Platforms Distributed File System 1 How do we get data to the workers? NAS Compute Nodes SAN 2 Distributed File System Don t move data to workers move workers to the data! Store data on the local disks of nodes

More information

Overview: X5 Generation Database Machines

Overview: X5 Generation Database Machines Overview: X5 Generation Database Machines Spend Less by Doing More Spend Less by Paying Less Rob Kolb Exadata X5-2 Exadata X4-8 SuperCluster T5-8 SuperCluster M6-32 Big Memory Machine Oracle Exadata Database

More information

SAP HANA Storage Requirements

SAP HANA Storage Requirements SAP HANA Storage Requirements As an in-memory database, SAP HANA uses storage devices to save a copy of the data, for the purpose of startup and fault recovery without data loss. The choice of the specific

More information

Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat

Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat Why Computers Are Getting Slower The traditional approach better performance Why computers are

More information

MS SQL Performance (Tuning) Best Practices:

MS SQL Performance (Tuning) Best Practices: MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware

More information

Eloquence Training What s new in Eloquence B.08.00

Eloquence Training What s new in Eloquence B.08.00 Eloquence Training What s new in Eloquence B.08.00 2010 Marxmeier Software AG Rev:100727 Overview Released December 2008 Supported until November 2013 Supports 32-bit and 64-bit platforms HP-UX Itanium

More information

Best Practices for Extreme Performance with Data Warehousing on Oracle Database

<Insert Picture Here> Best Practices for Extreme Performance with Data Warehousing on Oracle Database 1 Best Practices for Extreme Performance with Data Warehousing on Oracle Database Rekha Balwada Principal Product Manager Agenda Parallel Execution Workload Management on Data Warehouse

More information

Crack Open Your Operational Database. Jamie Martin jameison.martin@salesforce.com September 24th, 2013

Crack Open Your Operational Database. Jamie Martin jameison.martin@salesforce.com September 24th, 2013 Crack Open Your Operational Database Jamie Martin jameison.martin@salesforce.com September 24th, 2013 Analytics on Operational Data Most analytics are derived from operational data Two canonical approaches

More information

A Deduplication File System & Course Review

A Deduplication File System & Course Review A Deduplication File System & Course Review Kai Li 12/13/12 Topics A Deduplication File System Review 12/13/12 2 Traditional Data Center Storage Hierarchy Clients Network Server SAN Storage Remote mirror

More information

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013

F1: A Distributed SQL Database That Scales. Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 F1: A Distributed SQL Database That Scales Presentation by: Alex Degtiar (adegtiar@cmu.edu) 15-799 10/21/2013 What is F1? Distributed relational database Built to replace sharded MySQL back-end of AdWords

More information

The SAP HANA Database An Architecture Overview

The SAP HANA Database An Architecture Overview The SAP HANA Database An Architecture Overview Franz Färber and Norman May and Wolfgang Lehner and Philipp Große and Ingo Müller and Hannes Rauhe and Jonathan Dees Abstract Requirements of enterprise applications

More information

Parallel Replication for MySQL in 5 Minutes or Less

Parallel Replication for MySQL in 5 Minutes or Less Parallel Replication for MySQL in 5 Minutes or Less Featuring Tungsten Replicator Robert Hodges, CEO, Continuent About Continuent / Continuent is the leading provider of data replication and clustering

More information

Sitecore Health. Christopher Wojciech. netzkern AG. christopher.wojciech@netzkern.de. Sitecore User Group Conference 2015

Sitecore Health. Christopher Wojciech. netzkern AG. christopher.wojciech@netzkern.de. Sitecore User Group Conference 2015 Sitecore Health Christopher Wojciech netzkern AG christopher.wojciech@netzkern.de Sitecore User Group Conference 2015 1 Hi, % Increase in Page Abondonment 40% 30% 20% 10% 0% 2 sec to 4 2 sec to 6 2 sec

More information

Oracle Exadata: The World s Fastest Database Machine Exadata Database Machine Architecture

Oracle Exadata: The World s Fastest Database Machine Exadata Database Machine Architecture Oracle Exadata: The World s Fastest Database Machine Exadata Database Machine Architecture Ron Weiss, Exadata Product Management Exadata Database Machine Best Platform to Run the

More information

Protect SAP HANA Based on SUSE Linux Enterprise Server with SEP sesam

Protect SAP HANA Based on SUSE Linux Enterprise Server with SEP sesam Protect SAP HANA Based on SUSE Linux Enterprise Server with SEP sesam Many companies of different sizes and from all sectors of industry already use SAP s inmemory appliance, HANA benefiting from quicker

More information

Performance Verbesserung von SAP BW mit SQL Server Columnstore

Performance Verbesserung von SAP BW mit SQL Server Columnstore Performance Verbesserung von SAP BW mit SQL Server Columnstore Martin Merdes Senior Software Development Engineer Microsoft Deutschland GmbH SAP BW/SQL Server Porting AGENDA 1. Columnstore Overview 2.

