iservdb The database closest to you IDEAS Institute

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "iservdb The database closest to you IDEAS Institute"

Transcription

1 iservdb The database closest to you IDEAS Institute 1

2 Overview 2

3 Long-term Anticipation iservdb is a relational database SQL compliance and a general purpose database Data is reliable and consistency iservdb is a distributed database Designed for distributed system Scalable and Load balanced iservdb is your own database A real team with your service Store data with iservdb, compute data with iservdb, and share data with iservdb iservdb is connecting to the world Able to connect with everything you want Still stay with your lovely SQL 3

4 iservdb faces big problems Big connection Massive connections arrive at the same time Load balanced and to keep alive E.g. Ticketing problem Big computing Much usage of aggregate functions Parallel computing to burst the performance E.g. Statistics problem Big data Huge data set in the storage Distributed storage engine makes data safety and quick access E.g. Data mining problem 4

5 Simple Interface SQL Compliance Only SQL, Always SQL Keep your programs easy and stable iservdb Database iservdb is a DBMS, and iservdb database will endow the database with a new vision. Stay with your own database and coordinate everything. PostgreSQL protocol Wide variety programming language supported 5

6 iservdb Database Multi-tenant technology Every tenant is working in isolation Your intelligence is built-in your database Smart data storage Don t worry about how to store your data. Just know your data is secure, reliable, and easy access. Foreign data integration Connect everything you want. One database for all. 6

7 Keep going Intelligent Data Analysis To learn your data and your service Import and integrate your data Optimized for your service performance Dynamic Resource Allocation Keep load balanced Optimized for your resource utilization Always stay on-line 7

8 Magic Table in iservdb Database UPDATE DELETE Intelligent data analysis SELECT INSERT Magic Table Dynamic resource allocation Table is not only table Table can be dynamic contents Keep your query Nothing needs to be changed in your application Table is still table You can join and aggregate the table 8

9 Scenario iservdb Database My usage statistics My log data of the app My transactional data of ticketing system My shared table from another db My twitter Summary of user log Storage for log application Ticketing module Refer to another db Twitter module 9

10 Example: iservdb+twitter Tweet Something INSERT INTO twitter_table VALUES ( something ); twitter_table Twitter API SELECT * FROM twitter_table WHERE q= keyword ; Social Analysis 10

11 Business Intelligence in iservdb Decision Report Data Collection SELECT INSERT iservdb Information retrieval INSERT UPDATE BI processing INSERT UPDATE Raw data Raw data table is created for fast insert. BI processing table is designed for parallel computing in iservdb. Information retrieval table is set for high performance join and aggregate operations. You can put your business intelligence into iservdb and make everything fast and easy. 11

12 All access Supply Chain Group Your services Social Network Domain Knowledge Data BI Doc Cache iservdb Market Intelligence Partner Service 12

13 Use Case 1: Ticketing System Big connection problem Everyone wants to get the ticket, but only few people can finish as their wish. Too many locks waste too much time. Produce too much false UPDATE. Most users can not get the ticket, which implies database is not updated but still has to acquire pointless locks. When we know the result, iservdb can prevent from it. Better response, more customers in the future iservdb can not increase the numbers of the ticket and the probabilities to get the ticket. If customer receives good response, he would blame the destiny not the service. Otherwise, the customer is lost. 13

14 Users per second Use Case 1: Ticketing System Concurrent users This test is a ticketing simulation to show the performance. Higher is better. There are only 100 tickets. A ticket is for a user. In the scenario of 100 concurrent users, everyone can get a ticket, which is no false UPDATE, and this feature caused about 30% overhead. More concurrent users imply more false UPDATEs. This feature improved about 40% performance. 14 Feature on Feature off

15 Use Case 2: Accounting System Big computing problem Complex computation needs your processors more powerful. A big numbers of row computing causes a big trouble. Powered up by parallel computing iservdb helps to distribute data into many cells, and then every cell can process the query at the same time. With seamless migration, iservdb can scale out on heavy load and scale in on average load. Know your application Data analysis can let iservdb to know your application. iservdb leads distributed computing by distributing data. 15

16 Use Case 3: Multi-tenancy System Big data problem You have many customers, and all of their transactional data are big. Every tenant has different scale. Dynamic resource allocation With scaling technique, iservdb lets administrator feel easy to arrange the resources. Flexible allocation saves your cost. Load Balanced With data analysis and migration, iservdb can keep cells load balanced. Data analysis for each tenant makes individual data closer to the relative application. 16

17 What is your use case? iservdb 17

18 CAP theorem It is impossible to simultaneously provide guarantees for all of three circles. Consistency has to be guaranteed in a relational database Availability is the most important to a database system iservdb can meet any two of them on demand. 18

19 Transactions per second Single host v.s. Distributed system 700 Single host Distributed system Concurrent users Single host holds high performance with light load but breaks down when host limit has reached. Distributed system keeps performance stable. 19

