Are We Alone?! Exoplanet Characterization and Direct Imaging!

Size: px
Start display at page:

Download "Are We Alone?! Exoplanet Characterization and Direct Imaging!"

Transcription

1 From Cosmic Birth to Living Earths A Vision for Space Astronomy in the 2020s and Beyond Are We Alone?! Exoplanet Characterization and Direct Imaging! A Study Commissioned by the Associated Universities for Research in Astronomy The Beyond JWST Committee Co-Chairs: Sara Seager (MIT) Julianne Dalcanton (Washington) Presenter: Marc Postman (STScI)

2 Can we find another planet like Earth orbiting a nearby star? To find such a planet would complete the revolution, started by Copernicus nearly 500 years ago, that displaced the Earth as the center of the universe The observational challenge is great but armed with new technologies astronomers are poised to rise to it. - New Worlds, New Horizons (Astro 2010) 21st century astronomers are uniquely positioned to study the evolution of the Universe in order to relate causally the physical conditions during the Big Bang to the development of RNA and DNA. - Riccardo Giacconi This is a quest sought by all of humanity and the search will require international cooperation.

3 The path has been laid for characterizing Earth 2.0 Kepler Hubble Spitzer CoRoT Ground-based Coronagraphs Gaia WFIRST 30-m class telescopes TESS JWST PLATO What is a logical next step?

4 The High Definition Space Telescope (HDST) A space-based telescope at the Earth-Sun L2 point. Goal is for a 12 m effective aperture diameter. Motivated by exoplanet yield, high-res images of galaxies, cosmic gas flows, and high-definition stellar populations in many environments. A segmented, deployable mirror. Diffraction-limited performance at visible wavelengths Full complement of coronographic, imaging, and spectroscopic instruments. UV to near-ir wavelengths (non-cryogenic optics). Serviceability is a goal but not a requirement.

5 Exoplanet Discovery Space: Direct Imaging Venus and Earth look the same to all planet-finding techniques except those that enable planet atmosphere spectra: predominantly transits and direct imaging. Only direct imaging can reach and distinguish rocky planets around hundreds of sun-like stars via spectroscopic characterization of their atmospheres. Planet / Star Contrast! This is the region we need! Terrestrial to explore! Planets! From WFIRST SDT Interim Report (2014)! Angular Separation (arcsec)! Delta Magnitude (mag)! Transiting planets around bright stars are rare because of the low probability to transit. Transmission spectra of Earth analogs and the cross-correlation technique (Snellen et al.) might only work around the very brightest sun-like stars and, even then, would be extremely challenging.

6 How Many Planets Must We Search? Even Earth-like planets in their HZ may have a great diversity of atmospheric properties owing to differences in mass, solar irradiation, and complex history. Sub Neptune Planet Albedo Spectra Fig courtesy of Aki Roberge, data in part from Renyu Hu. We want to maximize our chances of detecting these biosignature gases on Earth-like planets. If biomarkers can be found on 10% of Earth-like planets, and we want to reduce the chance of randomly missing these systems to <1%, spectra of ~50 planets must be obtained. With N = 10, biosignatures must occur at 37% probability to have <1% chance of missing it. courtesy Aki Roberge" Searching hundreds of stars also insures against η Earth on low side of present estimates." To find signs of life, even if it is uncommon, we must search dozens of Earth-like planets orbiting in their habitable zones.

7 How Many Planets Can We Search? Obscurational and photometric completeness make direct exoplanet imaging more challenging than standard faint-object imaging and spectroscopy. In other words, planets are not always visible and may be too faint depending on the planet illlumination phase. Need to be How able to parameterize Many Planets: yield as a function the of aperture Yield and uncertain astrophysical parameters (particularly η Earth and exozodi brightness). Computer simulations of planetary systems around known stars can tell us how exoplanet yield scales with astrophysical and observatory parameters. Yield calculacons by Chris Stark (GSFC) arxiv:1409:1528

8 ExoEarth Yield Results (Stark et al.2014) Optimistic" η Earth = 0.2 IWA = 3λ/D n exozodis = 3 5 Pessimistic" η Earth = 0.05 IWA = 3λ/D N η Earth ( Zodis) 0.23 ( D ) 1.88 ( Tel IWA) 0.64 ( ExpTime) 0.36 ( QE) 0.39 ( Contrast) 0.09 The uncertainty in astrophysical constraints is primarily primarily η Earth and exozodi. There a surprisingly weak dependence of exoearth candidate yield on exozodi level. Yield scales linearly with η Earth.

