ANALYTICS BUILT FOR INTERNET OF THINGS

Size: px
Start display at page:

Download "ANALYTICS BUILT FOR INTERNET OF THINGS"

Transcription

1 ANALYTICS BUILT FOR INTERNET OF THINGS Big Data Reporting is Out, Actionable Insights are In In recent years, it has become clear that data in itself has little relevance, it is the analysis of it that is critical. Big Data is a world of never-ending combinations of data in previously unimaginable numbers- up to zettabytes. Accounting for all the binary, text, audio, video files, bank transaction records, sensor readings, cell-phone call records, social media musings, and so on, enterprises in virtually every industry are amassing vast quantities of useful data on their operations, products, customers, and competitors.

2 Gone are the days when reporting on all this data once in a time period was enough. We are now in an age where acting upon real-time intelligence correlated with historical data and steering the course of business is critical. Transforming data into Instant insights repeatedly empowers businesses into marketing decisions regarding customer-oriented strategies, generating new revenue-streams, or achieving operational efficiencies; to gain definitive competitive advantages today. Consider these two examples- Retail Customer Profiling - Where ecommerce stores, operators, fleet managers, warehouse managers and others want to find actionable insights on their customer s changing needs, interests and behavior, so they can customize their services and offer promotional or upsell items at the precise point in time to the rights customer. Location-based Mobile Wallet Services - Where a telco service provider can offer its customers location-specific information guided by historical preferences regarding cuisine, entertainment and shopping; in real time: Sending coupons for favorite products just as the customer nears a grocery store, for example. The Challenge Big Data is in Motion The examples above touch upon the significant challenges to analyzing big data and making it actionable- 1) the sheer size (volume) of data, 2) the variety of data types and sources, 3) the need for fast and yet complex analyses, 4) the velocity of new data being generated and 5) the need for flexibility of operations, for example, the ability to quickly create or modify views or filters on this data. Looking from a different perspective, the industry examples also bring to light that enterprises have a Big Data problem with the data at rest the historical data they have had in their repositories and data in motion the data they are generating on a continuous basis from their operations, interactions, etc. Interestingly, both categories are growing persistently. However, conventional database technology does not support this easily. Most enterprises therefore still run reports and analytics historically they wait tell the end of the hour/day/week/month, thereby endangering their competitive advantage and operational efficiencies. Companies that do not simultaneously process historical and real-time data run the risk of disenchanting their customers by offering dated and mis-matched promotions and products. At the same time, such businesses do not have an accurate representation of their operations and costs. Enterprises need to mine data at rest and data in motion simultaneously to uncover problems and discover new opportunities for their business. From OLTP to Hadoop How Existing Technologies Fall Short of Big Data Demands There have been consistent advances in data-management techniques in recent years. However, limitations in prevailing database technologies continue to persist, restricting enterprises from fully harnessing the potential of their big data. Many of today s databases, while effective for some purposes, use architectures that were designed decades ago with data and index structures that were not constructed for efficient, real-time analyses of Big Data. In addition, these databases use sequential algorithms, which are not capable of fully exploiting the potential of parallel hardware One cannot sequentially search a billion rows of data and believe that s going to be the fastest way to address big data; the solution simply will not scale. Simply put, today s new demands require new technologies to address them.

3 The following chart shows various technologies that cover data analytics in terms of the size of data they address and the response times they achieve for typical queries. It is worth nothing however, that this chart addresses only two of the barriers, i.e.; size and speed. It does not address the velocity, the variety or the flexibility of the solution. The highlights of current database technologies are as follows: Mature database technologies such as Online Transaction Processing (OLTP) perform reasonably well when used for reporting, but only when handling low operational data volumes. This is because OLTP architectures are not optimized for analytics performance, but for a mixture of read and write-intensive transactions. Today only very small enterprises use their OLTP platform for analytics. The prevailing Online Analytical Processing Cube approach to business intelligence is inflexible. Defining and creating cubes is time-consuming, requiring specialist skills at significant cost with every change in requirement. Data scientists working with line-of-business experts have to predict future reporting and analytical requirements thereby preventing ad-hoc queries- and the complexity increases in any model with more than three dimensions. Complex Event Processing (CEP) was developed to fulfill speedier analyses of a constant stream of data from multiple sources. It is well suited for real-time critical events such as in automobile crash prevention sensor networks or facility security sensor networks, when viewed in the context of a very short interval of time. However, by its nature, data volumes with the CEP approach do not reach the size of Big Data. In-Memory Databases exhibit increased query speed as there is little I/O data transfer, but the data size is limited and constrained by how much memory is available. At Big Data volumes, there is a definite cost challenge with this approach as memory costs exceed raw storage costs by orders of magnitude, and the vast data sets required typically cannot affordably work via in-memory processing. Batch Analytics promise to tackle the high volume side of the chart, such as Hadoop open source framework for data intensive applications, the associated MapReduce programming model, and NoSQL databases. These use a distributed model on clusters of computers and are capable of large-volume analyses. However, due to its batchoriented methodology of processing data. Batch Analytics cannot perform mass calculations and analysis in anywhere close to real time. Further, Batch Analytics approaches suffer from the lack of resiliency in their cluster the failure of nodes within the cluster will impact the timeliness of the query. With these current technologies all demonstrating limitations with respect to the growing data volume and increasing velocity, one could conclude that achieving Big Data and real-time data analysis is not feasible. However, emerging technologies categorized as Interactive Analytics have the potential to solve these challenges.

