OFFICIAL FILING BEFORE THE PUBLIC SERVICE COMMISSION OF WISCONSIN DIRECT TESTIMONY OF JANNELL E. MARKS

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "OFFICIAL FILING BEFORE THE PUBLIC SERVICE COMMISSION OF WISCONSIN DIRECT TESTIMONY OF JANNELL E. MARKS"

Transcription

1 OFFICIAL FILING BEFORE THE PUBLIC SERVICE COMMISSION OF WISCONSIN Application of Northern States Power Company, a Wisconsin Corporation, for Authority to Adjust Electric and Natural Gas Rates Docket No. 0-UR- DIRECT TESTIMONY OF JANNELL E. MARKS Q. Please state your full name and business address. A. My name is Jannell E. Marks. My business address is 0 Larimer Street, Suite 00, Denver, Colorado 00. Q. By whom are you employed and in what capacity? A. I am the Director of Sales, Energy and Demand Forecasting for Xcel Energy Services Inc. ( XES ), the service company for Xcel Energy Inc. ( Xcel Energy ). Q. Would you state briefly the duties of your present position? A. I am responsible for the development of forecasted sales data and economic conditions for Xcel Energy s operating companies, and the presentation of this information to Xcel Energy s senior management, other Xcel Energy departments, and externally to various regulatory and reporting agencies. I am also responsible for developing and implementing forecasting, planning, and load analysis studies for regulatory proceedings. Q. What is your educational and professional background? A. I have a Bachelor of Science degree in Statistics from Colorado State University. I began my employment with Public Service Company of Colorado ( PSCo ) in in the Economics and Forecasting Department. In, I was promoted to Senior Research Analyst and assumed responsibility for developing the customer and sales forecasts for D.

2 Docket No. 0-UR- 0 PSCo and the economic, customer, sales, and demand forecasts for Cheyenne Light, Fuel and Power Company. In, when PSCo merged with Southwestern Public Service to form New Century Energies, Inc. ( NCE ), I assumed the position of Manager, Demand, Energy and Customer Forecasts. In this position, I was responsible for developing demand, energy, and customer forecasts for NCE s operating companies. I also directed the preparation of statistical reporting for regulatory agencies and others regarding historical and forecasted reports. In August 000, following the merger of NCE and Northern States Power Company, I was named Manager, Energy Forecasting with added responsibilities for Northern States Power Company, a Wisconsin corporation and wholly owned subsidiary of Xcel Energy ( NSPW or Company ) and Northern States Power Company, a Minnesota corporation and wholly owned subsidiary of Xcel Energy ( NSPM ). I assumed my current position in February 00. Q. Have you previously testified before state regulatory agencies? A. Yes. I have previously testified before the Colorado Public Utilities Commission, the Public Utility Commission of Texas, the Minnesota Public Utilities Commission, the North Dakota Public Service Commission, the South Dakota Public Utilities Commission, the New Mexico Public Regulation Commission, and the Public Service Commission of Wisconsin ( PSCW or Commission ). Q. What is the purpose of your testimony? A. In this proceeding I am testifying on behalf of NSPW. I am sponsoring the Company s forecasts of sales and customers for the 0 test year. I recommend that the Commission adopt the Company s forecasts of sales and customers for the purpose of determining the revenue requirement and final rates in this proceeding. I present the historical customer D.0

3 Docket No. 0-UR- 0 and sales growth rates, and the megawatt-hour ( MWh) electricity sales, decatherm ( Dth ) natural gas sales, and customer forecasts for NSPW s Wisconsin retail service territory. I also present details of the methods I used to develop the MWh sales, Dth sales, and customer forecasts. Q. Are you sponsoring any exhibits in connection with your direct testimony? A. Yes. I am sponsoring Exhibit. (JEM-) consisting of seven schedules. In the remainder of my testimony all references to schedules refer to schedules of Exhibit. (JEM-). Both public and confidential versions of Schedule have been filed in this proceeding. Q. Are there defined terms you plan to use in your testimony? A. Yes. The definitions of terms that are included in my testimony are provided in Schedule. I. CUSTOMER AND SALES FORECAST Q. What geographical area do the test year sales reflect? A. My testimony and exhibits reflect energy usage and customers in NSPW s Wisconsin retail service territory. Q. How are customer and sales forecasts used in this proceeding? A. The customer and sales forecasts are used to calculate the following: ) The monthly and annual electric and gas supply requirements; ) Test year revenue under present rates; and ) Test year revenue under proposed rates. D.

4 Docket No. 0-UR- Electric Customer and Sales Forecast Q. Please describe the customer categories included in NSPW s electric customer and sales forecasts. A. The following retail customer classes comprise NSPW s electric customer and sales forecasts: Residential, Small Commercial and Industrial, Large Commercial and Industrial, Public Street and Highway Lighting, Public Authority, and Interdepartmental. Q. What is NSPW s customer forecast for the 0 test year? A. Schedule summarizes the number of electric customers for each customer class. The forecast shows, total retail customers on average for the test year. The total number of electric retail customers in NSPW s Wisconsin service territory is expected to increase by,0 customers or 0. percent over 0 levels. Q. How does the test year electric customer growth compare with historical customer growth? A. Table provides the average historical annual customer growth rates by class for the time period, as well as the forecast of annual customer growth rates by class for 0 and 0. D.

5 Docket No. 0-UR- Table Average Annual Percent Change in Electric Customers Customer Class Average Residential.0% 0.% 0.% Total Commercial & Industrial.% 0.%.0% Street Lighting.%.%.0% Public Authority -0.% -0.% -0.% Total Retail.% 0.% 0.% Q. What is NSPW s forecast of retail electric sales for the 0 test year? A. Schedule also summarizes monthly test year MWh sales for each customer class. The forecast of total retail sales in the test year is,, MWh. The forecast for annual sales growth in NSPW s Wisconsin service territory for the 0 test year is one and onehalf percent (.%). Q. How do the 0 test year electric sales compare with historical weather-normalized electric sales? A. Table provides the historical average annual electric sales growth rates by class for the period and the forecast of annual electric sales growth rates for 0 and 0. The growth rates in the 00-0 time period were heavily impacted by the economic recession, and significantly dampened the average. D.

6 Docket No. 0-UR- Table Average Annual Percent Change in Electric Sales Customer Class Average 0 0 Residential 0.% 0.% 0.% Total Commercial & Industrial.% 0.%.% Street Lighting -0.%.% 0.% Public Authority -.% -.% -.% Interdepartmental.% -.% 0.0% Total Retail 0.% 0.%.% Q. Why does the Commercial and Industrial class show a. percent increase in the 0 test year, when the average historical growth has been. percent per year? A. The. percent increase is due to a large customer, currently operating at reduced levels, but expected to return to normal operating levels in 0. If this customer s load is removed from both the 0 and 0 sales forecast, the expected growth rate in the 0 test year would be. percent for the remainder of the Commercial and Industrial class. Q. Does the sales forecast reflect expectations for an improving economy, as compared to the slow growth over the past two years resulting from the recent recession? A. Based on the economic outlook for the Eau Claire metropolitan statistical area provided by Global Insight, Inc., the economy is expected to improve over the next several years, but the rate of improvement will vary depending on the economic indicator. For example, total Historical and forecasted economic and demographic variables for Wisconsin and the Eau Claire metropolitan statistical area were obtained from Global Insight, Inc., a respected economic forecasting firm frequently relied on by forecasting professionals. These variables include population, households, employment, personal income, and Gross Metropolitan Product. The Company considers Eau Claire to be representative of the entire service territory. D.