9 ExoEarth Yield Results (Stark et al.2014) Optimistic" η Earth = 0.2 IWA = 3λ/D n exozodis = 3 5 Pessimistic" η Earth = 0.05 IWA = 3λ/D N η Earth ( Zodis) 0.23 ( D ) 1.88 ( Tel IWA) 0.64 ( ExpTime) 0.36 ( QE) 0.39 ( Contrast) 0.09 A 12-meter telescope can reach Earth-like planets: this is enough to detect or significantly constrain the incidence of biomarker molecules.

10 Other Advantages: Detecting Diurnal Photometric Variability in Exoplanets Ford et al. 2003: Model of broadband photometric temporal variability of Earth 0.09 Earth at 10 pc Reflectivity m 8-m 4-meter Earth at 20 pc ~9 days 12-m 8-meter 4-meter Time (days) Require S/N ~ 20 (5% photometry) to detect ~20% temporal variations in reflectivity. Reconstruction of Earth s land-sea ratio from disk-averaged time-resolved imaging with the EPOXI mission.

11 R=500 Spectrum of 1 Earth-mass Terrestrial Exoplanet at 10 pc 760 nm H 2 O H 2 O H 2 O H 2 O O 2 (α) O 2 (B) H 2 O O 2 (A) H 2 O 12 m: ~900 ksec O 2 (A) 750 nm We don t expect all potentially habitable worlds to have spectra like this but interpreting their spectra will likely require this kind of instrumental capability.

12 Good Statistics Provide the Answer to: Are We Alone? While we can already estimate the probability of Earth-like worlds orbiting other stars, we do not know how often life occurs on those planets. This is what we are trying to determine! The incidence of life and its biomarker molecules may be small: 10% or even 1% on otherwise Earth-like planets in their HZ. If so, a small sample of planets (~10 or less) is very likely to fail to answer our most important question. Only by surveying dozens of worlds do we make the chance of detecting life s signature a good one, even if it is uncommon. An HDST-like telescope will be able to detect dozens of Earth-like planets orbiting in their habitable zones and systematically search for biosignature gases to address Are We Alone? with a robust statistical sample.

Other Planetary Systems

Other Planetary Systems Other Planetary Systems Other Planetary Systems Learning goals How do we detect planets around other stars? What have other planetary systems taught us about our own? Extrasolar planet search

More information

Chapter 13 Other Planetary Systems. Detecting Extrasolar Planets Brightness Difference. How do we detect planets around other stars?

Chapter 13 Other Planetary Systems. Detecting Extrasolar Planets Brightness Difference. How do we detect planets around other stars? Chapter 13 Other Planetary Systems The New Science of Distant Worlds Detecting Extrasolar Planets Brightness Difference A Sun-like star is about a billion times brighter than the sunlight reflected from

More information

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements THIRTY METER TELESCOPE The past century of astronomy research has yielded remarkable insights into the nature and origin of the Universe. This scientific advancement has been fueled by progressively larger

More information

Towards the Detection and Characterization of Smaller Transiting Planets

Towards the Detection and Characterization of Smaller Transiting Planets Towards the Detection and Characterization of Smaller Transiting Planets David W. Latham 27 July 2007 Kepler MISSION CONCEPT Kepler Mission is optimized for finding habitable planets ( 10 to 0.5 M )

More information

TRANSITING EXOPLANETS

TRANSITING EXOPLANETS TRANSITING EXOPLANETS Introduction 11 Chapter 1 Our Solar System from afar 13 Introduction 13 1.1 Direct imaging 20 1.1.1 Coronagraphy 24 1.1.2 Angular difference imaging 25 1.2 Astrometry 26 1.3 Radial

More information

Planet Detection Techniques and Results (outline of lectures)

Planet Detection Techniques and Results (outline of lectures) Planet Detection Techniques and Results (outline of lectures) These notes are meant to be read in conjunction with the lecture presentation. A pdf of the powerpoint presentation containing all the illustrations

More information

Chapter 13 Other Planetary Systems The New Science of Distant Worlds. Why is it so difficult to detect planets around other stars?