4 Introducing ParStream: Real-time Analytics and Instant Insights ParStream has developed one of the most comprehensive platforms in the Interactive Analytics category. The approach was to build a new computing architecture capable of massive parallel processing, configured and optimized for large amounts of data, and employing new indexing methods to achieve real-time query response times. The ParStream platform was built while keeping in mind the requirements of Big Data, namely- Pure speed being able to process huge volumes of records in sub-second response times Accommodation of data in motion supporting continuous and fast data imports while concurrently analyzing the data without performance degradation Simultaneous analysis of historical and current data without cubes correlating the two as new information continuous to come in at the Big Data rate Flexible support of complex and ad hoc queries a data structure that can concurrently support multiple complex queries and easily generated ad hoc queries Concurrency ability to serve thousands of concurrent users without loss of performance Minimal infrastructure ability to scale and perform on minimal and commodity hardware while still ensuring high levels of fault tolerance and availability Robust integration ability to integrate with existing data and server infrastructure and third party software stacks via standard protocols Organizations need to turn Big Data into immediate and useable knowledge require database architecture capable of handling analyses of historical data in conjunction with new data that is constantly being generated from their operations. ParStream is specifically engineered to deliver both Big Data and fast data the first real-time analytics platform designed and optimized for the speed of Big Data queries combined with the high velocity of incoming data. High Level Architecture ParStream s patented high performance, compressed indexing technology enables efficient parallel query processing on parallel architecture in a multi-server environment. ParStream also requires a fraction of the infrastructure of other solutions up and running quickly. Hardware and energy costs are substantially reduced while overall performance is optimized. In addition, ParStream can be seamlessly added to a company s existing environment and processes without major system architectural change. In addition, ParStream has been specifically engineered to handle:

5 Structured and semi-structured data De-normalized, very large fact tables Selective and multi-dimensional filtering and analytics Extremely short query response times Very high query throughput Conclusion Enterprises have been dealing with growing data demands for generations now. While the transient data or data in motion has historically been a fraction of the size of the large, legacy data repositories or data at rest, we are now at the point where the data in motion itself is in big size. Real-time analytics and the resulting insights provide a definite competitive edge and must be an integral part of the data strategy for every enterprise. To reap the full benefits from real-time analytics, enterprises will have to consider a technology platform that enables them to analyze both Big Data at rest and the Big Data in motion, simultaneously. ParStream has built a real-time analytics platform with unique and innovative technology. In contrast to conventional database and analytical technologies, ParStream continuously imports new data rendering updated analytical results; thus providing faster and more accurate insights to decision makers within seconds. About ParStream ParStream is the IoT analytics platform company. The ParStream Analytics Platform was purpose-built for scale to handle the massive volumes and high velocity of IoT data. Enabling a new breed of analytics for the enterprise, ParStream has earned accolades including CIO Magazine #1 Big Data Startup, Gartner Cool Vendor and Database Trends and Applications Magazine s Trend-Setting Products in Data. ParStream is based in Silicon Valley, online at com and on

6 How Customers are Using ParStream Many enterprises have begun to use ParStream as their real-time Big Data analytics platform, using it to deliver ultra-fast interactive analytical results. ParStream technology is best suited for use cases requiring ultra-fast response times, very high query throughput and continuous data import. Some examples are listed below Facetted Search At a leading provider of credit insurance and financial services, ParStream supports a large database- approx. 10M data records with thousands of columns. In addition, ParStream enables the customer s more than 100 concurrent users at any given time, to navigate to their desired information easily through a facetted search that features multi-lingual text and multiple-choice numeric filters. Online Marketing Analytics This search and social analytics company provides search analytics tools and monitors over 75 million domains and 100 million keywords on the world s biggest search engines. Its own customers use the service to monitor competing domains and to optimize their keywords to drive their traffic. ParStream enables them to manage their data; regularly importing several terabytes of data to query more than ten billion data records. By switching to ParStream, this company greatly reduced infrastructure requirements that resulted in faster import and query execution times. AD / Campaign Conversion Records ParStream s capacity to provide real-time responses on big data queries while simultaneously absorbing on-the-fly clickstreams at rates of over 100,000/second has allowed this customer, a web analytics and optimization company, to develop an innovative in-depth interactive analytics service including live-segmentation. With a performance boost ranging from 500 to 12,000 times faster.