20 Multi-entries comparison One entry ( tps) 3 entries ( tps) Cell 1 Cell 1 Cell 2 Cell 3 Both of the tests run on 3 cells with the same data distribution. Left (One entry) only finished 71% transaction and broke down. Right (3 entries) finished all tasks and load balanced with higher throughput. Network limitation is always with one entry. 20

21 Big Data Revenue 7.2 $US billions $US billions 2017

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB

BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB BENCHMARKING CLOUD DATABASES CASE STUDY on HBASE, HADOOP and CASSANDRA USING YCSB Planet Size Data!? Gartner s 10 key IT trends for 2012 unstructured data will grow some 80% over the course of the next

More information

SQL Server Performance Intelligence

SQL Server Performance Intelligence WHITE PAPER SQL Server Performance Intelligence MARCH 2009 Confio Software www.confio.com +1-303-938-8282 By: Consortio Services & Confio Software Performance Intelligence is Confio Software s method of

More information

PostgreSQL Business Intelligence & Performance Simon Riggs CTO, 2ndQuadrant PostgreSQL Major Contributor

PostgreSQL Business Intelligence & Performance Simon Riggs CTO, 2ndQuadrant PostgreSQL Major Contributor PostgreSQL Business Intelligence & Performance Simon Riggs CTO, 2ndQuadrant PostgreSQL Major Contributor The research leading to these results has received funding from the European Union's Seventh Framework

More information

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011

SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications. Jürgen Primsch, SAP AG July 2011 SAP HANA - Main Memory Technology: A Challenge for Development of Business Applications Jürgen Primsch, SAP AG July 2011 Why In-Memory? Information at the Speed of Thought Imagine access to business data,

More information

What is a database? COSC 304 Introduction to Database Systems. Database Introduction. Example Problem. Databases in the Real-World

What is a database? COSC 304 Introduction to Database Systems. Database Introduction. Example Problem. Databases in the Real-World COSC 304 Introduction to Systems Introduction Dr. Ramon Lawrence University of British Columbia Okanagan ramon.lawrence@ubc.ca What is a database? A database is a collection of logically related data for

More information

The Sierra Clustered Database Engine, the technology at the heart of

The Sierra Clustered Database Engine, the technology at the heart of A New Approach: Clustrix Sierra Database Engine The Sierra Clustered Database Engine, the technology at the heart of the Clustrix solution, is a shared-nothing environment that includes the Sierra Parallel

More information

SQL Server 2012 Performance White Paper

SQL Server 2012 Performance White Paper Published: April 2012 Applies to: SQL Server 2012 Copyright The information contained in this document represents the current view of Microsoft Corporation on the issues discussed as of the date of publication.

More information

SOLUTION BRIEF. Advanced ODBC and JDBC Access to Salesforce Data. www.datadirect.com

SOLUTION BRIEF. Advanced ODBC and JDBC Access to Salesforce Data. www.datadirect.com SOLUTION BRIEF Advanced ODBC and JDBC Access to Salesforce Data 2 CLOUD DATA ACCESS In the terrestrial world of enterprise computing, organizations depend on advanced JDBC and ODBC technologies to provide

More information

Microsoft SQL Server 2008 R2 Enterprise Edition and Microsoft SharePoint Server 2010

Microsoft SQL Server 2008 R2 Enterprise Edition and Microsoft SharePoint Server 2010 Microsoft SQL Server 2008 R2 Enterprise Edition and Microsoft SharePoint Server 2010 Better Together Writer: Bill Baer, Technical Product Manager, SharePoint Product Group Technical Reviewers: Steve Peschka,

More information

Yu Xu Pekka Kostamaa Like Gao. Presented By: Sushma Ajjampur Jagadeesh

Yu Xu Pekka Kostamaa Like Gao. Presented By: Sushma Ajjampur Jagadeesh Yu Xu Pekka Kostamaa Like Gao Presented By: Sushma Ajjampur Jagadeesh Introduction Teradata s parallel DBMS can hold data sets ranging from few terabytes to multiple petabytes. Due to explosive data volume

More information

bigdata Managing Scale in Ontological Systems

bigdata Managing Scale in Ontological Systems Managing Scale in Ontological Systems 1 This presentation offers a brief look scale in ontological (semantic) systems, tradeoffs in expressivity and data scale, and both information and systems architectural

More information

THROUGHPUTER. PaaS for creating and executing concurrent cloud applications

THROUGHPUTER. PaaS for creating and executing concurrent cloud applications THROUGHPUTER PaaS for creating and executing concurrent cloud applications OVERVIEW 1) Fundamental transformation in computing: Concurrent apps on dynamically shared resources Micro-services: unpredictable

More information

Whitepaper. Innovations in Business Intelligence Database Technology. www.sisense.com

Whitepaper. Innovations in Business Intelligence Database Technology. www.sisense.com Whitepaper Innovations in Business Intelligence Database Technology The State of Database Technology in 2015 Database technology has seen rapid developments in the past two decades. Online Analytical Processing