7 Docket No. 0-UR- 0 employment levels in the Eau Claire metropolitan area peaked in the second quarter of 00, at just below,000 employees. By the end of 00, employment levels had declined by nearly four percent and 00 saw an additional three percent loss in jobs. Employment levels have been increasing since the second quarter of 0. However, even with two percent growth expected for 0, and greater than two percent growth expected for both 0 and 0, employment is not expected to reach pre-recessionary levels until the fourth quarter of 0. Another economic indicator, real gross metropolitan product for the Eau Claire region, peaked in the second quarter of 00, and then declined on an annualized basis until the first quarter of 0. By the end of 0, real gross metropolitan product had returned to the pre-recessionary levels, and year-over-year growth is expected to continue at a moderate rate in 0 and 0, at less than three percent per year. Overall, the economic outlook calls for a slow but steady recovery over the next few years. The customer and sales forecasts in this proceeding reflect this outlook, as they are based on these economic indicators. Gas Customer and Sales Forecast Q. Please describe the customer categories included in NSPW s gas customer and sales forecasts. A. The following retail customer classes comprise NSPW s gas customer and sales forecasts: Residential, Firm Commercial (or Small Commercial or General Service), Large General Service (or Demand), Firm Interdepartmental Sales, Generation Sales, Small Volume Interruptible, Medium Volume Interruptible, Firm Transportation, Interruptible Transportation, and Generation Transportation (or Interdepartmental Transportation). D.

8 Docket No. 0-UR- Q. What is NSPW s natural gas customer forecast for the 0 test year? A. Schedule summarizes the number of gas customers for each customer class. The forecast shows, total gas customers on average for the test year. The total number of gas customers in NSPW s Wisconsin service territory is expected to increase by, customers or. percent over 0 levels. Q. How does the test year gas customer growth compare with historical customer growth? A. Table provides the historical average annual retail gas customer growth rates by class for and the forecast of annual retail gas customer growth rates by class for 0 and 0. Table Average Annual Percent Change in Retail Gas Customers Customer Class Average Residential.%.%.% Total Firm Commercial.%.0%.% Total Interruptible -.% -.% -.% Total Retail.%.%.% Q. What is NSPW s forecast of natural gas sales in the 0 test year? A. Schedule also summarizes the monthly test year Dth sales for each customer class. The forecast of total sales in the test year is,, Dth. Q. How do the 0 test year gas sales compare with historical weather-normalized gas sales? D.

9 Docket No. 0-UR- A. Table provides the average annual percent change in gas sales and transportation volumes for the past ten years and the forecast for 0 and 0. Table Average Annual Percent Change in Gas Sales Customer Class Average 0 0 Residential 0.% 0.%.0% Total Commercial 0.% 0.%.% Total Interruptible -.% 0.% -.% Total Retail excl Interdepartmental -.% 0.%.% Total Interdepartmental and Transportation.% -.% -0.% Total Volumes -0.% -.% 0.% Q. Why does the Commercial class show a. percent increase in the 0 test year, when the average historical growth has been 0. percent per year? A. The. percent increase is due to the addition of a new large customer during the fourth quarter of 0. If this customer s additional load is removed from both the 0 and 0 sales forecast, the expected growth rate in the 0 test year would be 0. percent for the remainder of the Commercial class. II. OVERVIEW OF SALES AND CUSTOMER FORECASTING METHODOLOGY Q. Please describe in general terms the methods used to forecast sales and customers. A. The electric and natural gas sales and customer-forecasts are prepared using a combination of econometric and statistical forecasting techniques and analyses, including regression models and trend analysis. D.

10 Docket No. 0-UR- 0 Electric Sales and Customer Forecasting Methodology Q. How were the electric retail sales forecasts developed for the Residential, Small Commercial and Industrial, Large Commercial and Industrial, and Public Street and Highway Lighting customer classes? A. Ordinary Least Squares ( OLS ) multiple regression models were used as the foundation of the electric sales forecasts for the Residential, Small Commercial and Industrial, Large Commercial and Industrial, and Public Street and Highway Lighting customer classes. OLS multiple regression techniques are very well-known, proven methods of forecasting and are commonly accepted by forecasters and regulators throughout the utility industry. This method provides reliable, accurate projections, accommodates the use of predictor variables, such as economic or demographic indicators and weather, and allows clear interpretation of the model. Monthly sales forecasts for these customer classes were developed based on OLS regression models designed to define a statistical relationship between the historical sales and the independent predictor variables, including historical economic and demographic indicators, historical weather (expressed in heating degree days and temperature-humidity index ( THI )), and historical number of customers. Once the historical relationship was defined, the forecast was simulated using normal weather (expressed in terms of 0-yearaveraged heating-degree days and THI) and projected levels of the economic and demographic indicators. Q. What process was used to forecast electric sales in the Public Authority and Interdepartmental customer classes? D.

11 Docket No. 0-UR- 0 A. Sales in these two retail classes represent a very small proportion of total NSPW retail sales: 0. percent of total retail electric sales for the Public Authority class and only 0.0 percent for the Interdepartmental class. Usage in these classes is impacted by factors that are difficult to capture in an OLS multiple regression model, so other types of statistical analyses were used to develop the sales forecasts. For the Public Authority class, the monthly sales forecast was developed based on an extrapolation of historical growth trends. The forecast of monthly Interdepartmental sales was calculated as the average of the actual sales for each month over the past ten years. Q. What process was used for forecasting the number of electric customers? A. The number of electric customers by customer class for the classes Residential, Small Commercial and Industrial, and Public Street and Highway Lighting was forecasted using demographic data in OLS regression models. The customer forecast for the Large Commercial and Industrial customer class was developed by calculating the average number of customers in this class in 0 and holding that number constant throughout the forecast period. The forecast of the number of customers in the Public Authority class was developed by analyzing historical growth trends. Gas Sales and Customer Forecasting Methodology Q. How were the gas sales forecasts developed for the Residential, Small Commercial, and Small Interruptible customer classes? A. Monthly sales forecasts for these customer classes were developed using OLS regression models based on historical weather (expressed in heating degree days), and historical number of customers. In addition, the Residential and Small Commercial model included a predictor variable to capture the declining trend in use per customer, and the Residential D.