III Big Data Technologies

III Big Data Technologies III Big Data Technologies Today, new technologies make it possible to realize value from Big Data. Big data technologies can replace highly customized, expensive legacy systems with a standard solution

More information

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database

Managing Big Data with Hadoop & Vertica. A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Managing Big Data with Hadoop & Vertica A look at integration between the Cloudera distribution for Hadoop and the Vertica Analytic Database Copyright Vertica Systems, Inc. October 2009 Cloudera and Vertica

More information

Next-Gen Analytics: Conversing with Big Data

Next-Gen Analytics: Conversing with Big Data Next-Gen Analytics: Conversing with Big Data Next-Gen Analytics: Conversing with Big Data Enterprises should never lose sight of the endgame of Big Data: improving business decisions based on actionable,

More information

Tap into Big Data at the Speed of Business

Tap into Big Data at the Speed of Business SAP Brief SAP Technology SAP Sybase IQ Objectives Tap into Big Data at the Speed of Business A simpler, more affordable approach to Big Data analytics A simpler, more affordable approach to Big Data analytics

More information

THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS

THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS THE DEVELOPER GUIDE TO BUILDING STREAMING DATA APPLICATIONS WHITE PAPER Successfully writing Fast Data applications to manage data generated from mobile, smart devices and social interactions, and the

More information

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014

5 Keys to Unlocking the Big Data Analytics Puzzle. Anurag Tandon Director, Product Marketing March 26, 2014 5 Keys to Unlocking the Big Data Analytics Puzzle Anurag Tandon Director, Product Marketing March 26, 2014 1 A Little About Us A global footprint. A proven innovator. A leader in enterprise analytics for

More information

Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance.

Keywords Big Data; OODBMS; RDBMS; hadoop; EDM; learning analytics, data abundance. Volume 4, Issue 11, November 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Analytics

More information

Big Data. Fast Forward. Putting data to productive use

Big Data. Fast Forward. Putting data to productive use Big Data Putting data to productive use Fast Forward What is big data, and why should you care? Get familiar with big data terminology, technologies, and techniques. Getting started with big data to realize

More information

Page 2 of 5. Big Data = Data Literacy: HP Vertica and IIS

Page 2 of 5. Big Data = Data Literacy: HP Vertica and IIS Enterprises should never lose sight of the end game of Big Data: improving business decisions based on actionable, data-driven intelligence. Today s analytics platforms, low-cost storage and powerful in-memory

More information

In-Memory Analytics for Big Data

In-Memory Analytics for Big Data In-Memory Analytics for Big Data Game-changing technology for faster, better insights WHITE PAPER SAS White Paper Table of Contents Introduction: A New Breed of Analytics... 1 SAS In-Memory Overview...

More information

The 4 Pillars of Technosoft s Big Data Practice

The 4 Pillars of Technosoft s Big Data Practice beyond possible Big Use End-user applications Big Analytics Visualisation tools Big Analytical tools Big management systems The 4 Pillars of Technosoft s Big Practice Overview Businesses have long managed

More information

SQL Server 2012 Performance White Paper

SQL Server 2012 Performance White Paper Published: April 2012 Applies to: SQL Server 2012 Copyright The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.

More information

Transforming the Telecoms Business using Big Data and Analytics

Transforming the Telecoms Business using Big Data and Analytics Transforming the Telecoms Business using Big Data and Analytics Event: ICT Forum for HR Professionals Venue: Meikles Hotel, Harare, Zimbabwe Date: 19 th 21 st August 2015 AFRALTI 1 Objectives Describe

More information

Understanding the Value of In-Memory in the IT Landscape

Understanding the Value of In-Memory in the IT Landscape February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to

More information

NoSQL for SQL Professionals William McKnight

NoSQL for SQL Professionals William McKnight NoSQL for SQL Professionals William McKnight Session Code BD03 About your Speaker, William McKnight President, McKnight Consulting Group Frequent keynote speaker and trainer internationally Consulted to

More information

The 3 questions to ask yourself about BIG DATA

The 3 questions to ask yourself about BIG DATA The 3 questions to ask yourself about BIG DATA Do you have a big data problem? Companies looking to tackle big data problems are embarking on a journey that is full of hype, buzz, confusion, and misinformation.