More information

Database System Architecture and Implementation

Database System Architecture and Implementation Database System Architecture and Implementation Kristin Tufte Execution Costs 1 Web Forms Orientation Applications SQL Interface SQL Commands Executor Operator Evaluator Parser Optimizer DBMS Transaction

More information

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract

W H I T E P A P E R. Deriving Intelligence from Large Data Using Hadoop and Applying Analytics. Abstract W H I T E P A P E R Deriving Intelligence from Large Data Using Hadoop and Applying Analytics Abstract This white paper is focused on discussing the challenges facing large scale data processing and the

More information

INTRODUCING ORACLE APPLICATION EXPRESS. Keywords: database, Oracle, web application, forms, reports

INTRODUCING ORACLE APPLICATION EXPRESS. Keywords: database, Oracle, web application, forms, reports INTRODUCING ORACLE APPLICATION EXPRESS Cristina-Loredana Alexe 1 Abstract Everyone knows that having a database is not enough. You need a way of interacting with it, a way for doing the most common of

More information

www.dotnetsparkles.wordpress.com

www.dotnetsparkles.wordpress.com Database Design Considerations Designing a database requires an understanding of both the business functions you want to model and the database concepts and features used to represent those business functions.

More information

Netezza and Business Analytics Synergy

Netezza and Business Analytics Synergy Netezza Business Partner Update: November 17, 2011 Netezza and Business Analytics Synergy Shimon Nir, IBM Agenda Business Analytics / Netezza Synergy Overview Netezza overview Enabling the Business with

More information

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013

SAP HANA SAP s In-Memory Database. Dr. Martin Kittel, SAP HANA Development January 16, 2013 SAP HANA SAP s In-Memory Database Dr. Martin Kittel, SAP HANA Development January 16, 2013 Disclaimer This presentation outlines our general product direction and should not be relied on in making a purchase

More information

Performance And Scalability In Oracle9i And SQL Server 2000

Performance And Scalability In Oracle9i And SQL Server 2000 Performance And Scalability In Oracle9i And SQL Server 2000 Presented By : Phathisile Sibanda Supervisor : John Ebden 1 Presentation Overview Project Objectives Motivation -Why performance & Scalability

More information

Information Integration for Improved City Construction Supervision

Information Integration for Improved City Construction Supervision Information Integration for Improved City Construction Supervision A Data Level Information Integration Approach Information Center Beijing Municipal Construction Committee Dr. Xie Dongxiao Director Oct-2008

More information

Cloud Service Model. Selecting a cloud service model. Different cloud service models within the enterprise

Cloud Service Model. Selecting a cloud service model. Different cloud service models within the enterprise Cloud Service Model Selecting a cloud service model Different cloud service models within the enterprise Single cloud provider AWS for IaaS Azure for PaaS Force fit all solutions into the cloud service

More information

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON

BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON BIG DATA IN THE CLOUD : CHALLENGES AND OPPORTUNITIES MARY- JANE SULE & PROF. MAOZHEN LI BRUNEL UNIVERSITY, LONDON Overview * Introduction * Multiple faces of Big Data * Challenges of Big Data * Cloud Computing

More information

Scalability. Microsoft Dynamics GP 10.0. Benchmark Performance: Advantages of Microsoft SQL Server 2008 with Compression.

Scalability. Microsoft Dynamics GP 10.0. Benchmark Performance: Advantages of Microsoft SQL Server 2008 with Compression. Scalability Microsoft Dynamics GP 10.0 Benchmark Performance: Advantages of Microsoft SQL Server 2008 with Compression White Paper May 2009 Contents Introduction... 3 Summary Results... 3 Benchmark Test

More information

Tautvydas Dagys (tdagys@microsoft.com) Developer & Platform Evangelist Microsoft Lithuania

Tautvydas Dagys (tdagys@microsoft.com) Developer & Platform Evangelist Microsoft Lithuania Tautvydas Dagys (tdagys@microsoft.com) Developer & Platform Evangelist Microsoft Lithuania What s in a Cloud? Industry transformation & trends Cloud computing & Cloud Scenarios Overcoming Cloud Blockers

More information

An Accenture Point of View. Oracle Exalytics brings speed and unparalleled flexibility to business analytics

An Accenture Point of View. Oracle Exalytics brings speed and unparalleled flexibility to business analytics An Accenture Point of View Oracle Exalytics brings speed and unparalleled flexibility to business analytics Keep your competitive edge with analytics When it comes to working smarter, organizations that

More information

Postgres Plus Advanced Server

Postgres Plus Advanced Server Postgres Plus Advanced Server An Updated Performance Benchmark An EnterpriseDB White Paper For DBAs, Application Developers & Enterprise Architects June 2013 Table of Contents Executive Summary...3 Benchmark