12 Docket No. 0-UR- 0 model included a gas price variable. Once the historical relationship was defined, the forecast was simulated using normal weather (expressed in terms of 0-year-averaged heating-degree days) and the projected levels of the other predictor variables. Q. What process was used to forecast gas sales in the Demand, Medium Volume Interruptible, Interdepartmental and Transportation customer classes? A. Usage in these classes is impacted by factors that are difficult to capture in an OLS multiple regression model, so other types of statistical analyses were used to develop the sales forecasts. For the Demand and Interdepartmental sales classes and the Firm and Interruptible Transportation classes, the monthly sales forecasts were developed based on average monthly sales over the past two years. The monthly Medium Volume Interruptible class forecast was based on average monthly sales over the past three years. Q. How was the forecast of gas for electric generation volumes developed? A. The gas for Generation forecast is an output from the Company s electric production cost model developed by Mr. Horneck. Q. What process was used for forecasting the number of gas customers? A. The forecast of the number of gas customers for the Residential and Small Commercial classes were developed using demographic data in OLS regression models. The customer forecast for the Small Volume Interruptible customer class was developed by analyzing historical customer count trends. The forecasts of gas customers for the Demand, Medium Volume Interruptible, and Transportation were developed by holding the number constant at the December 0 level. D.0

13 Docket No. 0-UR- 0 III. STATISTICALLY MODELED FORECASTS Q. Please describe the regression models and associated analysis used in NSPW s statistical projections of sales and customers. A. The regression models and associated analysis used in NSPW s statistical projections of electric sales are provided in Schedule, and the regression models and associated analysis used in NSPW s statistical projections of electric customers are provided in Schedule. The regression models and associated analysis used in NSPW s statistical projections of gas sales are provided in Schedule, and the regression models and associated analysis used in NSPW s statistical projections of gas customers are provided in Schedule. These schedules include, by customer class, the models with their summary statistics and output and descriptions for each variable included in the model. Q. What techniques did NSPW employ to evaluate the validity of its quantitative forecasting models and sales projections? A. There are a number of quantitative and qualitative validity tests that are applicable to OLS multiple regression analyses. The coefficient of determination ( R-squared ) test statistic is a measure of the quality of the model s fit to the historical data. It represents the proportion of the variation of the historical sales around their mean value that can be attributed to the functional relationship between the historical sales and the explanatory variables included in the model. If the R-squared statistic is high, the model is explaining a high degree of the historical-sales variability. The regression models used to develop the sales and customer forecasts for the 0 test year demonstrate very high R-squared statistics ranging between 0. and 0.. D.

14 Docket No. 0-UR- 0 The t-statistics of the explanatory variables indicate the degree of correlation between that variable s data series and the sales data series being modeled. The t-statistic is a measure of the statistical significance of each variable s individual contribution to the prediction model. Generally, the absolute value of each t-statistic should be greater than.0 to be considered statistically significant at the percent confidence level, and greater than. to be considered statistically significant at the 0 percent confidence level. This criteria was applied in the development of the regression models used to develop the sales forecast. The final regression models used to develop the sales and customer forecasts tested satisfactorily under this standard, with the majority of the explanatory variables being significant at the percent confidence level. Each model was inspected for the presence of first-order autocorrelation, as measured by the Durbin-Watson ( DW ) test statistic. Autocorrelation refers to the correlation of the model s error terms for different time periods. For example, an overestimate in one period is likely to lead to an overestimate in the succeeding period, and vice versa, under the presence of first-order autocorrelation. Thus, when forecasting with an OLS regression model, absence of autocorrelation between the residual errors is very important. The DW test statistic ranges between 0 and and provides a measure to test for autocorrelation. In the absence of first-order autocorrelation, the DW test statistic equals.0. The final regression models used to develop the sales forecast tested satisfactorily for the absence of first-order autocorrelation with the DW test statistics ranging between. and., which is within the percent significance level. Graphical inspection of each model s error terms (i.e. actual less predicted) was used to verify that the models were not misspecified, and that statistical assumptions pertaining D.

15 Docket No. 0-UR- 0 to constant variance among the residual terms and their random distribution with respect to the predictor variables were not violated. Analysis of each model s residuals indicated that the residuals were homoscedastic (constant variance) and randomly distributed, indicating that the OLS linear regression modeling technique was an appropriate selection for each customer class sales that were statistically modeled. The statistically modeled sales and customer count forecasts for each customer class have been reviewed for reasonableness as compared to the respective monthly sales and customer count history for that class. Graphical inspection reveals that the patterns of the forecast fit well with the respective historical patterns for each customer class. The annual total forecast sales and customer counts have been compared to their respective historical trends for consistency. Q. How accurate have the Company s forecasts of Wisconsin retail sales and customer counts been historically? A. The historical forecasts of electric sales have been within +/-. percent of actual levels over the last five years after adjusting for weather, with the average variance being less than -0. percent. The historical forecasts of number of electric customers have been within +/-. percent of actual levels, with the average variance being less than -0. percent. The historical forecasts of gas sales have been within +/-. percent of actual levels over the last five years after adjusting for weather, with the average variance being less than -0. percent. The historical forecasts of number of gas customers have been within +/-. percent of actual levels, with the average variance being less than -. percent. Given these statistics the Company has an extremely high level of confidence in the 0 test year forecasts. D.

16 Docket No. 0-UR- 0 IV. TEST YEAR SALES FORECAST ADJUSTMENTS Q. How did NSPW adjust its test year sales forecast for the influence of weather on sales? A. The classes that exhibit weather sensitivity are electric Residential, electric Small Commercial and Industrial, gas Residential, gas Small Commercial, and gas Small Interruptible. The sales projections for these classes were developed through the application of quantitative statistical models. For each of these classes, sales were not weather-adjusted prior to developing the respective statistical models. The respective linear-regression models used to forecast sales included monthly weather, as measured in terms of heating-degree days and/or temperature-humidity index ( THI ), as explanatory variables. In this way, the historical-weather impact on historical consumption for each class was modeled through the respective coefficients for the heating-degree day and THI variables included in each class model. Test year sales were then projected by simulating the established statistical relationships over the forecast horizon and assuming normal weather. For all other classes, forecast volumes have not been weather normalized. These customers use of electricity is influenced by factors other than weather, and, as a result, the weather impact due to deviation from normal weather is indistinguishable from other variables. Q. How was normal weather determined? A. Normal daily weather was calculated based on the average of historical heating-degree days and THI for the 0-year time period to 0. These normal heating-degree days D.

17 Docket No. 0-UR- 0 and THI were related to the forecasted billing month in the same manner as were the actual heating-degree days and THI, using meter reading schedules. Q. What other adjustments were made to the test year sales forecast? A. Adjustments were made to the test year sales forecast to reflect unbilled sales (i.e. sales consumed in one month that are not billed to the customer until the succeeding month), and to convert projected billing-month sales to calendar-month sales. The purpose of these adjustments is to align the test year sales and revenues with the relevant projected test year expenses. V. CONCLUSION Q. Please summarize your testimony? A. I have presented the Company s forecasts of electric and gas sales and customers for the 0 test year. I have described the historical customer and sales trends and presented details of the methods I used to develop the sales and customer forecast and the results. Q. In your opinion, does the NSPW sales and customer forecast provide a reasonable basis for establishing rates in the case? A. Yes. The forecast data is a reasonable estimate of test year sales volumes and customer counts. The forecasts are derived from robust models that are demonstrated to be highly accurate historically. I recommend that the Commission adopt NSPW s forecasts of sales and customers, as reflected in Schedules and for the purpose of determining the revenue requirement and final rates in this proceeding. Q. Does this conclude your testimony? A. Yes, it does. D.