More information

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time

How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time SCALEOUT SOFTWARE How In-Memory Data Grids Can Analyze Fast-Changing Data in Real Time by Dr. William Bain and Dr. Mikhail Sobolev, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T wenty-first

More information

Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage

Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage White Paper Scaling Objectivity Database Performance with Panasas Scale-Out NAS Storage A Benchmark Report August 211 Background Objectivity/DB uses a powerful distributed processing architecture to manage

More information

Cray: Enabling Real-Time Discovery in Big Data

Cray: Enabling Real-Time Discovery in Big Data Cray: Enabling Real-Time Discovery in Big Data Discovery is the process of gaining valuable insights into the world around us by recognizing previously unknown relationships between occurrences, objects

More information

The big data revolution

The big data revolution The big data revolution Friso van Vollenhoven (Xebia) Enterprise NoSQL Recently, there has been a lot of buzz about the NoSQL movement, a collection of related technologies mostly concerned with storing

More information

Firebird meets NoSQL (Apache HBase) Case Study

Firebird meets NoSQL (Apache HBase) Case Study Firebird meets NoSQL (Apache HBase) Case Study Firebird Conference 2011 Luxembourg 25.11.2011 26.11.2011 Thomas Steinmaurer DI +43 7236 3343 896 thomas.steinmaurer@scch.at www.scch.at Michael Zwick DI

More information

TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP

TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP Pythian White Paper TAMING THE BIG CHALLENGE OF BIG DATA MICROSOFT HADOOP ABSTRACT As companies increasingly rely on big data to steer decisions, they also find themselves looking for ways to simplify

More information

International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop

International Journal of Advanced Engineering Research and Applications (IJAERA) ISSN: 2454-2377 Vol. 1, Issue 6, October 2015. Big Data and Hadoop ISSN: 2454-2377, October 2015 Big Data and Hadoop Simmi Bagga 1 Satinder Kaur 2 1 Assistant Professor, Sant Hira Dass Kanya MahaVidyalaya, Kala Sanghian, Distt Kpt. INDIA E-mail: simmibagga12@gmail.com

More information

How to Enhance Traditional BI Architecture to Leverage Big Data

How to Enhance Traditional BI Architecture to Leverage Big Data B I G D ATA How to Enhance Traditional BI Architecture to Leverage Big Data Contents Executive Summary... 1 Traditional BI - DataStack 2.0 Architecture... 2 Benefits of Traditional BI - DataStack 2.0...

More information

Oracle Big Data SQL Technical Update

Oracle Big Data SQL Technical Update Oracle Big Data SQL Technical Update Jean-Pierre Dijcks Oracle Redwood City, CA, USA Keywords: Big Data, Hadoop, NoSQL Databases, Relational Databases, SQL, Security, Performance Introduction This technical

More information

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM

A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM A REVIEW PAPER ON THE HADOOP DISTRIBUTED FILE SYSTEM Sneha D.Borkar 1, Prof.Chaitali S.Surtakar 2 Student of B.E., Information Technology, J.D.I.E.T, sborkar95@gmail.com Assistant Professor, Information

More information

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA

ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA ON-LINE VIDEO ANALYTICS EMBRACING BIG DATA David Vanderfeesten, Bell Labs Belgium ANNO 2012 YOUR DATA IS MONEY BIG MONEY! Your click stream, your activity stream, your electricity consumption, your call

More information

Reaping the Rewards of Big Data

Reaping the Rewards of Big Data Reaping the Rewards of Big Data TABLE OF CONTENTS INTRODUCTION: 2 TABLE OF CONTENTS FINDING #1: BIG DATA PLATFORMS ARE ESSENTIAL FOR A MAJORITY OF ORGANIZATIONS TO MANAGE FUTURE BIG DATA CHALLENGES. 4

More information

Introducing Oracle Exalytics In-Memory Machine

Introducing Oracle Exalytics In-Memory Machine Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle

More information

Big Data at Cloud Scale

Big Data at Cloud Scale Big Data at Cloud Scale Pushing the limits of flexible & powerful analytics Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For

More information

Using Tableau Software with Hortonworks Data Platform

Using Tableau Software with Hortonworks Data Platform Using Tableau Software with Hortonworks Data Platform September 2013 2013 Hortonworks Inc. http:// Modern businesses need to manage vast amounts of data, and in many cases they have accumulated this data

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK A SURVEY ON BIG DATA ISSUES AMRINDER KAUR Assistant Professor, Department of Computer

More information

IoT and Big Data- The Current and Future Technologies: A Review

IoT and Big Data- The Current and Future Technologies: A Review Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology IJCSMC, Vol. 5, Issue. 1, January 2016,

More information

Using an In-Memory Data Grid for Near Real-Time Data Analysis

Using an In-Memory Data Grid for Near Real-Time Data Analysis SCALEOUT SOFTWARE Using an In-Memory Data Grid for Near Real-Time Data Analysis by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 IN today s competitive world, businesses

More information

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities

Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities Technology Insight Paper Converged, Real-time Analytics Enabling Faster Decision Making and New Business Opportunities By John Webster February 2015 Enabling you to make the best technology decisions Enabling

More information

Customized Report- Big Data

Customized Report- Big Data GINeVRA Digital Research Hub Customized Report- Big Data 1 2014. All Rights Reserved. Agenda Context Challenges and opportunities Solutions Market Case studies Recommendations 2 2014. All Rights Reserved.