Chapter 13 Other Planetary Systems The New Science of Distant Worlds. Why is it so difficult to detect planets around other stars? Chapter 13 Other Planetary Systems The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning Why is it so difficult to detect planets around other stars? How do we detect

More information

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect

More information

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds

Chapter 13 Other Planetary Systems: The New Science of Distant Worlds Chapter 13 Other Planetary Systems: The New Science of Distant Worlds 13.1 Detecting Extrasolar Planets Our goals for learning: Why is it so difficult to detect planets around other stars? How do we detect

More information

A short history of telescopes and astronomy: Galileo to the TMT

A short history of telescopes and astronomy: Galileo to the TMT A short history of telescopes and astronomy: Galileo to the TMT Telescopes in the last 400 years Galileo 1608 Hans Lippershey applied for a patent for seeing things far away as if they were nearby 1609

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

Astronomy of extrasolar planetary systems. Methods and results of searches for planets around other stars

Astronomy of extrasolar planetary systems. Methods and results of searches for planets around other stars Astronomy of extrasolar planetary systems Methods and results of searches for planets around other stars Course layout - methods Introduction and history of searches for planets Doppler spectroscopy and

More information

Detecting and measuring faint point sources with a CCD

Detecting and measuring faint point sources with a CCD Detecting and measuring faint point sources with a CCD Herbert Raab a,b a Astronomical ociety of Linz, ternwarteweg 5, A-400 Linz, Austria b Herbert Raab, chönbergstr. 3/1, A-400 Linz, Austria; herbert.raab@utanet.at

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

Exploring the Universe Through the Hubble Space Telescope

Exploring the Universe Through the Hubble Space Telescope Exploring the Universe Through the Hubble Space Telescope WEEK FIVE: THE HUBBLE DEEP FIELD + LIMITATIONS OF HUBBLE, COLLABORATIONS, AND THE FUTURE OF ASTRONOMY Date: October 14, 2013 Instructor: Robert

More information

CAUP s Astronomical Instrumentation and Surveys

CAUP s Astronomical Instrumentation and Surveys CAUP s Astronomical Instrumentation and Surveys CENTRO DE ASTROFÍSICA DA UNIVERSIDADE DO PORTO www.astro.up.pt Sérgio A. G. Sousa Team presentation sousasag@astro.up.pt CAUP's Astronomical Instrumentation

More information

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disks at high resolution Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disk overview Debris disks are remnants of planet formation, planetesimals which failed to grow into planets;

More information

Exoplanet and Solar System Synergy with Future Missions

Exoplanet and Solar System Synergy with Future Missions Exoplanet and Solar System Synergy with Future Missions Britney Schmidt Georgia Tech OPAG Steering Committee Steve Vance, Jet Propulsion Lab Kunio Sayanagi, Hampton University Solar System Targets for

More information

ASTR 405: Exoplanetary Science. Stephen Kane

ASTR 405: Exoplanetary Science. Stephen Kane ASTR 405: Exoplanetary Science Stephen Kane Transiting planets discovered via radial velocity HD 209458 b HD 149026 b HD 189733 b GJ 436 b 55 Cancri e GJ 3470 b HD 17156 b (P = 21 days) HD 80606 b (P =

More information

Probing the Atmospheres of Exoplanets

Probing the Atmospheres of Exoplanets National Aeronautics and Space Administration Probing the Atmospheres of Exoplanets Taken from: Hubble 2008: Science Year in Review Produced by NASA Goddard Space Flight Center and the Space Telescope

More information

15.6 Planets Beyond the Solar System

15.6 Planets Beyond the Solar System 15.6 Planets Beyond the Solar System Planets orbiting other stars are called extrasolar planets. Until 1995, whether or not extrasolar planets existed was unknown. Since then more than 300 have been discovered.

More information

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW

MODULE P7: FURTHER PHYSICS OBSERVING THE UNIVERSE OVERVIEW OVERVIEW More than ever before, Physics in the Twenty First Century has become an example of international cooperation, particularly in the areas of astronomy and cosmology. Astronomers work in a number

More information

El programa de ciencias del espacio de la ESA

El programa de ciencias del espacio de la ESA El programa de ciencias del espacio de la ESA Fabio Favata European Space Agency Astronomy and Fundamental Physics Missions Coordinator A broad mission portfolio A long-term commitment to the excellence