I. FORECAST METHODOLOGY

I. FORECAST METHODOLOGY I. FORECAST METHODOLOGY This Appendix provides a discussion of the methodology used in Resource Planning to forecast customer need, first at a summary level, and in Section II, we provide additional technical

More information

NEW YORK STATE ELECTRIC & GAS CORPORATION DIRECT TESTIMONY OF THE SALES AND REVENUE PANEL

NEW YORK STATE ELECTRIC & GAS CORPORATION DIRECT TESTIMONY OF THE SALES AND REVENUE PANEL Case No. 0-E- NEW YORK STATE ELECTRIC & GAS CORPORATION DIRECT TESTIMONY OF THE SALES AND REVENUE PANEL September 0, 00 Patricia J. Clune Michael J. Purtell 0 Q. Please state the names of the members on

More information

ARKANSAS PUBLIC SERVICE COMMISSYF cc7 DOCKET NO. 00-1 90-U IN THE MATTER OF ON THE DEVELOPMENT OF COMPETITION IF ANY, ON RETAIL CUSTOMERS

ARKANSAS PUBLIC SERVICE COMMISSYF cc7 DOCKET NO. 00-1 90-U IN THE MATTER OF ON THE DEVELOPMENT OF COMPETITION IF ANY, ON RETAIL CUSTOMERS ARKANSAS PUBLIC SERVICE COMMISSYF cc7 L I :b; -Ir '3, :I: 36 DOCKET NO. 00-1 90-U 1.. T -3. - " ~..-.ij IN THE MATTER OF A PROGRESS REPORT TO THE GENERAL ASSEMBLY ON THE DEVELOPMENT OF COMPETITION IN ELECTRIC

More information

Methodology For Illinois Electric Customers and Sales Forecasts: 2016-2025

Methodology For Illinois Electric Customers and Sales Forecasts: 2016-2025 Methodology For Illinois Electric Customers and Sales Forecasts: 2016-2025 In December 2014, an electric rate case was finalized in MEC s Illinois service territory. As a result of the implementation of

More information

Measurement and Verification Report of OPower Energy Efficiency Pilot Program

Measurement and Verification Report of OPower Energy Efficiency Pilot Program Connexus Energy Ramsey, MN Measurement and Verification Report of OPower Energy Efficiency Pilot Program July 28, 2010 Contact: Chris Ivanov 1532 W. Broadway Madison, WI 53713 Direct: 608-268-3516 Fax:

More information

REBUTTAL TESTIMONY OF BRYAN IRRGANG ON SALES AND REVENUE FORECASTING

REBUTTAL TESTIMONY OF BRYAN IRRGANG ON SALES AND REVENUE FORECASTING BEFORE THE LONG ISLAND POWER AUTHORITY ------------------------------------------------------------ IN THE MATTER of a Three-Year Rate Plan Case -00 ------------------------------------------------------------

More information

Integrated Resource Plan

Integrated Resource Plan Integrated Resource Plan March 19, 2004 PREPARED FOR KAUA I ISLAND UTILITY COOPERATIVE LCG Consulting 4962 El Camino Real, Suite 112 Los Altos, CA 94022 650-962-9670 1 IRP 1 ELECTRIC LOAD FORECASTING 1.1

More information

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * *

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF COLORADO FOR APPROVAL OF ITS 01 RENEWABLE ENERGY STANDARD COMPLIANCE

More information

Not Your Dad s Magic Eight Ball

Not Your Dad s Magic Eight Ball Not Your Dad s Magic Eight Ball Prepared for the NCSL Fiscal Analysts Seminar, October 21, 2014 Jim Landers, Office of Fiscal and Management Analysis, Indiana Legislative Services Agency Actual Forecast

More information

CHAPTER 2 LOAD FORECAST

CHAPTER 2 LOAD FORECAST CHAPTER 2 LOAD 2.1 METHODS The Company uses two econometric models with an end-use orientation to forecast energy sales. The first is a customer class level model ( sales model ) and the second is an hourly

More information

RR1-455 of 566 00584

RR1-455 of 566 00584 DOCKET NO. 00 APPLICATION OF SOUTHWESTERN PUBLIC SERVICE COMPANY FOR AUTHORITY TO CHANGE RATES AND TO RECONCILE FUEL AND PURCHASED POWER COSTS FOR THE PERIOD JULY 1, 01 THROUGH JUNE 0, 01 PUBLIC UTILITY

More information

Econometric Modelling for Revenue Projections

Econometric Modelling for Revenue Projections Econometric Modelling for Revenue Projections Annex E 1. An econometric modelling exercise has been undertaken to calibrate the quantitative relationship between the five major items of government revenue

More information

A Primer on Forecasting Business Performance

A Primer on Forecasting Business Performance A Primer on Forecasting Business Performance There are two common approaches to forecasting: qualitative and quantitative. Qualitative forecasting methods are important when historical data is not available.

More information

Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs

Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs PRODUCTION PLANNING AND CONTROL CHAPTER 2: FORECASTING Forecasting the first step in planning. Estimating the future demand for products and services and the necessary resources to produce these outputs

More information

BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION

BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION BEFORE THE NEW MEXICO PUBLIC REGULATION COMMISSION IN THE MATTER OF SOUTHWESTERN PUBLIC SERVICE COMPANY S APPLICATION FOR APPROVAL OF ITS 00 ENERGY EFFICIENCY AND LOAD MANAGEMENT PLAN AND ASSOCIATED PROGRAMS

More information

Safe Harbor This material includes forward-looking statements that are subject to certain risks, uncertainties and assumptions. Such forward-looking s

Safe Harbor This material includes forward-looking statements that are subject to certain risks, uncertainties and assumptions. Such forward-looking s Fixed Income Investor Meetings New York City & Boston February 1-2, 2011 Safe Harbor This material includes forward-looking statements that are subject to certain risks, uncertainties and assumptions.

More information

Design of a Weather- Normalization Forecasting Model

Design of a Weather- Normalization Forecasting Model Design of a Weather- Normalization Forecasting Model Project Proposal Abram Gross Yafeng Peng Jedidiah Shirey 2/11/2014 Table of Contents 1.0 CONTEXT... 3 2.0 PROBLEM STATEMENT... 4 3.0 SCOPE... 4 4.0

More information

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * *

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * IN THE MATTER OF THE APPLICATION OF PUBLIC SERVICE COMPANY OF COLORADO FOR APPROVAL OF ITS 0 ELECTRIC RESOURCE PLAN ) ) ) ) DOCKET

More information

A. My name is Byron L. Harris. My present business address is 723 Kanawha Boulevard, East, 700 Union Building, Charleston, West Virginia 25301.

A. My name is Byron L. Harris. My present business address is 723 Kanawha Boulevard, East, 700 Union Building, Charleston, West Virginia 25301. Q. PLEASE STATE YOUR NAME AND BUSINESS ADDRESS. A. My name is Byron L. Harris. My present business address is Kanawha Boulevard, East, 00 Union Building, Charleston, West Virginia 01. Q. PLEASE STATE YOUR

More information

OFFICIAL FILING BEFORE THE PUBLIC SERVICE COMMISSION OF WISCONSIN DIRECT TESTIMONY OF KARL J. HOESLY

OFFICIAL FILING BEFORE THE PUBLIC SERVICE COMMISSION OF WISCONSIN DIRECT TESTIMONY OF KARL J. HOESLY OFFICIAL FILING BEFORE THE PUBLIC SERVICE COMMISSION OF WISCONSIN Application of Northern States Power Company, a Wisconsin Corporation, for Authority to Adjust Electric and Natural Gas Rates DIRECT TESTIMONY

More information

Energy consumption forecasts

Energy consumption forecasts Pty Ltd ABN 85 082 464 622 Level 2 / 21 Kirksway Place Hobart TAS 7000 www.auroraenergy.com.au Enquiries regarding this document should be addressed to: Network Regulatory Manager Pty Ltd GPO Box 191 Hobart