More information

Microsoft Analytics Platform System. Solution Brief

Microsoft Analytics Platform System. Solution Brief Microsoft Analytics Platform System Solution Brief Contents 4 Introduction 4 Microsoft Analytics Platform System 5 Enterprise-ready Big Data 7 Next-generation performance at scale 10 Engineered for optimal

More information

White. Paper. EMC Isilon: A Scalable Storage Platform for Big Data. April 2014

White. Paper. EMC Isilon: A Scalable Storage Platform for Big Data. April 2014 White Paper EMC Isilon: A Scalable Storage Platform for Big Data By Nik Rouda, Senior Analyst and Terri McClure, Senior Analyst April 2014 This ESG White Paper was commissioned by EMC Isilon and is distributed

More information

Navigating Big Data business analytics

Navigating Big Data business analytics mwd a d v i s o r s Navigating Big Data business analytics Helena Schwenk A special report prepared for Actuate May 2013 This report is the third in a series and focuses principally on explaining what

More information

Are You Ready for Big Data?

Are You Ready for Big Data? Are You Ready for Big Data? Jim Gallo National Director, Business Analytics April 10, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?

More information

Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014

Big Data. White Paper. Big Data Executive Overview WP-BD-10312014-01. Jafar Shunnar & Dan Raver. Page 1 Last Updated 11-10-2014 White Paper Big Data Executive Overview WP-BD-10312014-01 By Jafar Shunnar & Dan Raver Page 1 Last Updated 11-10-2014 Table of Contents Section 01 Big Data Facts Page 3-4 Section 02 What is Big Data? Page

More information

Understanding traffic flow

Understanding traffic flow White Paper A Real-time Data Hub For Smarter City Applications Intelligent Transportation Innovation for Real-time Traffic Flow Analytics with Dynamic Congestion Management 2 Understanding traffic flow

More information

Big Data Zurich, November 23. September 2011

Big Data Zurich, November 23. September 2011 Institute of Technology Management Big Data Projektskizze «Competence Center Automotive Intelligence» Zurich, November 11th 23. September 2011 Felix Wortmann Assistant Professor Technology Management,

More information

Luncheon Webinar Series May 13, 2013

Luncheon Webinar Series May 13, 2013 Luncheon Webinar Series May 13, 2013 InfoSphere DataStage is Big Data Integration Sponsored By: Presented by : Tony Curcio, InfoSphere Product Management 0 InfoSphere DataStage is Big Data Integration

More information

HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica

HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica HP Vertica at MIT Sloan Sports Analytics Conference March 1, 2013 Will Cairns, Senior Data Scientist, HP Vertica So What s the market s definition of Big Data? Datasets whose volume, velocity, variety

More information

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the

More information

The Rise of Industrial Big Data

The Rise of Industrial Big Data GE Intelligent Platforms The Rise of Industrial Big Data Leveraging large time-series data sets to drive innovation, competitiveness and growth capitalizing on the big data opportunity The Rise of Industrial

More information

Traditional BI vs. Business Data Lake A comparison

Traditional BI vs. Business Data Lake A comparison Traditional BI vs. Business Data Lake A comparison The need for new thinking around data storage and analysis Traditional Business Intelligence (BI) systems provide various levels and kinds of analyses

More information

Using In-Memory Computing to Simplify Big Data Analytics

Using In-Memory Computing to Simplify Big Data Analytics SCALEOUT SOFTWARE Using In-Memory Computing to Simplify Big Data Analytics by Dr. William Bain, ScaleOut Software, Inc. 2012 ScaleOut Software, Inc. 12/27/2012 T he big data revolution is upon us, fed

More information

NextGen Infrastructure for Big DATA Analytics.

NextGen Infrastructure for Big DATA Analytics. NextGen Infrastructure for Big DATA Analytics. So What is Big Data? Data that exceeds the processing capacity of conven4onal database systems. The data is too big, moves too fast, or doesn t fit the structures

More information

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014

Big Data Analytics. An Introduction. Oliver Fuchsberger University of Paderborn 2014 Big Data Analytics An Introduction Oliver Fuchsberger University of Paderborn 2014 Table of Contents I. Introduction & Motivation What is Big Data Analytics? Why is it so important? II. Techniques & Solutions

More information

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of

More information

The Next Wave of Data Management. Is Big Data The New Normal?

The Next Wave of Data Management. Is Big Data The New Normal? The Next Wave of Data Management Is Big Data The New Normal? Table of Contents Introduction 3 Separating Reality and Hype 3 Why Are Firms Making IT Investments In Big Data? 4 Trends In Data Management

More information

Empulse GmbH Michael Hummel Managing Director ParStream a parallel database on GPUs. GTC, San Jose Convention Center, CA Sept.