More information

Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料

Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 Big Data: Opportunities & Challenges, Myths & Truths 資 料 來 源 : 台 大 廖 世 偉 教 授 課 程 資 料 美 國 13 歲 學 生 用 Big Data 找 出 霸 淩 熱 點 Puri 架 設 網 站 Bullyvention, 藉 由 分 析 Twitter 上 找 出 提 到 跟 霸 凌 相 關 的 詞, 搭 配 地 理 位 置

More information

Introducing Oracle Exalytics In-Memory Machine

Introducing Oracle Exalytics In-Memory Machine Introducing Oracle Exalytics In-Memory Machine Jon Ainsworth Director of Business Development Oracle EMEA Business Analytics 1 Copyright 2011, Oracle and/or its affiliates. All rights Agenda Topics Oracle

More information

SQL Server 2014. In-Memory by Design. Anu Ganesan August 8, 2014

SQL Server 2014. In-Memory by Design. Anu Ganesan August 8, 2014 SQL Server 2014 In-Memory by Design Anu Ganesan August 8, 2014 Drive Real-Time Business with Real-Time Insights Faster transactions Faster queries Faster insights All built-in to SQL Server 2014. 2 Drive

More information

Geodatabase Programming with SQL

Geodatabase Programming with SQL DevSummit DC February 11, 2015 Washington, DC Geodatabase Programming with SQL Craig Gillgrass Assumptions Basic knowledge of SQL and relational databases Basic knowledge of the Geodatabase We ll hold

More information

High-Volume Data Warehousing in Centerprise. Product Datasheet

High-Volume Data Warehousing in Centerprise. Product Datasheet High-Volume Data Warehousing in Centerprise Product Datasheet Table of Contents Overview 3 Data Complexity 3 Data Quality 3 Speed and Scalability 3 Centerprise Data Warehouse Features 4 ETL in a Unified

More information

Understanding the Value of In-Memory in the IT Landscape

Understanding the Value of In-Memory in the IT Landscape February 2012 Understing the Value of In-Memory in Sponsored by QlikView Contents The Many Faces of In-Memory 1 The Meaning of In-Memory 2 The Data Analysis Value Chain Your Goals 3 Mapping Vendors to

More information

CERULIUM TERADATA COURSE CATALOG

CERULIUM TERADATA COURSE CATALOG CERULIUM TERADATA COURSE CATALOG Cerulium Corporation has provided quality Teradata education and consulting expertise for over seven years. We offer customized solutions to maximize your warehouse. Prepared

More information

Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing

Evaluating NoSQL for Enterprise Applications. Dirk Bartels VP Strategy & Marketing Evaluating NoSQL for Enterprise Applications Dirk Bartels VP Strategy & Marketing Agenda The Real Time Enterprise The Data Gold Rush Managing The Data Tsunami Analytics and Data Case Studies Where to go

More information

Would-be system and database administrators. PREREQUISITES: At least 6 months experience with a Windows operating system.

Would-be system and database administrators. PREREQUISITES: At least 6 months experience with a Windows operating system. DBA Fundamentals COURSE CODE: COURSE TITLE: AUDIENCE: SQSDBA SQL Server 2008/2008 R2 DBA Fundamentals Would-be system and database administrators. PREREQUISITES: At least 6 months experience with a Windows

More information

Report Data Management in the Cloud: Limitations and Opportunities

Report Data Management in the Cloud: Limitations and Opportunities Report Data Management in the Cloud: Limitations and Opportunities Article by Daniel J. Abadi [1] Report by Lukas Probst January 4, 2013 In this report I want to summarize Daniel J. Abadi's article [1]

More information

Virtuoso and Database Scalability

Virtuoso and Database Scalability Virtuoso and Database Scalability By Orri Erling Table of Contents Abstract Metrics Results Transaction Throughput Initializing 40 warehouses Serial Read Test Conditions Analysis Working Set Effect of

More information

Data. Data and database. Aniel Nieves-González. Fall 2015

Data. Data and database. Aniel Nieves-González. Fall 2015 Data and database Aniel Nieves-González Fall 2015 Data I In the context of information systems, the following definitions are important: 1 Data refers simply to raw facts, i.e., facts obtained by measuring

More information

Enterprise Performance Tuning: Best Practices with SQL Server 2008 Analysis Services. By Ajay Goyal Consultant Scalability Experts, Inc.