More information

DIRECT PRE-FILED TESTIMONY OF THE SALES AND REVENUE FORECASTING PANEL

DIRECT PRE-FILED TESTIMONY OF THE SALES AND REVENUE FORECASTING PANEL BEFORE THE LONG ISLAND POWER AUTHORITY ------------------------------------------------------------ IN THE MATTER of a Three-Year Rate Plan ------------------------------------------------------------

More information

16 : Demand Forecasting

16 : Demand Forecasting 16 : Demand Forecasting 1 Session Outline Demand Forecasting Subjective methods can be used only when past data is not available. When past data is available, it is advisable that firms should use statistical

More information

State Electricity Price Forecasting Model Summary

State Electricity Price Forecasting Model Summary State Electricity Price Forecasting Model Summary Contents SUFG State Electricity Price Forecasting Models... 2 United States Census Regional Division Map... 3 Forecasting Results Comparison (Annual Compound

More information

2014 Forecasting Benchmark Survey. Itron, Inc. 12348 High Bluff Drive, Suite 210 San Diego, CA 92130-2650 858-724-2620

2014 Forecasting Benchmark Survey. Itron, Inc. 12348 High Bluff Drive, Suite 210 San Diego, CA 92130-2650 858-724-2620 Itron, Inc. 12348 High Bluff Drive, Suite 210 San Diego, CA 92130-2650 858-724-2620 September 16, 2014 For the third year, Itron surveyed energy forecasters across North America with the goal of obtaining

More information

2013 Energy Savings Results for the Commercial Real Estate Cohorts

2013 Energy Savings Results for the Commercial Real Estate Cohorts April 28, 2014 REPORT #E14-281 2013 Energy Results for the Commercial Real Estate Cohorts Prepared by: Cadmus 720 SW Washington St. Portland, OR 97205 Northwest Energy Efficiency Alliance PHONE 503-688-5400

More information

Winter Impacts of Energy Efficiency In New England

Winter Impacts of Energy Efficiency In New England Winter Impacts of Energy Efficiency In New England April 2015 Investments in electric efficiency since 2000 reduced electric demand in New England by over 2 gigawatts. 1 These savings provide significant

More information

2013 Economic and Revenue Forecast Update for the City of Omaha, Nebraska

2013 Economic and Revenue Forecast Update for the City of Omaha, Nebraska 2013 Economic and Revenue Forecast Update for the City of Omaha, Nebraska Kenneth A. Kriz Regents Distinguished Professor of Public Finance Director, Kansas Public Finance Center July 20, 2013 Background

More information

LEE BUSI N ESS SCHOOL UNITED STATES QUARTERLY ECONOMIC FORECAST. U.S. Economic Growth to Accelerate. Chart 1. Growth Rate of U.S.

LEE BUSI N ESS SCHOOL UNITED STATES QUARTERLY ECONOMIC FORECAST. U.S. Economic Growth to Accelerate. Chart 1. Growth Rate of U.S. CENTER FOR BUSINESS & ECONOMIC RESEARCH LEE BUSI N ESS SCHOOL UNITED STATES QUARTERLY ECONOMIC FORECAST O U.S. Economic Growth to Accelerate ver the past few years, U.S. economic activity has remained

More information

Regional Employment and Unemployment Comparison

Regional Employment and Unemployment Comparison Regional Employment and Unemployment Comparison Spring 2008 Eric Jamelske, Ph.D., Associate Professor Department of Economics, University of Wisconsin Eau Claire Assisted By Casey Kettler and Matthew Pehler

More information

ELECTRICITY DEMAND DARWIN ( 1990-1994 )

ELECTRICITY DEMAND DARWIN ( 1990-1994 ) ELECTRICITY DEMAND IN DARWIN ( 1990-1994 ) A dissertation submitted to the Graduate School of Business Northern Territory University by THANHTANG In partial fulfilment of the requirements for the Graduate

More information

MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal

MGT 267 PROJECT. Forecasting the United States Retail Sales of the Pharmacies and Drug Stores. Done by: Shunwei Wang & Mohammad Zainal MGT 267 PROJECT Forecasting the United States Retail Sales of the Pharmacies and Drug Stores Done by: Shunwei Wang & Mohammad Zainal Dec. 2002 The retail sale (Million) ABSTRACT The present study aims

More information

ENERGY STAR for Data Centers

ENERGY STAR for Data Centers ENERGY STAR for Data Centers Alexandra Sullivan US EPA, ENERGY STAR February 4, 2010 Agenda ENERGY STAR Buildings Overview Energy Performance Ratings Portfolio Manager Data Center Initiative Objective

More information

Demand Forecasts. Contents. 1. Overview APPENDIX H

Demand Forecasts. Contents. 1. Overview APPENDIX H APPENDIX H Demand Forecasts Contents 1. Overview... H-1 2. Methodology... H-2 3. Key Assumptions... H-12 4. Electric and Gas Demand Forecasts... H-16 Demand forecasts are an estimate of how much energy

More information

Before the Minnesota Public Utilities Commission State of Minnesota. Docket No. E002/GR-13-868 Exhibit (GET-2)

Before the Minnesota Public Utilities Commission State of Minnesota. Docket No. E002/GR-13-868 Exhibit (GET-2) Rebuttal Testimony and Schedules George E. Tyson Before the Minnesota Public Utilities Commission State of Minnesota In the Matter of the Application of Northern States Power Company for Authority to Increase

More information

ENERGY STAR Data Center Infrastructure Rating Development Update. Web Conference November 12, 2009

ENERGY STAR Data Center Infrastructure Rating Development Update. Web Conference November 12, 2009 ENERGY STAR Data Center Infrastructure Rating Development Update Web Conference November 12, 2009 Web Conference Tips Background Noise Please mute your phone until you are ready to speak. Hold & Music

More information

In the Matter of. Consolidated Edison Company of New York, Inc. Cases 16-E-0060 and 16-G-0061. May 2016

In the Matter of. Consolidated Edison Company of New York, Inc. Cases 16-E-0060 and 16-G-0061. May 2016 BEFORE THE STATE OF NEW YORK PUBLIC SERVICE COMMISSION In the Matter of Consolidated Edison Company of New York, Inc. Cases -E-000 and -G-00 May 0 Prepared Testimony of: Staff Management Audit Panel Henry

More information

Multiple Linear Regression in Data Mining

Multiple Linear Regression in Data Mining Multiple Linear Regression in Data Mining Contents 2.1. A Review of Multiple Linear Regression 2.2. Illustration of the Regression Process 2.3. Subset Selection in Linear Regression 1 2 Chap. 2 Multiple

More information

BEFORE THE PENNSYLVANIA PUBLIC UTILITY COMMISSION PENNSYLVANIA ELECTRIC COMPANY DOCKET NO. R-2016-2537352. Direct Testimony of Jeffrey L.