Empulse GmbH Michael Hummel Managing Director ParStream a parallel database on GPUs. GTC, San Jose Convention Center, CA Sept. Empulse GmbH Michael Hummel Managing Director ParStream a parallel database on GPUs GTC, San Jose Convention Center, CA Sept. 20 23, 2010 Huge demand for mass-data analysis The demand for analysis of structured

More information

Buyer s Guide to Big Data Integration

Buyer s Guide to Big Data Integration SEPTEMBER 2013 Buyer s Guide to Big Data Integration Sponsored by Contents Introduction 1 Challenges of Big Data Integration: New and Old 1 What You Need for Big Data Integration 3 Preferred Technology

More information

Datenverwaltung im Wandel - Building an Enterprise Data Hub with

Datenverwaltung im Wandel - Building an Enterprise Data Hub with Datenverwaltung im Wandel - Building an Enterprise Data Hub with Cloudera Bernard Doering Regional Director, Central EMEA, Cloudera Cloudera Your Hadoop Experts Founded 2008, by former employees of Employees

More information

Business Analytics In a Big Data World Ted Malone Solutions Architect Data Platform and Cloud Microsoft Federal

Business Analytics In a Big Data World Ted Malone Solutions Architect Data Platform and Cloud Microsoft Federal Business Analytics In a Big Data World Ted Malone Solutions Architect Data Platform and Cloud Microsoft Federal Information has gone from scarce to super-abundant. That brings huge new benefits. The Economist

More information

SQL Server 2012 Parallel Data Warehouse. Solution Brief

SQL Server 2012 Parallel Data Warehouse. Solution Brief SQL Server 2012 Parallel Data Warehouse Solution Brief Published February 22, 2013 Contents Introduction... 1 Microsoft Platform: Windows Server and SQL Server... 2 SQL Server 2012 Parallel Data Warehouse...

More information

Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices

Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices September 10-13, 2012 Orlando, Florida Demonstration of SAP Predictive Analysis 1.0, consumption from SAP BI clients and best practices Vishwanath Belur, Product Manager, SAP Predictive Analysis Learning

More information

Big Data and Analytics 21 A Technical Perspective Abhishek Bhattacharya, Aditya Gandhi and Pankaj Jain November 2012

Big Data and Analytics 21 A Technical Perspective Abhishek Bhattacharya, Aditya Gandhi and Pankaj Jain November 2012 Big Data and Analytics 21 A Technical Perspective Abhishek Bhattacharya, Aditya Gandhi and Pankaj Jain November 2012 Between the dawn of civilization and 2003, the human race created 5 exabytes of data

More information

Navigating the Big Data infrastructure layer Helena Schwenk

Navigating the Big Data infrastructure layer Helena Schwenk mwd a d v i s o r s Navigating the Big Data infrastructure layer Helena Schwenk A special report prepared for Actuate May 2013 This report is the second in a series of four and focuses principally on explaining

More information

A Next-Generation Analytics Ecosystem for Big Data. Colin White, BI Research September 2012 Sponsored by ParAccel

A Next-Generation Analytics Ecosystem for Big Data. Colin White, BI Research September 2012 Sponsored by ParAccel A Next-Generation Analytics Ecosystem for Big Data Colin White, BI Research September 2012 Sponsored by ParAccel BIG DATA IS BIG NEWS The value of big data lies in the business analytics that can be generated

More information

Blueprints for Big Data Success

Blueprints for Big Data Success Blueprints for Big Data Success Succeeding with Four Common Scenarios Copyright 2015 Pentaho Corporation. Redistribution permitted. All trademarks are the property of their respective owners. For the latest

More information

BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES

BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES BIG DATA ANALYTICS REFERENCE ARCHITECTURES AND CASE STUDIES Relational vs. Non-Relational Architecture Relational Non-Relational Rational Predictable Traditional Agile Flexible Modern 2 Agenda Big Data

More information

Using Big Data for Smarter Decision Making. Colin White, BI Research July 2011 Sponsored by IBM

Using Big Data for Smarter Decision Making. Colin White, BI Research July 2011 Sponsored by IBM Using Big Data for Smarter Decision Making Colin White, BI Research July 2011 Sponsored by IBM USING BIG DATA FOR SMARTER DECISION MAKING To increase competitiveness, 83% of CIOs have visionary plans that

More information

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved. Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any

More information

Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect

Big Data & QlikView. Democratizing Big Data Analytics. David Freriks Principal Solution Architect Big Data & QlikView Democratizing Big Data Analytics David Freriks Principal Solution Architect TDWI Vancouver Agenda What really is Big Data? How do we separate hype from reality? How does that relate

More information

BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE

BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE BIG DATA: FIVE TACTICS TO MODERNIZE YOUR DATA WAREHOUSE Current technology for Big Data allows organizations to dramatically improve return on investment (ROI) from their existing data warehouse environment.

More information

Are You Ready for Big Data?