More information

Spectrophotometry of Ap Stars

Spectrophotometry of Ap Stars Spectrophotometry of Ap Stars ASTRA Status Report Barry Smalley Astrophysics Group Keele University Staffordshire United Kingdom bs@astro.keele.ac.uk What is Spectrophotometry? Spectroscopy through a wide

More information

Characterizing Earth-like planets with Terrestrial Planet Finder

Characterizing Earth-like planets with Terrestrial Planet Finder Characterizing Earth-like planets with Terrestrial Planet Finder S. Seager a a Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 E. B. Ford and E. L. Turner

More information

THE GAIA ASTROMETRIC SURVEY OF THE SOLAR NEIGHBORHOOD AND ITS CONTRIBUTION TO THE TARGET DATABASE FOR DARWIN/TPF

THE GAIA ASTROMETRIC SURVEY OF THE SOLAR NEIGHBORHOOD AND ITS CONTRIBUTION TO THE TARGET DATABASE FOR DARWIN/TPF 1 THE GAIA ASTROMETRIC SURVEY OF THE SOLAR NEIGHBORHOOD AND ITS CONTRIBUTION TO THE TARGET DATABASE FOR DARWIN/TPF A. Sozzetti 1,2,3, S. Casertano 4, M. G. Lattanzi 3, and A. Spagna 3 1 Harvard-Smithsonian

More information

Einstein Rings: Nature s Gravitational Lenses

Einstein Rings: Nature s Gravitational Lenses National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book

More information

NASA's Postdoctoral Fellowship Programs

NASA's Postdoctoral Fellowship Programs NASA's Postdoctoral Fellowship Programs Einstein Fellowships Dr. Charles A. Beichman & Dr. Dawn M. Gelino NASA Exoplanet Science Institute Dr. Ron Allen Space Telescope Science Institute Dr. Andrea Prestwich

More information

Undergraduate Studies Department of Astronomy

Undergraduate Studies Department of Astronomy WIYN 3.5-meter Telescope at Kitt Peak near Tucson, AZ Undergraduate Studies Department of Astronomy January 2014 Astronomy at Indiana University General Information The Astronomy Department at Indiana

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Astro 301/ Fall 2005 (48310) Introduction to Astronomy

Astro 301/ Fall 2005 (48310) Introduction to Astronomy Astro 301/ Fall 2005 (48310) Introduction to Astronomy Instructor: Professor Shardha Jogee TAs: David Fisher, Donghui Jeong, and Miranda Nordhaus Lecture 22 = Tu Nov 15 Lecture 23 = Th Nov 17 http://www.as.utexas.edu/~sj/a301-fa05/

More information

McDonald Press Releases: Triumphs and Ques7ons

McDonald Press Releases: Triumphs and Ques7ons McDonald Press Releases: Triumphs and Ques7ons Globular Clusters Rotate at Heart Astronomers Discover Ancient Solar System with Five Earth- sized Planets Black Hole Chokes on a Swallowed Star Astronomers

More information

Virtual Observatory tools for the detection of T dwarfs. Enrique Solano, LAEFF / SVO Eduardo Martín, J.A. Caballero, IAC

Virtual Observatory tools for the detection of T dwarfs. Enrique Solano, LAEFF / SVO Eduardo Martín, J.A. Caballero, IAC Virtual Observatory tools for the detection of T dwarfs Enrique Solano, LAEFF / SVO Eduardo Martín, J.A. Caballero, IAC T dwarfs Low-mass (60-13 MJup), low-temperature (< 1300-1500 K), low-luminosity brown

More information

The Sun and the Solar System

The Sun and the Solar System ASTR 371, Fall 2016 Lecture 1 The Sun and the Solar System Introduction and Overview Homework Due September 7, Wed. FK Chap 1, Questions 3, 16, 24, 38 A1: (a) use data of the diameter and average distance

More information

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data The Gaia Archive Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de 1 2 Gaia 2013-2018 and beyond Progress with Gaia 3 HIPPARCOS Gaia accuracy

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

The Observatorio del Teide welcomes SONG: the Stellar Observations Network Group

The Observatorio del Teide welcomes SONG: the Stellar Observations Network Group Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13-17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.)