Enterprise Performance Tuning: Best Practices with SQL Server 2008 Analysis Services. By Ajay Goyal Consultant Scalability Experts, Inc. Enterprise Performance Tuning: Best Practices with SQL Server 2008 Analysis Services By Ajay Goyal Consultant Scalability Experts, Inc. June 2009 Recommendations presented in this document should be thoroughly

More information

Integrating Big Data into the Computing Curricula

Integrating Big Data into the Computing Curricula Integrating Big Data into the Computing Curricula Yasin Silva, Suzanne Dietrich, Jason Reed, Lisa Tsosie Arizona State University http://www.public.asu.edu/~ynsilva/ibigdata/ 1 Overview Motivation Big

More information

PERFORMANCE TESTING CONCURRENT ACCESS ISSUE AND POSSIBLE SOLUTIONS A CLASSIC CASE OF PRODUCER-CONSUMER

PERFORMANCE TESTING CONCURRENT ACCESS ISSUE AND POSSIBLE SOLUTIONS A CLASSIC CASE OF PRODUCER-CONSUMER PERFORMANCE TESTING CONCURRENT ACCESS ISSUE AND POSSIBLE SOLUTIONS A CLASSIC CASE OF PRODUCER-CONSUMER Arpit Christi Visiting Faculty Department of Information Science New Horizon College of Engineering,

More information

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB

Overview of Databases On MacOS. Karl Kuehn Automation Engineer RethinkDB Overview of Databases On MacOS Karl Kuehn Automation Engineer RethinkDB Session Goals Introduce Database concepts Show example players Not Goals: Cover non-macos systems (Oracle) Teach you SQL Answer what

More information

Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services

Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services Course 6234A: Implementing and Maintaining Microsoft SQL Server 2008 Analysis Services Length: Delivery Method: 3 Days Instructor-led (classroom) About this Course Elements of this syllabus are subject

More information

Can the Elephants Handle the NoSQL Onslaught?

Can the Elephants Handle the NoSQL Onslaught? Can the Elephants Handle the NoSQL Onslaught? Avrilia Floratou, Nikhil Teletia David J. DeWitt, Jignesh M. Patel, Donghui Zhang University of Wisconsin-Madison Microsoft Jim Gray Systems Lab Presented

More information

In-Memory Analytics: A comparison between Oracle TimesTen and Oracle Essbase

In-Memory Analytics: A comparison between Oracle TimesTen and Oracle Essbase In-Memory Analytics: A comparison between Oracle TimesTen and Oracle Essbase Agenda Introduction Why In-Memory? Options for In-Memory in Oracle Products - Times Ten - Essbase Comparison - Essbase Vs Times

More information

Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013

Big Data Use Case. How Rackspace is using Private Cloud for Big Data. Bryan Thompson. May 8th, 2013 Big Data Use Case How Rackspace is using Private Cloud for Big Data Bryan Thompson May 8th, 2013 Our Big Data Problem Consolidate all monitoring data for reporting and analytical purposes. Every device

More information

PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design

PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions. Outline. Performance oriented design PART IV Performance oriented design, Performance testing, Performance tuning & Performance solutions Slide 1 Outline Principles for performance oriented design Performance testing Performance tuning General

More information

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved.

Preview of Oracle Database 12c In-Memory Option. Copyright 2013, Oracle and/or its affiliates. All rights reserved. Preview of Oracle Database 12c In-Memory Option 1 The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any

More information

Server Consolidation with SQL Server 2008

Server Consolidation with SQL Server 2008 Server Consolidation with SQL Server 2008 White Paper Published: August 2007 Updated: July 2008 Summary: Microsoft SQL Server 2008 supports multiple options for server consolidation, providing organizations

More information

Scalability. Microsoft Dynamics GP 10.0. Benchmark Performance: 1,000 Concurrent Users with Microsoft SQL Server 2008 and Windows Server 2008

Scalability. Microsoft Dynamics GP 10.0. Benchmark Performance: 1,000 Concurrent Users with Microsoft SQL Server 2008 and Windows Server 2008 Scalability Microsoft Dynamics GP 10.0 Benchmark Performance: 1,000 Concurrent Users with Microsoft SQL Server 2008 and Windows Server 2008 White Paper July 2009 Contents Introduction... 3 Microsoft Dynamics

More information

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford

SQL VS. NO-SQL. Adapted Slides from Dr. Jennifer Widom from Stanford SQL VS. NO-SQL Adapted Slides from Dr. Jennifer Widom from Stanford 55 Traditional Databases SQL = Traditional relational DBMS Hugely popular among data analysts Widely adopted for transaction systems

More information

Budget Considerations. Architecture

Budget Considerations. Architecture With hundreds of Help Desk software packages available, how do you choose the best one for your company? When conducting an Internet search, how do you wade through the overwhelming results? The answer

More information

Agenda and Abstract for. Tuesday February 4th, :00am -1:00pm PT / 12:00pm 4:00pm ET / 3:00pm 7:00pm BRT

Agenda and Abstract for. Tuesday February 4th, :00am -1:00pm PT / 12:00pm 4:00pm ET / 3:00pm 7:00pm BRT Agenda and Abstract for Virtual Developer Day - Building Database Apps using Modern Techniques Tuesday February 4th, 2012 9:00am -1:00pm PT / 12:00pm 4:00pm ET / 3:00pm 7:00pm BRT Agenda Time Track and