Are You Ready for Big Data? Are You Ready for Big Data? Jim Gallo National Director, Business Analytics February 11, 2013 Agenda What is Big Data? How do you leverage Big Data in your company? How do you prepare for a Big Data initiative?

More information

Dell* In-Memory Appliance for Cloudera* Enterprise

Dell* In-Memory Appliance for Cloudera* Enterprise Built with Intel Dell* In-Memory Appliance for Cloudera* Enterprise Find out what faster big data analytics can do for your business The need for speed in all things related to big data is an enormous

More information

SAP HANA FAQ. A dozen answers to the top questions IT pros typically have about SAP HANA

SAP HANA FAQ. A dozen answers to the top questions IT pros typically have about SAP HANA ? SAP HANA FAQ A dozen answers to the top questions IT pros typically have about SAP HANA??? Overview If there s one thing that CEOs, CFOs, CMOs and CIOs agree on, it s the importance of collecting data.

More information

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS

TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS 9 8 TRENDS IN THE DEVELOPMENT OF BUSINESS INTELLIGENCE SYSTEMS Assist. Prof. Latinka Todoranova Econ Lit C 810 Information technology is a highly dynamic field of research. As part of it, business intelligence

More information

Manifest for Big Data Pig, Hive & Jaql

Manifest for Big Data Pig, Hive & Jaql Manifest for Big Data Pig, Hive & Jaql Ajay Chotrani, Priyanka Punjabi, Prachi Ratnani, Rupali Hande Final Year Student, Dept. of Computer Engineering, V.E.S.I.T, Mumbai, India Faculty, Computer Engineering,

More information

Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing

Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Architecting for Big Data Analytics and Beyond: A New Framework for Business Intelligence and Data Warehousing Wayne W. Eckerson Director of Research, TechTarget Founder, BI Leadership Forum Business Analytics

More information

Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap

Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap Aligning Your Strategic Initiatives with a Realistic Big Data Analytics Roadmap 3 key strategic advantages, and a realistic roadmap for what you really need, and when 2012, Cognizant Topics to be discussed

More information

Why Big Data in the Cloud?

Why Big Data in the Cloud? Have 40 Why Big Data in the Cloud? Colin White, BI Research January 2014 Sponsored by Treasure Data TABLE OF CONTENTS Introduction The Importance of Big Data The Role of Cloud Computing Using Big Data

More information

How Transactional Analytics is Changing the Future of Business A look at the options, use cases, and anti-patterns

How Transactional Analytics is Changing the Future of Business A look at the options, use cases, and anti-patterns How Transactional Analytics is Changing the Future of Business A look at the options, use cases, and anti-patterns Table of Contents Abstract... 3 Introduction... 3 Definition... 3 The Expanding Digitization

More information

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM

QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QLIKVIEW DEPLOYMENT FOR BIG DATA ANALYTICS AT KING.COM QlikView Technical Case Study Series Big Data June 2012 qlikview.com Introduction This QlikView technical case study focuses on the QlikView deployment

More information

A U T H O R S : G a n e s h S r i n i v a s a n a n d S a n d e e p W a g h Social Media Analytics

A U T H O R S : G a n e s h S r i n i v a s a n a n d S a n d e e p W a g h Social Media Analytics contents A U T H O R S : G a n e s h S r i n i v a s a n a n d S a n d e e p W a g h Social Media Analytics Abstract... 2 Need of Social Content Analytics... 3 Social Media Content Analytics... 4 Inferences

More information

Annex: Concept Note. Big Data for Policy, Development and Official Statistics New York, 22 February 2013

Annex: Concept Note. Big Data for Policy, Development and Official Statistics New York, 22 February 2013 Annex: Concept Note Friday Seminar on Emerging Issues Big Data for Policy, Development and Official Statistics New York, 22 February 2013 How is Big Data different from just very large databases? 1 Traditionally,

More information

Big Data Defined Introducing DataStack 3.0

Big Data Defined Introducing DataStack 3.0 Big Data Big Data Defined Introducing DataStack 3.0 Inside: Executive Summary... 1 Introduction... 2 Emergence of DataStack 3.0... 3 DataStack 1.0 to 2.0... 4 DataStack 2.0 Refined for Large Data & Analytics...

More information

Data Refinery with Big Data Aspects

Data Refinery with Big Data Aspects International Journal of Information and Computation Technology. ISSN 0974-2239 Volume 3, Number 7 (2013), pp. 655-662 International Research Publications House http://www. irphouse.com /ijict.htm Data

More information

Gain Contextual Awareness for a Smarter Digital Enterprise with SAP HANA Vora

Gain Contextual Awareness for a Smarter Digital Enterprise with SAP HANA Vora SAP Brief SAP Technology SAP HANA Vora Objectives Gain Contextual Awareness for a Smarter Digital Enterprise with SAP HANA Vora Bridge the divide between enterprise data and Big Data Bridge the divide

More information

Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges

Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Managing Cloud Server with Big Data for Small, Medium Enterprises: Issues and Challenges Prerita Gupta Research Scholar, DAV College, Chandigarh Dr. Harmunish Taneja Department of Computer Science and

More information

Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D.