More information

CHAPTER 3 PROBLEM STATEMENT AND RESEARCH METHODOLOGY

CHAPTER 3 PROBLEM STATEMENT AND RESEARCH METHODOLOGY 51 CHAPTER 3 PROBLEM STATEMENT AND RESEARCH METHODOLOGY Web application operations are a crucial aspect of most organizational operations. Among them business continuity is one of the main concerns. Companies

More information

Module 14: Scalability and High Availability

Module 14: Scalability and High Availability Module 14: Scalability and High Availability Overview Key high availability features available in Oracle and SQL Server Key scalability features available in Oracle and SQL Server High Availability High

More information

Maximize MicroStrategy Speed and Throughput with High Performance Tuning

Maximize MicroStrategy Speed and Throughput with High Performance Tuning Maximize MicroStrategy Speed and Throughput with High Performance Tuning Jochen Demuth, Director Partner Engineering Maximize MicroStrategy Speed and Throughput with High Performance Tuning Agenda 1. Introduction

More information

Hardware Configuration Guide

Hardware Configuration Guide Hardware Configuration Guide Contents Contents... 1 Annotation... 1 Factors to consider... 2 Machine Count... 2 Data Size... 2 Data Size Total... 2 Daily Backup Data Size... 2 Unique Data Percentage...

More information

IS IN-MEMORY COMPUTING MAKING THE MOVE TO PRIME TIME?

IS IN-MEMORY COMPUTING MAKING THE MOVE TO PRIME TIME? IS IN-MEMORY COMPUTING MAKING THE MOVE TO PRIME TIME? EMC and Intel work with multiple in-memory solutions to make your databases fly Thanks to cheaper random access memory (RAM) and improved technology,

More information

Course 55144B: SQL Server 2014 Performance Tuning and Optimization

Course 55144B: SQL Server 2014 Performance Tuning and Optimization Course 55144B: SQL Server 2014 Performance Tuning and Optimization Course Outline Module 1: Course Overview This module explains how the class will be structured and introduces course materials and additional

More information

Cloud Computing at Google. Architecture

Cloud Computing at Google. Architecture Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale

More information

Configuring Apache Derby for Performance and Durability Olav Sandstå

Configuring Apache Derby for Performance and Durability Olav Sandstå Configuring Apache Derby for Performance and Durability Olav Sandstå Database Technology Group Sun Microsystems Trondheim, Norway Overview Background > Transactions, Failure Classes, Derby Architecture

More information

Web Server (Step 1) Processes request and sends query to SQL server via ADO/OLEDB. Web Server (Step 2) Creates HTML page dynamically from record set

Web Server (Step 1) Processes request and sends query to SQL server via ADO/OLEDB. Web Server (Step 2) Creates HTML page dynamically from record set Dawn CF Performance Considerations Dawn CF key processes Request (http) Web Server (Step 1) Processes request and sends query to SQL server via ADO/OLEDB. Query (SQL) SQL Server Queries Database & returns

More information

Chapter 13 File and Database Systems

Chapter 13 File and Database Systems Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation

More information

Chapter 13 File and Database Systems

Chapter 13 File and Database Systems Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation

More information

Oracle Database Concepts

Oracle Database Concepts Oracle Database Concepts Database Structure The database has logical structures and physical structures. Because the physical and logical structures are separate, the physical storage of data can be managed

More information

Azure Scalability Prescriptive Architecture using the Enzo Multitenant Framework

Azure Scalability Prescriptive Architecture using the Enzo Multitenant Framework Azure Scalability Prescriptive Architecture using the Enzo Multitenant Framework Many corporations and Independent Software Vendors considering cloud computing adoption face a similar challenge: how should

More information

MySQL Storage Engines

MySQL Storage Engines MySQL Storage Engines Data in MySQL is stored in files (or memory) using a variety of different techniques. Each of these techniques employs different storage mechanisms, indexing facilities, locking levels