More information

SQL Server Business Intelligence on HP ProLiant DL785 Server

SQL Server Business Intelligence on HP ProLiant DL785 Server SQL Server Business Intelligence on HP ProLiant DL785 Server By Ajay Goyal www.scalabilityexperts.com Mike Fitzner Hewlett Packard www.hp.com Recommendations presented in this document should be thoroughly

More information

Design Document. Offline Charging Server (Offline CS ) Version 1.0. - i -

Design Document. Offline Charging Server (Offline CS ) Version 1.0. - i - Design Document Offline Charging Server (Offline CS ) Version 1.0 - i - Document Scope Objective The information provided in this document specifies the design details of Operations of Offline Charging

More information

A Cloud Test Bed for China Railway Enterprise Data Center

A Cloud Test Bed for China Railway Enterprise Data Center A Cloud Test Bed for China Railway Enterprise Data Center BACKGROUND China Railway consists of eighteen regional bureaus, geographically distributed across China, with each regional bureau having their

More information

CASE STUDY: Oracle TimesTen In-Memory Database and Shared Disk HA Implementation at Instance level. -ORACLE TIMESTEN 11gR1

CASE STUDY: Oracle TimesTen In-Memory Database and Shared Disk HA Implementation at Instance level. -ORACLE TIMESTEN 11gR1 CASE STUDY: Oracle TimesTen In-Memory Database and Shared Disk HA Implementation at Instance level -ORACLE TIMESTEN 11gR1 CASE STUDY Oracle TimesTen In-Memory Database and Shared Disk HA Implementation

More information

Managing large clusters resources

Managing large clusters resources Managing large clusters resources ID2210 Gautier Berthou (SICS) Big Processing with No Locality Job( /crawler/bot/jd.io/1 ) submi t Workflow Manager Compute Grid Node Job This doesn t scale. Bandwidth

More information

Extending Hyperion BI with the Oracle BI Server

<Insert Picture Here> Extending Hyperion BI with the Oracle BI Server Extending Hyperion BI with the Oracle BI Server Mark Ostroff Sr. BI Solutions Consultant Agenda Hyperion BI versus Hyperion BI with OBI Server Benefits of using Hyperion BI with the

More information

Case Study - I. Industry: Social Networking Website Technology : J2EE AJAX, Spring, MySQL, Weblogic, Windows Server 2008.

Case Study - I. Industry: Social Networking Website Technology : J2EE AJAX, Spring, MySQL, Weblogic, Windows Server 2008. Case Study - I Industry: Social Networking Website Technology : J2EE AJAX, Spring, MySQL, Weblogic, Windows Server 2008 Challenges The scalability of the database servers to execute batch processes under

More information

Software as a Service (SaaS) Testing Challenges- An Indepth

Software as a Service (SaaS) Testing Challenges- An Indepth www.ijcsi.org 506 Software as a Service (SaaS) Testing Challenges- An Indepth Analysis Prakash.V Ravikumar Ramadoss Gopalakrishnan.S Assistant Professor Department of Computer Applications, SASTRA University,

More information

Axapta Object Server MICROSOFT BUSINESS SOLUTIONS AXAPTA

Axapta Object Server MICROSOFT BUSINESS SOLUTIONS AXAPTA MICROSOFT BUSINESS SOLUTIONS AXAPTA Axapta Object Server Microsoft Business Solutions Axapta Object Server minimises bandwidth requirements and ensures easy, efficient and homogeneous client deployment.

More information

The information contained herein is proprietary to Decision Software, Inc. and is provided solely for the benefit of our customers and potential

The information contained herein is proprietary to Decision Software, Inc. and is provided solely for the benefit of our customers and potential The information contained herein is proprietary to Decision Software, Inc. and is provided solely for the benefit of our customers and potential customers. This information shall not be disclosed, in whole

More information

An Approach to Implement Map Reduce with NoSQL Databases

An Approach to Implement Map Reduce with NoSQL Databases www.ijecs.in International Journal Of Engineering And Computer Science ISSN: 2319-7242 Volume 4 Issue 8 Aug 2015, Page No. 13635-13639 An Approach to Implement Map Reduce with NoSQL Databases Ashutosh

More information

Cloud Based Application Architectures using Smart Computing

Cloud Based Application Architectures using Smart Computing Cloud Based Application Architectures using Smart Computing How to Use this Guide Joyent Smart Technology represents a sophisticated evolution in cloud computing infrastructure. Most cloud computing products

More information

TEST AUTOMATION FRAMEWORK

TEST AUTOMATION FRAMEWORK TEST AUTOMATION FRAMEWORK Twister Topics Quick introduction Use cases High Level Description Benefits Next steps Twister How to get Twister is an open source test automation framework. The code, user guide

More information

System Services. Engagent System Services 2.06

System Services. Engagent System Services 2.06 System Services Engagent System Services 2.06 Overview Engagent System Services constitutes the central module in Engagent Software s product strategy. It is the glue both on an application level and on