BEFORE THE PENNSYLVANIA PUBLIC UTILITY COMMISSION PENNSYLVANIA ELECTRIC COMPANY DOCKET NO. R-2016-2537352. Direct Testimony of Jeffrey L. Penelec Statement No. 5 BEFORE THE PENNSYLVANIA PUBLIC UTILITY COMMISSION PENNSYLVANIA ELECTRIC COMPANY DOCKET NO. R-2016-25752 Direct Testimony of Jeffrey L. Adams List of Topics Addressed Cash Working

More information

Simple Methods and Procedures Used in Forecasting

Simple Methods and Procedures Used in Forecasting Simple Methods and Procedures Used in Forecasting The project prepared by : Sven Gingelmaier Michael Richter Under direction of the Maria Jadamus-Hacura What Is Forecasting? Prediction of future events

More information

Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA - Part I

Section A. Index. Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1. Page 1 of 11. EduPristine CMA - Part I Index Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting techniques... 1 EduPristine CMA - Part I Page 1 of 11 Section A. Planning, Budgeting and Forecasting Section A.2 Forecasting

More information

LEE BUSI N ESS SCHOOL SOUTHERN NEVADA QUARTERLY ECONOMIC FORECAST. Southern Nevada Economy to Continue Growth in 2014 and 2015

LEE BUSI N ESS SCHOOL SOUTHERN NEVADA QUARTERLY ECONOMIC FORECAST. Southern Nevada Economy to Continue Growth in 2014 and 2015 CENTER FOR BUSINESS & ECONOMIC RESEARCH LEE BUSI N ESS SCHOOL SOUTHERN NEVADA QUARTERLY ECONOMIC FORECAST Quarter 2 2014 Southern Nevada Economy to Continue Growth in 2014 and 2015 S ince the end of the

More information

Short-Term Energy Outlook Supplement: Summer 2013 Outlook for Residential Electric Bills

Short-Term Energy Outlook Supplement: Summer 2013 Outlook for Residential Electric Bills Short-Term Energy Outlook Supplement: Summer 2013 Outlook for Residential Electric Bills June 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report

More information

DOCKET NO. 42004. DIRECT TESTIMONY of DANE A. WATSON. on behalf of SOUTHWESTERN PUBLIC SERVICE COMPANY. (Revenue Requirement) Table of Contents

DOCKET NO. 42004. DIRECT TESTIMONY of DANE A. WATSON. on behalf of SOUTHWESTERN PUBLIC SERVICE COMPANY. (Revenue Requirement) Table of Contents DOCKET NO. 42004 APPLICATION OF SOUTHWESTERN PUBLIC SERVICE COMPANY FOR AUTHORITY TO CHANGE RATES AND TO RECONCILE FUEL AND PURCHASED POWER COSTS FOR THE PERIOD JANUARY 1, 2010 THROUGH JUNE 30, 2012 PUBLIC

More information

3. Load Analysis and Forecasting 1

3. Load Analysis and Forecasting 1 3. Load Analysis and Forecasting Ameren Missouri 3. Load Analysis and Forecasting 1 Highlights Ameren Missouri expects energy consumption to grow 23% and peak demand to grow 18% over the next 20 years.

More information

University of Denver, MBA, Business Administration, 1973 Regis University, BS, Business Administration, 1972

University of Denver, MBA, Business Administration, 1973 Regis University, BS, Business Administration, 1972 Resume of Michael J. McFadden MICHAEL J. MCFADDEN AREAS OF QUALIFICATION Rates, regulatory affairs, strategic planning, electric and gas utility operations, corporate finance, financial analysis, asset

More information

VIANELLO FORENSIC CONSULTING, L.L.C.

VIANELLO FORENSIC CONSULTING, L.L.C. VIANELLO FORENSIC CONSULTING, L.L.C. 6811 Shawnee Mission Parkway, Suite 310 Overland Park, KS 66202 (913) 432-1331 THE MARKETING PERIOD OF PRIVATE SALES TRANSACTIONS By Marc Vianello, CPA, ABV, CFF 1

More information

Do Electricity Prices Reflect Economic Fundamentals?: Evidence from the California ISO

Do Electricity Prices Reflect Economic Fundamentals?: Evidence from the California ISO Do Electricity Prices Reflect Economic Fundamentals?: Evidence from the California ISO Kevin F. Forbes and Ernest M. Zampelli Department of Business and Economics The Center for the Study of Energy and

More information

Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate?

Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Is the Forward Exchange Rate a Useful Indicator of the Future Exchange Rate? Emily Polito, Trinity College In the past two decades, there have been many empirical studies both in support of and opposing

More information

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics.

Business Statistics. Successful completion of Introductory and/or Intermediate Algebra courses is recommended before taking Business Statistics. Business Course Text Bowerman, Bruce L., Richard T. O'Connell, J. B. Orris, and Dawn C. Porter. Essentials of Business, 2nd edition, McGraw-Hill/Irwin, 2008, ISBN: 978-0-07-331988-9. Required Computing

More information

DO NOT TURN OVER UNTIL TOLD TO BEGIN

DO NOT TURN OVER UNTIL TOLD TO BEGIN THIS PAPER IS NOT TO BE REMOVED FROM THE EXAMINATION HALLS University of London BSc Examination 2012 BA1040 (BBA0040) +Enc Business Administration Business Statistics Date tba: Time tba DO NOT TURN OVER

More information

Transmission Leadership. Teresa Mogensen Vice President, Transmission

Transmission Leadership. Teresa Mogensen Vice President, Transmission Transmission Leadership Teresa Mogensen Vice President, Transmission 1 Safe Harbor This material contains forward-looking statements that are subject to certain risks, uncertainties ies and assumptions.

More information

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS

MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MULTIPLE REGRESSION AND ISSUES IN REGRESSION ANALYSIS MSR = Mean Regression Sum of Squares MSE = Mean Squared Error RSS = Regression Sum of Squares SSE = Sum of Squared Errors/Residuals α = Level of Significance

More information

Electricity Prices Panel

Electricity Prices Panel Electricity Prices Panel Presentation to CCRE Roundtable Hockley Valley March 27, 214 Amir Shalaby, Vice President, Power System Planning March 27, 214 Today s Journey to Residential Bills Part I: Electricity

More information

STATE REVENUE FORECASTING PROJECT 2010 TECHNICAL MEMORANDUM December 2, 2010 By Paul Shinn, Consultant. Introduction

STATE REVENUE FORECASTING PROJECT 2010 TECHNICAL MEMORANDUM December 2, 2010 By Paul Shinn, Consultant. Introduction STATE REVENUE FORECASTING PROJECT 2010 TECHNICAL MEMORANDUM December 2, 2010 By Paul Shinn, Consultant Introduction This memorandum provides technical details and historical background for Oklahoma Policy

More information

STATE OF INDIANA INDIANA UTILITY REGULATORY COMMISSION

STATE OF INDIANA INDIANA UTILITY REGULATORY COMMISSION STATE OF INDIANA INDIANA UTILITY REGULATORY COMMISSION PETITION OF NORTHERN INDIANA PUBLIC SERVICE COMPANY FOR APPROVAL OF ELECTRIC ENERGY EFFICIENCY PROGRAMS TO BE EFFECTIVE FOR THE PERIOD JANUARY, 06

More information

SDG&E DIRECT TESTIMONY OF KENNETH E. SCHIERMEYER (ELECTRIC CUSTOMERS AND SALES) November 2014

SDG&E DIRECT TESTIMONY OF KENNETH E. SCHIERMEYER (ELECTRIC CUSTOMERS AND SALES) November 2014 Company: San Diego Gas & Electric Company (U 902 M) Proceeding: 2016 General Rate Case Application: A.14-11- Exhibit: SDG&E-31 SDG&E DIRECT TESTIMONY OF KENNETH E. SCHIERMEYER (ELECTRIC CUSTOMERS AND SALES)

More information

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * ) ) ) ) ) ) ) ) DIRECT TESTIMONY AND EXHIBITS OF AMY L.