More information

Safe Harbor Statement

Safe Harbor Statement Safe Harbor Statement "Safe Harbor" Statement: Statements in this presentation relating to Oracle's future plans, expectations, beliefs, intentions and prospects are "forward-looking statements" and are

More information

Performance Counters. Microsoft SQL. Technical Data Sheet. Overview:

Performance Counters. Microsoft SQL. Technical Data Sheet. Overview: Performance Counters Technical Data Sheet Microsoft SQL Overview: Key Features and Benefits: Key Definitions: Performance counters are used by the Operations Management Architecture (OMA) to collect data

More information

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1

Performance Characteristics of VMFS and RDM VMware ESX Server 3.0.1 Performance Study Performance Characteristics of and RDM VMware ESX Server 3.0.1 VMware ESX Server offers three choices for managing disk access in a virtual machine VMware Virtual Machine File System

More information

MySQL Cluster 7.0 - New Features. Johan Andersson MySQL Cluster Consulting johan.andersson@sun.com

MySQL Cluster 7.0 - New Features. Johan Andersson MySQL Cluster Consulting johan.andersson@sun.com MySQL Cluster 7.0 - New Features Johan Andersson MySQL Cluster Consulting johan.andersson@sun.com Mat Keep MySQL Cluster Product Management matthew.keep@sun.com Copyright 2009 MySQL Sun Microsystems. The

More information

Storage in Database Systems. CMPSCI 445 Fall 2010

Storage in Database Systems. CMPSCI 445 Fall 2010 Storage in Database Systems CMPSCI 445 Fall 2010 1 Storage Topics Architecture and Overview Disks Buffer management Files of records 2 DBMS Architecture Query Parser Query Rewriter Query Optimizer Query

More information

Next Generation Data Warehouse and In-Memory Analytics

Next Generation Data Warehouse and In-Memory Analytics Next Generation Data Warehouse and In-Memory Analytics S. Santhosh Baboo,PhD Reader P.G. and Research Dept. of Computer Science D.G.Vaishnav College Chennai 600106 P Renjith Kumar Research scholar Computer

More information

Application-Tier In-Memory Analytics Best Practices and Use Cases

Application-Tier In-Memory Analytics Best Practices and Use Cases Application-Tier In-Memory Analytics Best Practices and Use Cases Susan Cheung Vice President Product Management Oracle, Server Technologies Oct 01, 2014 Guest Speaker: Kiran Tailor Senior Oracle DBA and

More information

In Memory Accelerator for MongoDB

In Memory Accelerator for MongoDB In Memory Accelerator for MongoDB Yakov Zhdanov, Director R&D GridGain Systems GridGain: In Memory Computing Leader 5 years in production 100s of customers & users Starts every 10 secs worldwide Over 15,000,000

More information

Running Analytics on SAP HANA and BW with MicroStrategy

Running Analytics on SAP HANA and BW with MicroStrategy Running Analytics on SAP HANA and BW with MicroStrategy Presented by: Trishla Maru Agenda Overview Relationship and Certification with SAP Integration to SAP BW Overview with SAP BW Import process and

More information

In-Memory Databases MemSQL

In-Memory Databases MemSQL IT4BI - Université Libre de Bruxelles In-Memory Databases MemSQL Gabby Nikolova Thao Ha Contents I. In-memory Databases...4 1. Concept:...4 2. Indexing:...4 a. b. c. d. AVL Tree:...4 B-Tree and B+ Tree:...5

More information

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University

RAMCloud and the Low- Latency Datacenter. John Ousterhout Stanford University RAMCloud and the Low- Latency Datacenter John Ousterhout Stanford University Most important driver for innovation in computer systems: Rise of the datacenter Phase 1: large scale Phase 2: low latency Introduction

More information

Performance And Scalability In Oracle9i And SQL Server 2000

Performance And Scalability In Oracle9i And SQL Server 2000 Performance And Scalability In Oracle9i And SQL Server 2000 Presented By : Phathisile Sibanda Supervisor : John Ebden 1 Presentation Overview Project Objectives Motivation -Why performance & Scalability

More information

HP ProLiant BL660c Gen9 and Microsoft SQL Server 2014 technical brief

HP ProLiant BL660c Gen9 and Microsoft SQL Server 2014 technical brief Technical white paper HP ProLiant BL660c Gen9 and Microsoft SQL Server 2014 technical brief Scale-up your Microsoft SQL Server environment to new heights Table of contents Executive summary... 2 Introduction...