More information

HyperQ Storage Tiering White Paper

HyperQ Storage Tiering White Paper HyperQ Storage Tiering White Paper An Easy Way to Deal with Data Growth Parsec Labs, LLC. 7101 Northland Circle North, Suite 105 Brooklyn Park, MN 55428 USA 1-763-219-8811 www.parseclabs.com info@parseclabs.com

More information

How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW

How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW How to make BIG DATA work for you. Faster results with Microsoft SQL Server PDW Roger Breu PDW Solution Specialist Microsoft Western Europe Marcus Gullberg PDW Partner Account Manager Microsoft Sweden

More information

DATA INTEGRATION. in the world of microservices

DATA INTEGRATION. in the world of microservices DATA INTEGRATION in the world of microservices About me Valentine Gogichashvili Head of Data Engineering @ZalandoTech twitter: @valgog google+: +valgog email: valentine.gogichashvili@zalando.de One of

More information

Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15

Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15 Amazon Redshift & Amazon DynamoDB Michael Hanisch, Amazon Web Services Erez Hadas-Sonnenschein, clipkit GmbH Witali Stohler, clipkit GmbH 2014-05-15 2014 Amazon.com, Inc. and its affiliates. All rights

More information

Trafodion Operational SQL-on-Hadoop

Trafodion Operational SQL-on-Hadoop Trafodion Operational SQL-on-Hadoop SophiaConf 2015 Pierre Baudelle, HP EMEA TSC July 6 th, 2015 Hadoop workload profiles Operational Interactive Non-interactive Batch Real-time analytics Operational SQL

More information

CHAPTER 5: BUSINESS ANALYTICS

CHAPTER 5: BUSINESS ANALYTICS Chapter 5: Business Analytics CHAPTER 5: BUSINESS ANALYTICS Objectives The objectives are: Describe Business Analytics. Explain the terminology associated with Business Analytics. Describe the data warehouse

More information

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot

Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot www.etidaho.com (208) 327-0768 Data Mining, Predictive Analytics with Microsoft Analysis Services and Excel PowerPivot 3 Days About this Course This course is designed for the end users and analysts that

More information

THROUGHPUTER. Parallel Program Development and Execution Platform as a Service

THROUGHPUTER. Parallel Program Development and Execution Platform as a Service THROUGHPUTER Parallel Program Development and Execution Platform as a Service Many Cloud Computing Challenge - Technical Example: Average demands by applications sharing a 16- processor app1 12.5% Actual

More information

MS SQL Performance (Tuning) Best Practices:

MS SQL Performance (Tuning) Best Practices: MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware

More information

INTEROPERABILITY OF SAP BUSINESS OBJECTS 4.0 WITH GREENPLUM DATABASE - AN INTEGRATION GUIDE FOR WINDOWS USERS (64 BIT)

INTEROPERABILITY OF SAP BUSINESS OBJECTS 4.0 WITH GREENPLUM DATABASE - AN INTEGRATION GUIDE FOR WINDOWS USERS (64 BIT) White Paper INTEROPERABILITY OF SAP BUSINESS OBJECTS 4.0 WITH - AN INTEGRATION GUIDE FOR WINDOWS USERS (64 BIT) Abstract This paper presents interoperability of SAP Business Objects 4.0 with Greenplum.

More information

Database Replication with MySQL and PostgreSQL

Database Replication with MySQL and PostgreSQL Database Replication with MySQL and PostgreSQL Fabian Mauchle Software and Systems University of Applied Sciences Rapperswil, Switzerland www.hsr.ch/mse Abstract Databases are used very often in business

More information

WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS

WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS WINDOWS AZURE DATA MANAGEMENT AND BUSINESS ANALYTICS Managing and analyzing data in the cloud is just as important as it is anywhere else. To let you do this, Windows Azure provides a range of technologies

More information

Chapter 1 - Web Server Management and Cluster Topology

Chapter 1 - Web Server Management and Cluster Topology Objectives At the end of this chapter, participants will be able to understand: Web server management options provided by Network Deployment Clustered Application Servers Cluster creation and management

More information

The IBM Cognos Platform for Enterprise Business Intelligence

The IBM Cognos Platform for Enterprise Business Intelligence The IBM Cognos Platform for Enterprise Business Intelligence Highlights Optimize performance with in-memory processing and architecture enhancements Maximize the benefits of deploying business analytics

More information

DBMS / Business Intelligence, Business Intelligence / DBMS

DBMS / Business Intelligence, Business Intelligence / DBMS DBMS / Business Intelligence, Business Intelligence / DBMS Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the

More information

Parallel Replication for MySQL in 5 Minutes or Less

Parallel Replication for MySQL in 5 Minutes or Less Parallel Replication for MySQL in 5 Minutes or Less Featuring Tungsten Replicator Robert Hodges, CEO, Continuent About Continuent / Continuent is the leading provider of data replication and clustering