Big Data Technology ดร.ช ชาต หฤไชยะศ กด. Choochart Haruechaiyasak, Ph.D. Big Data Technology ดร.ช ชาต หฤไชยะศ กด Choochart Haruechaiyasak, Ph.D. Speech and Audio Technology Laboratory (SPT) National Electronics and Computer Technology Center (NECTEC) National Science and Technology

More information

Oracle Database In-Memory The Next Big Thing

Oracle Database In-Memory The Next Big Thing Oracle Database In-Memory The Next Big Thing Maria Colgan Master Product Manager #DBIM12c Why is Oracle do this Oracle Database In-Memory Goals Real Time Analytics Accelerate Mixed Workload OLTP No Changes

More information

HP Vertica OnDemand. Vertica OnDemand. Enterprise-class Big Data analytics in the cloud. Enterprise-class Big Data analytics for any size organization

HP Vertica OnDemand. Vertica OnDemand. Enterprise-class Big Data analytics in the cloud. Enterprise-class Big Data analytics for any size organization Data sheet HP Vertica OnDemand Enterprise-class Big Data analytics in the cloud Enterprise-class Big Data analytics for any size organization Vertica OnDemand Organizations today are experiencing a greater

More information

White Paper. Version 1.2 May 2015 RAID Incorporated

White Paper. Version 1.2 May 2015 RAID Incorporated White Paper Version 1.2 May 2015 RAID Incorporated Introduction The abundance of Big Data, structured, partially-structured and unstructured massive datasets, which are too large to be processed effectively

More information

HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics

HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics HADOOP SOLUTION USING EMC ISILON AND CLOUDERA ENTERPRISE Efficient, Flexible In-Place Hadoop Analytics ESSENTIALS EMC ISILON Use the industry's first and only scale-out NAS solution with native Hadoop

More information

hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau

hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau Powered by Vertica Solution Series in conjunction with: hmetrix Revolutionizing Healthcare Analytics with Vertica & Tableau The cost of healthcare in the US continues to escalate. Consumers, employers,

More information

Getting Started Practical Input For Your Roadmap

Getting Started Practical Input For Your Roadmap Getting Started Practical Input For Your Roadmap Mike Ferguson Managing Director, Intelligent Business Strategies BA4ALL Big Data & Analytics Insight Conference Stockholm, May 2015 About Mike Ferguson

More information

Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum

Big Data Analytics. with EMC Greenplum and Hadoop. Big Data Analytics. Ofir Manor Pre Sales Technical Architect EMC Greenplum Big Data Analytics with EMC Greenplum and Hadoop Big Data Analytics with EMC Greenplum and Hadoop Ofir Manor Pre Sales Technical Architect EMC Greenplum 1 Big Data and the Data Warehouse Potential All

More information

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data

REAL-TIME OPERATIONAL INTELLIGENCE. Competitive advantage from unstructured, high-velocity log and machine Big Data REAL-TIME OPERATIONAL INTELLIGENCE Competitive advantage from unstructured, high-velocity log and machine Big Data 2 SQLstream: Our s-streaming products unlock the value of high-velocity unstructured log

More information

SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM

SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM David Chappell SELLING PROJECTS ON THE MICROSOFT BUSINESS ANALYTICS PLATFORM A PERSPECTIVE FOR SYSTEMS INTEGRATORS Sponsored by Microsoft Corporation Copyright 2014 Chappell & Associates Contents Business

More information

Colgate-Palmolive selects SAP HANA to improve the speed of business analytics with IBM and SAP

Colgate-Palmolive selects SAP HANA to improve the speed of business analytics with IBM and SAP selects SAP HANA to improve the speed of business analytics with IBM and SAP Founded in 1806, is a global consumer products company which sells nearly $17 billion annually in personal care, home care,

More information

Actian Vector in Hadoop

Actian Vector in Hadoop Actian Vector in Hadoop Industrialized, High-Performance SQL in Hadoop A Technical Overview Contents Introduction...3 Actian Vector in Hadoop - Uniquely Fast...5 Exploiting the CPU...5 Exploiting Single

More information

Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance

Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance Klarna Tech Talk: Mind the Data! Jeff Pollock InfoSphere Information Integration & Governance IBM s statements regarding its plans, directions, and intent are subject to change or withdrawal without notice

More information

Solving the Big Data Intention-Deployment Gap

Solving the Big Data Intention-Deployment Gap Solving the Big Data Intention-Deployment Gap Big Data is on virtually every enterprise s to-do list these days. Recognizing both its potential and competitive advantage, companies are aligning a vast

More information