More information

Cognos Performance Troubleshooting

Cognos Performance Troubleshooting Cognos Performance Troubleshooting Presenters James Salmon Marketing Manager James.Salmon@budgetingsolutions.co.uk Andy Ellis Senior BI Consultant Andy.Ellis@budgetingsolutions.co.uk Want to ask a question?

More information

Optimizing Performance. Training Division New Delhi

Optimizing Performance. Training Division New Delhi Optimizing Performance Training Division New Delhi Performance tuning : Goals Minimize the response time for each query Maximize the throughput of the entire database server by minimizing network traffic,

More information

System Architecture. In-Memory Database

System Architecture. In-Memory Database System Architecture for Are SSDs Ready for Enterprise Storage Systems In-Memory Database Anil Vasudeva, President & Chief Analyst, Research 2007-13 Research All Rights Reserved Copying Prohibited Contact

More information

CASE STUDY: Oracle TimesTen In-Memory Database and Shared Disk HA Implementation at Instance level. -ORACLE TIMESTEN 11gR1

CASE STUDY: Oracle TimesTen In-Memory Database and Shared Disk HA Implementation at Instance level. -ORACLE TIMESTEN 11gR1 CASE STUDY: Oracle TimesTen In-Memory Database and Shared Disk HA Implementation at Instance level -ORACLE TIMESTEN 11gR1 CASE STUDY Oracle TimesTen In-Memory Database and Shared Disk HA Implementation

More information

Updated November 30, 2010. Version 4.1

Updated November 30, 2010. Version 4.1 Updated November 30, 2010 Version 4.1 Table of Contents Introduction... 3 Replicator Performance and Scalability Features... 5 Replicator Multi-Engine Deployment... 7 Multi-Threaded Replication Queue Architecture...

More information

SQL Server 2012 Optimization, Performance Tuning and Troubleshooting

SQL Server 2012 Optimization, Performance Tuning and Troubleshooting 1 SQL Server 2012 Optimization, Performance Tuning and Troubleshooting 5 Days (SQ-OPT2012-301-EN) Description During this five-day intensive course, students will learn the internal architecture of SQL

More information

Oracle Database 11 g Performance Tuning. Recipes. Sam R. Alapati Darl Kuhn Bill Padfield. Apress*

Oracle Database 11 g Performance Tuning. Recipes. Sam R. Alapati Darl Kuhn Bill Padfield. Apress* Oracle Database 11 g Performance Tuning Recipes Sam R. Alapati Darl Kuhn Bill Padfield Apress* Contents About the Authors About the Technical Reviewer Acknowledgments xvi xvii xviii Chapter 1: Optimizing

More information

Oracle InMemory Database

Oracle InMemory Database Oracle InMemory Database Calgary Oracle Users Group December 11, 2014 Outline Introductions Who is here? Purpose of this presentation Background Why In-Memory What it is How it works Technical mechanics

More information

Distributed Architecture of Oracle Database In-memory

Distributed Architecture of Oracle Database In-memory Distributed Architecture of Oracle Database In-memory Niloy Mukherjee, Shasank Chavan, Maria Colgan, Dinesh Das, Mike Gleeson, Sanket Hase, Allison Holloway, Hui Jin, Jesse Kamp, Kartik Kulkarni, Tirthankar

More information

In-memory computing with SAP HANA

In-memory computing with SAP HANA In-memory computing with SAP HANA June 2015 Amit Satoor, SAP @asatoor 2015 SAP SE or an SAP affiliate company. All rights reserved. 1 Hyperconnectivity across people, business, and devices give rise to

More information

SQL Server Business Intelligence on HP ProLiant DL785 Server

SQL Server Business Intelligence on HP ProLiant DL785 Server SQL Server Business Intelligence on HP ProLiant DL785 Server By Ajay Goyal www.scalabilityexperts.com Mike Fitzner Hewlett Packard www.hp.com Recommendations presented in this document should be thoroughly

More information

Performance Baseline of Oracle Exadata X2-2 HR HC. Part II: Server Performance. Benchware Performance Suite Release 8.4 (Build 130630) September 2013