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * ) ) ) ) ) ) ) ) DIRECT TESTIMONY AND EXHIBITS OF AMY L. BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * RE: THE TARIFF SHEETS FILED BY PUBLIC SERVICE COMPANY OF COLORADO WITH ADVICE NO. 0 GAS RE: THE TARIFF SHEETS FILED BY PUBLIC SERVICE

More information

I. Basic concepts: Buoyancy and Elasticity II. Estimating Tax Elasticity III. From Mechanical Projection to Forecast

I. Basic concepts: Buoyancy and Elasticity II. Estimating Tax Elasticity III. From Mechanical Projection to Forecast Elements of Revenue Forecasting II: the Elasticity Approach and Projections of Revenue Components Fiscal Analysis and Forecasting Workshop Bangkok, Thailand June 16 27, 2014 Joshua Greene Consultant IMF-TAOLAM

More information

Integrating Financial Statement Modeling and Sales Forecasting

Integrating Financial Statement Modeling and Sales Forecasting Integrating Financial Statement Modeling and Sales Forecasting John T. Cuddington, Colorado School of Mines Irina Khindanova, University of Denver ABSTRACT This paper shows how to integrate financial statement

More information

Introduction to Regression and Data Analysis

Introduction to Regression and Data Analysis Statlab Workshop Introduction to Regression and Data Analysis with Dan Campbell and Sherlock Campbell October 28, 2008 I. The basics A. Types of variables Your variables may take several forms, and it

More information

Example G Cost of construction of nuclear power plants

Example G Cost of construction of nuclear power plants 1 Example G Cost of construction of nuclear power plants Description of data Table G.1 gives data, reproduced by permission of the Rand Corporation, from a report (Mooz, 1978) on 32 light water reactor

More information

Integrating Energy Efficiency into Utility Load Forecasts. Introduction: A LEED Gold Building s Effect on Utility Load

Integrating Energy Efficiency into Utility Load Forecasts. Introduction: A LEED Gold Building s Effect on Utility Load Integrating Energy Efficiency into Utility Load Forecasts Shawn Enterline, Vermont Energy Investment Corporation Eric Fox, Itron Inc. ABSTRACT Efficiency Vermont s efficiency programs are being integrated

More information

Analytical Test Method Validation Report Template

Analytical Test Method Validation Report Template Analytical Test Method Validation Report Template 1. Purpose The purpose of this Validation Summary Report is to summarize the finding of the validation of test method Determination of, following Validation

More information

Simple linear regression

Simple linear regression Simple linear regression Introduction Simple linear regression is a statistical method for obtaining a formula to predict values of one variable from another where there is a causal relationship between

More information

On behalf of Ozarks Electric Cooperative Corporation, I respectfully submit the following documents for electronic filing in this matter:

On behalf of Ozarks Electric Cooperative Corporation, I respectfully submit the following documents for electronic filing in this matter: APSC FILED Time: 2/19/2015 10:00:04 AM: Recvd 2/19/2015 9:51:40 AM: Docket 15-012-tf-Doc. 1 February 19, 2015 Mr. Dallas Heltz Secretary of the Commission Arkansas Public Service Commission 1000 Center

More information

National Heavy Duty Truck Transportation Efficiency Macroeconomic Impact Analysis

National Heavy Duty Truck Transportation Efficiency Macroeconomic Impact Analysis National Heavy Duty Truck Transportation Efficiency Macroeconomic Impact Analysis Prepared for the: Union of Concerned Scientists 2397 Shattuck Ave., Suite 203 Berkeley, CA 94704 Prepared by: Marshall

More information

UNDERSTANDING AND MOTIVATING ENERGY CONSERVATION VIA SOCIAL NORMS. Project Report: 2004 FINAL REPORT

UNDERSTANDING AND MOTIVATING ENERGY CONSERVATION VIA SOCIAL NORMS. Project Report: 2004 FINAL REPORT UNDERSTANDING AND MOTIVATING ENERGY CONSERVATION VIA SOCIAL NORMS Project Report: 2004 FINAL REPORT Robert Cialdini, Ph.D. Arizona State University Wesley Schultz, Ph.D. California State University, San

More information

The Net impact of Home Energy Feedback Devices

The Net impact of Home Energy Feedback Devices The Net impact of Home Energy Feedback Devices Brien Sipe, Energy Trust of Oregon, Portland OR Sarah Castor, Energy Trust of Oregon, Portland OR ABSTRACT Recently, much attention has been focused on modifying

More information

ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? 1. INTRODUCTION

ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? 1. INTRODUCTION ANNUITY LAPSE RATE MODELING: TOBIT OR NOT TOBIT? SAMUEL H. COX AND YIJIA LIN ABSTRACT. We devise an approach, using tobit models for modeling annuity lapse rates. The approach is based on data provided

More information

Control Number : 41446. Item Number : 59. Addendum StartPage : 0

Control Number : 41446. Item Number : 59. Addendum StartPage : 0 Control Number : 41446 Item Number : 59 Addendum StartPage : 0 SOAH DOCKET NO. 473-13-4070 PUC DOCKET NO. 41446 APPLICATION OF SOUTHWESTERN BEFORE THE*1'16)[E^^I PUBLIC SERVICE COMPANY TO ^ ADJUST ITS

More information

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics

Course Text. Required Computing Software. Course Description. Course Objectives. StraighterLine. Business Statistics Course Text Business Statistics Lind, Douglas A., Marchal, William A. and Samuel A. Wathen. Basic Statistics for Business and Economics, 7th edition, McGraw-Hill/Irwin, 2010, ISBN: 9780077384470 [This

More information

VI. Real Business Cycles Models

VI. Real Business Cycles Models VI. Real Business Cycles Models Introduction Business cycle research studies the causes and consequences of the recurrent expansions and contractions in aggregate economic activity that occur in most industrialized

More information

VELCO LONG-TERM ENERGY AND DEMAND FORECAST FORECAST DRIVERS AND ASSUMPTIONS. May 22, 2014 Eric Fox and Oleg Moskatov

VELCO LONG-TERM ENERGY AND DEMAND FORECAST FORECAST DRIVERS AND ASSUMPTIONS. May 22, 2014 Eric Fox and Oleg Moskatov VELCO LONG-TERM ENERGY AND DEMAND FORECAST FORECAST DRIVERS AND ASSUMPTIONS May 22, 2014 Eric Fox and Oleg Moskatov AGENDA» Review customer and system usage trends in Vermont» Review and discuss the forecast

More information

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * *

BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * BEFORE THE PUBLIC UTILITIES COMMISSION OF THE STATE OF COLORADO * * * * * IN THE MATTER OF THE APPLICATION OF ) PUBLIC SERVICE COMPANY OF COLORADO ) DOCKET NO. A-E FOR APPROVAL OF ITS 0 ELECTRIC ) RESOURCE

More information

Exploring Changes in the Labor Market of Health Care Service Workers in Texas and the Rio Grande Valley I. Introduction

Exploring Changes in the Labor Market of Health Care Service Workers in Texas and the Rio Grande Valley I. Introduction Ina Ganguli ENG-SCI 103 Final Project May 16, 2007 Exploring Changes in the Labor Market of Health Care Service Workers in Texas and the Rio Grande Valley I. Introduction The shortage of healthcare workers

More information

Economic Forecast OUTPUT AND EMPLOYMENT WHAT THE TABLE SHOWS:

Economic Forecast OUTPUT AND EMPLOYMENT WHAT THE TABLE SHOWS: Economic Forecast OUTPUT AND EMPLOYMENT 7 8 9 1 11 1 13 1 United States Real GDP $ billions (fourth quarter) $1,996 $1,575 $1,5 $1,9 $15, $15,5 $15,97 $16,6 % change over the four quarters 1.9% -.8% -.%.8%.%.%.%

More information

Section 6 - Windsource

Section 6 - Windsource Section 6 - Windsource Windsource Program Xcel Energy's Windsource program is currently the largest utility green pncmq program in the country. Now, operating in four states, Windsource customers have

More information

In this chapter, you will learn to use moving averages to estimate and analyze estimates of contract cost and price.