More information

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce

Analytics in the Cloud. Peter Sirota, GM Elastic MapReduce Analytics in the Cloud Peter Sirota, GM Elastic MapReduce Data-Driven Decision Making Data is the new raw material for any business on par with capital, people, and labor. What is Big Data? Terabytes of

More information

12. INDOOR INSTALLATION

12. INDOOR INSTALLATION 12. INDOOR INSTALLATION 1. Introduction Previous editions of this book have focused on wide-area outdoor wireless as a means of connecting communities with each other and to the Internet. However, with

More information

DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing WHAT IS CLOUD COMPUTING? 2

DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing WHAT IS CLOUD COMPUTING? 2 DISTRIBUTED SYSTEMS [COMP9243] Lecture 9a: Cloud Computing Slide 1 Slide 3 A style of computing in which dynamically scalable and often virtualized resources are provided as a service over the Internet.

More information

Scala Storage Scale-Out Clustered Storage White Paper

Scala Storage Scale-Out Clustered Storage White Paper White Paper Scala Storage Scale-Out Clustered Storage White Paper Chapter 1 Introduction... 3 Capacity - Explosive Growth of Unstructured Data... 3 Performance - Cluster Computing... 3 Chapter 2 Current

More information

Cloud Computing at Google. Architecture

Cloud Computing at Google. Architecture Cloud Computing at Google Google File System Web Systems and Algorithms Google Chris Brooks Department of Computer Science University of San Francisco Google has developed a layered system to handle webscale

More information

Cognos Performance Troubleshooting

Cognos Performance Troubleshooting Cognos Performance Troubleshooting Presenters James Salmon Marketing Manager James.Salmon@budgetingsolutions.co.uk Andy Ellis Senior BI Consultant Andy.Ellis@budgetingsolutions.co.uk Want to ask a question?

More information

SharePoint 2010 Performance and Capacity Planning Best Practices

SharePoint 2010 Performance and Capacity Planning Best Practices Information Technology Solutions SharePoint 2010 Performance and Capacity Planning Best Practices Eric Shupps SharePoint Server MVP About Information Me Technology Solutions SharePoint Server MVP President,

More information

Continuous Improvement with CA Service Desk Manager KPIs. Rich Magnuson

Continuous Improvement with CA Service Desk Manager KPIs. Rich Magnuson Continuous Improvement with CA Service Desk Manager KPIs Rich Magnuson Terms of This Presentation This presentation was based on current information and resource allocations as of October 2009 and is subject

More information

Oracle BI EE Implementation on Netezza. Prepared by SureShot Strategies, Inc.

Oracle BI EE Implementation on Netezza. Prepared by SureShot Strategies, Inc. Oracle BI EE Implementation on Netezza Prepared by SureShot Strategies, Inc. The goal of this paper is to give an insight to Netezza architecture and implementation experience to strategize Oracle BI EE

More information

EII - ETL - EAI What, Why, and How!

EII - ETL - EAI What, Why, and How! IBM Software Group EII - ETL - EAI What, Why, and How! Tom Wu 巫 介 唐, wuct@tw.ibm.com Information Integrator Advocate Software Group IBM Taiwan 2005 IBM Corporation Agenda Data Integration Challenges and

More information

A survey of big data architectures for handling massive data

A survey of big data architectures for handling massive data CSIT 6910 Independent Project A survey of big data architectures for handling massive data Jordy Domingos - jordydomingos@gmail.com Supervisor : Dr David Rossiter Content Table 1 - Introduction a - Context

More information

Load Testing Tools. Animesh Das

Load Testing Tools. Animesh Das Load Testing Tools Animesh Das Last Updated: May 20, 2014 text CONTENTS Contents 1 Introduction 1 2 Tools available for Load Testing of Databases 1 2.1 IO subsystem testing tools....................................

More information

DBMS / Business Intelligence, SQL Server

DBMS / Business Intelligence, SQL Server DBMS / Business Intelligence, SQL Server Orsys, with 30 years of experience, is providing high quality, independant State of the Art seminars and hands-on courses corresponding to the needs of IT professionals.

More information

Capacity Planning for Microsoft SharePoint Technologies

Capacity Planning for Microsoft SharePoint Technologies Capacity Planning for Microsoft SharePoint Technologies Capacity Planning The process of evaluating a technology against the needs of an organization, and making an educated decision about the configuration

More information

Report on the Train Ticketing System

Report on the Train Ticketing System Report on the Train Ticketing System Author: Zaobo He, Bing Jiang, Zhuojun Duan 1.Introduction... 2 1.1 Intentions... 2 1.2 Background... 2 2. Overview of the Tasks... 3 2.1 Modules of the system... 3

More information

Cisco IT Hadoop Journey

Cisco IT Hadoop Journey Cisco IT Hadoop Journey Srini Desikan, Program Manager IT 2015 MapR Technologies 1 Agenda Hadoop Platform Timeline Key Decisions / Lessons Learnt Data Lake Hadoop s place in IT Data Platforms Use Cases

More information