Performance Baseline of Oracle Exadata X2-2 HR HC. Part II: Server Performance. Benchware Performance Suite Release 8.4 (Build 130630) September 2013 Performance Baseline of Oracle Exadata X2-2 HR HC Part II: Server Performance Benchware Performance Suite Release 8.4 (Build 130630) September 2013 Contents 1 Introduction to Server Performance Tests 2

More information

Direct NFS - Design considerations for next-gen NAS appliances optimized for database workloads Akshay Shah Gurmeet Goindi Oracle

Direct NFS - Design considerations for next-gen NAS appliances optimized for database workloads Akshay Shah Gurmeet Goindi Oracle Direct NFS - Design considerations for next-gen NAS appliances optimized for database workloads Akshay Shah Gurmeet Goindi Oracle Agenda Introduction Database Architecture Direct NFS Client NFS Server

More information

Oracle Database - Engineered for Innovation. Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya

Oracle Database - Engineered for Innovation. Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya Oracle Database - Engineered for Innovation Sedat Zencirci Teknoloji Satış Danışmanlığı Direktörü Türkiye ve Orta Asya Oracle Database 11g Release 2 Shipping since September 2009 11.2.0.3 Patch Set now

More information

Delivering Quality in Software Performance and Scalability Testing

Delivering Quality in Software Performance and Scalability Testing Delivering Quality in Software Performance and Scalability Testing Abstract Khun Ban, Robert Scott, Kingsum Chow, and Huijun Yan Software and Services Group, Intel Corporation {khun.ban, robert.l.scott,

More information

Microsoft SQL Server OLTP Best Practice

Microsoft SQL Server OLTP Best Practice Microsoft SQL Server OLTP Best Practice The document Introduction to Transactional (OLTP) Load Testing for all Databases provides a general overview on the HammerDB OLTP workload and the document Microsoft

More information

Dell Migration Manager for Archives 7.3. SQL Best Practices

Dell Migration Manager for  Archives 7.3. SQL Best Practices Dell Migration Manager for Email Archives 7.3 SQL Best Practices 2016 Dell Inc. All rights reserved. This product is protected by U.S. and international copyright and intellectual property laws. Dell and

More information

Semplicità ed Innovazione a portata di mano

Semplicità ed Innovazione a portata di mano Semplicità ed Innovazione a portata di mano Tavola Rotonda Napoli, 16 aprile 2015 www.icms.it ICM.S è VAR of the YEAR 2014 SAP HANA: not only a database in memory SQ L SQL Interface on Columns and Rows

More information

Top 10 Performance Tips for OBI-EE

Top 10 Performance Tips for OBI-EE Top 10 Performance Tips for OBI-EE Narasimha Rao Madhuvarsu L V Bharath Terala October 2011 Apps Associates LLC Boston New York Atlanta Germany India Premier IT Professional Service and Solution Provider

More information

SQL Server 2014 Performance Tuning and Optimization 55144; 5 Days; Instructor-led

SQL Server 2014 Performance Tuning and Optimization 55144; 5 Days; Instructor-led SQL Server 2014 Performance Tuning and Optimization 55144; 5 Days; Instructor-led Course Description This course is designed to give the right amount of Internals knowledge, and wealth of practical tuning

More information

Benchmarking Hadoop & HBase on Violin

Benchmarking Hadoop & HBase on Violin Technical White Paper Report Technical Report Benchmarking Hadoop & HBase on Violin Harnessing Big Data Analytics at the Speed of Memory Version 1.0 Abstract The purpose of benchmarking is to show advantages

More information

Who am I? Copyright 2014, Oracle and/or its affiliates. All rights reserved. 3

Who am I? Copyright 2014, Oracle and/or its affiliates. All rights reserved. 3 Oracle Database In-Memory Power the Real-Time Enterprise Saurabh K. Gupta Principal Technologist, Database Product Management Who am I? Principal Technologist, Database Product Management at Oracle Author

More information

Running a Workflow on a PowerCenter Grid

Running a Workflow on a PowerCenter Grid Running a Workflow on a PowerCenter Grid 2010-2014 Informatica Corporation. No part of this document may be reproduced or transmitted in any form, by any means (electronic, photocopying, recording or otherwise)

More information

Datacenter Operating Systems

Datacenter Operating Systems Datacenter Operating Systems CSE451 Simon Peter With thanks to Timothy Roscoe (ETH Zurich) Autumn 2015 This Lecture What s a datacenter Why datacenters Types of datacenters Hyperscale datacenters Major

More information