In this chapter, you will learn to use moving averages to estimate and analyze estimates of contract cost and price. 6.0 - Chapter Introduction In this chapter, you will learn to use moving averages to estimate and analyze estimates of contract cost and price. Single Moving Average. If you cannot identify or you cannot

More information

NERA Analysis of Energy Supplier Margins

NERA Analysis of Energy Supplier Margins 7 December 2009 NERA Analysis of Energy Supplier Margins By Graham Shuttleworth Even though wholesale energy prices have fallen recently, gas and electricity suppliers are earning very little margin on

More information

Outline: Demand Forecasting

Outline: Demand Forecasting Outline: Demand Forecasting Given the limited background from the surveys and that Chapter 7 in the book is complex, we will cover less material. The role of forecasting in the chain Characteristics of

More information

Mathematical Model of Income Tax Revenue on the UK example. Financial University under the Government of Russian Federation itregub@fa.

Mathematical Model of Income Tax Revenue on the UK example. Financial University under the Government of Russian Federation itregub@fa. Mathematical Model of Income Tax Revenue on the UK example Svetlana Ivanitskaya, Ilona V. Tregub Financial University under the Government of Russian Federation itregub@fa.ru 1. Description of the economic

More information

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay. Solutions to Midterm

Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay. Solutions to Midterm Booth School of Business, University of Chicago Business 41202, Spring Quarter 2015, Mr. Ruey S. Tsay Solutions to Midterm Problem A: (30 pts) Answer briefly the following questions. Each question has

More information

State of Renewables. US and state-level renewable energy adoption rates: 2008-2013

State of Renewables. US and state-level renewable energy adoption rates: 2008-2013 US and state-level renewable energy adoption rates: 2008-2013 Elena M. Krieger, PhD Physicians, Scientists & Engineers for Healthy Energy January 2014 1 Introduction While the United States power sector

More information

Statistical Sales Forecasting using SAP BPC

Statistical Sales Forecasting using SAP BPC Statistical Sales Forecasting using SAP BPC Capgemini s unique statistical sales forecasting solution integrated with SAP BPC 10.0 helps global fortune 1000 company built robust & accurate sales forecasting

More information

Essential expertise on the economic and consumer credit trends that impact your business and investments.

Essential expertise on the economic and consumer credit trends that impact your business and investments. economic & consumer credit analy tics Essential expertise on the economic and consumer credit trends that impact your business and investments. Economic & Consumer Credit Analytics Essential expertise

More information

Interrupted time series (ITS) analyses

Interrupted time series (ITS) analyses Interrupted time series (ITS) analyses Table of Contents Introduction... 2 Retrieving data from printed ITS graphs... 3 Organising data... 3 Analysing data (using SPSS/PASW Statistics)... 6 Interpreting

More information

Energy Forecasting Methods

Energy Forecasting Methods Energy Forecasting Methods Presented by: Douglas J. Gotham State Utility Forecasting Group Energy Center Purdue University Presented to: Indiana Utility Regulatory Commission Indiana Office of the Utility

More information

State Farm Bank, F.S.B.

State Farm Bank, F.S.B. State Farm Bank, F.S.B. 2015 Annual Stress Test Disclosure Dodd-Frank Act Company Run Stress Test Results Supervisory Severely Adverse Scenario June 25, 2015 1 Regulatory Requirement The 2015 Annual Stress

More information

2013 2017 Gas Access Arrangement Review (GAAR) SP AusNet s Revised Access Arrangement Proposal (RAAP) RAAP Chapter 1: Demand Forecasts

2013 2017 Gas Access Arrangement Review (GAAR) SP AusNet s Revised Access Arrangement Proposal (RAAP) RAAP Chapter 1: Demand Forecasts 2013 2017 Gas Access Arrangement Review (GAAR) SP AusNet s Revised Access Arrangement Proposal (RAAP) RAAP Chapter 1: Demand Forecasts Submitted: 9 November 2012 RAAP Chapter 1: Demand Forecasts This chapter

More information

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION

EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY MULTIPLE REGRESSION IN ACTION EDUCATION AND VOCABULARY 5-10 hours of input weekly is enough to pick up a new language (Schiff & Myers, 1988). Dutch children spend 5.5 hours/day

More information

Market Potential and Sales Forecasting

Market Potential and Sales Forecasting Market Potential and Sales Forecasting There s an old saying derived from a Danish proverb that goes, It s difficult to make predictions, especially about the future. As difficult as predicting the future

More information

APPENDIX 15. Review of demand and energy forecasting methodologies Frontier Economics

APPENDIX 15. Review of demand and energy forecasting methodologies Frontier Economics APPENDIX 15 Review of demand and energy forecasting methodologies Frontier Economics Energex regulatory proposal October 2014 Assessment of Energex s energy consumption and system demand forecasting procedures

More information

4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4

4. Simple regression. QBUS6840 Predictive Analytics. https://www.otexts.org/fpp/4 4. Simple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/4 Outline The simple linear model Least squares estimation Forecasting with regression Non-linear functional forms Regression

More information

Questioni di Economia e Finanza

Questioni di Economia e Finanza Questioni di Economia e Finanza (Occasional Papers) The evolution of bad debt in Italy during the global financial crisis and the sovereign debt crisis: a counterfactual analysis Number September 216 by

More information

Forecasts of Macroeconomic Developments, State Revenues from Taxes and Revenue from Other Sources, 2013-2014

Forecasts of Macroeconomic Developments, State Revenues from Taxes and Revenue from Other Sources, 2013-2014 Ministry of Finance Chief Economist - Research, State Revenue and International Affairs June 2013 Forecasts of Macroeconomic Developments, State Revenues from Taxes and Revenue from Other Sources, 2013-2014

More information

Implied Volatility Skews in the Foreign Exchange Market. Empirical Evidence from JPY and GBP: 1997-2002

Implied Volatility Skews in the Foreign Exchange Market. Empirical Evidence from JPY and GBP: 1997-2002 Implied Volatility Skews in the Foreign Exchange Market Empirical Evidence from JPY and GBP: 1997-2002 The Leonard N. Stern School of Business Glucksman Institute for Research in Securities Markets Faculty

More information

Measuring the Impact of Tax and Expenditure Limits on Public School Finance in Colorado

Measuring the Impact of Tax and Expenditure Limits on Public School Finance in Colorado Measuring the Impact of Tax and Expenditure Limits on Public School Finance in Colorado Executive Summary Most people think that Tax and Expenditure Limits (TELs) keep taxes and government spending lower

More information

Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model

Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Location matters. 3 techniques to incorporate geo-spatial effects in one's predictive model Xavier Conort xavier.conort@gear-analytics.com Motivation Location matters! Observed value at one location is

More information