More information

Space-based vs. Ground-based telescopes with Adaptive Optics (AO) 1

Space-based vs. Ground-based telescopes with Adaptive Optics (AO) 1 Space-based vs. Ground-based telescopes with Adaptive Optics (AO) 1 Advances in technology make it possible to partially correct the wavefront errors caused by the Earth s atmosphere that blur ground-based

More information

AtmoSpheres in a test tube. Giuseppe Galletta Università di Padova

AtmoSpheres in a test tube. Giuseppe Galletta Università di Padova AtmoSpheres in a test tube Giuseppe Galletta Università di Padova INAF IASP INFN LF Dept. of Biology INAF OAPD Dept. of Physics and Astronomy Dept. of Biology INAF OAPA E. Pace A. Ciaravella G. Micela

More information

Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001

Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001 Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001 G. W. Lockwood, J. C. Hall, & B. A. Skiff (Lowell Obs.) G. W. Henry (Tennessee State University)

More information

Detection of Transiting Planet Candidates in Kepler Mission Data

Detection of Transiting Planet Candidates in Kepler Mission Data Detection of Transiting Planet Candidates in Kepler Mission Data Peter Tenenbaum For the Kepler Transiting Planet Search Team 2012-June-06 SAO STScI! The Kepler Mission A space-based photometer searching

More information

Inside the Zodiac A 10-minute planetarium mini-show by Alan Gould 1, Toshi Komatsu 1, Jeff Nee 1, and Dr. Steve Howell 2

Inside the Zodiac A 10-minute planetarium mini-show by Alan Gould 1, Toshi Komatsu 1, Jeff Nee 1, and Dr. Steve Howell 2 Inside the Zodiac A 10-minute planetarium mini-show by Alan Gould 1, Toshi Komatsu 1, Jeff Nee 1, and Dr. Steve Howell 2 About this show In one Word... In one Sentence... In one Paragraph... Storyboard

More information

PLATO: PLAnetary Transits and Oscillations of stars

PLATO: PLAnetary Transits and Oscillations of stars Home Search Collections Journals About Contact us My IOPscience PLATO: PLAnetary Transits and Oscillations of stars This content has been downloaded from IOPscience. Please scroll down to see the full

More information

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.) Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

More information

arxiv:1101.4158v1 [astro-ph.sr] 21 Jan 2011

arxiv:1101.4158v1 [astro-ph.sr] 21 Jan 2011 HERMES high-resolution spectroscopy of HD 149382 Where did the planet go? arxiv:1101.4158v1 [astro-ph.sr] 21 Jan 2011 V.A. Jacobs, R.H. Østensen, H. Van Winckel, S. Bloemen, P.I. Pápics, G. Raskin, J.

More information

HST-Like Performance from Balloon-borne Telescopes. Eliot F. Young Southwest Research Institute

HST-Like Performance from Balloon-borne Telescopes. Eliot F. Young Southwest Research Institute HST-Like Performance from Balloon-borne Telescopes Eliot F. Young Southwest Research Institute Main goal of talk is to describe the near-space environment at 120,000 ft. Imaging: what is the seeing quality?

More information

SPECTRAL EVOLUTION OF AN EARTH-LIKE PLANET

SPECTRAL EVOLUTION OF AN EARTH-LIKE PLANET SPECTRAL EVOLUTION OF AN EARTH-LIKE PLANET LISA KALTENEGGER Harvard Smithsonian Center for Astrophysics, 60 Garden Street, 02138 MA Cambridge, USA; lkaltenegger@cfa.harvard.edu WESLEY A. TRAUB Jet Propulsion

More information

Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving.

Note it they ancients had known Newton s first law, the retrograde motion of the planets would have told them that the Earth was moving. 6/24 Discussion of the first law. The first law appears to be contained within the second and it is. Why state it? Newton s laws are not always valid they are not valid in, say, an accelerating automobile.

More information

Main Belt Comets. Asteroid belt s new class of objects and possible source of water and volatiles for the Earth

Main Belt Comets. Asteroid belt s new class of objects and possible source of water and volatiles for the Earth Main Belt Comets Asteroid belt s new class of objects and possible source of water and volatiles for the Earth A science white paper submitted to Astro2010 Decadal Survey (Planetary Systems and Star Formation)

More information

Chapter 3 Telescopes

Chapter 3 Telescopes Chapter 3 Telescopes Units of Chapter 3 Optical Telescopes Telescope Size High-Resolution Astronomy Radio Astronomy Other Astronomies 3.1 Optical Telescopes Images can be formed through reflection or refraction

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

Census of Exoplanets (w/ Doppler observations) NASA

Census of Exoplanets (w/ Doppler observations) NASA Planetary Dynamics in the Kepler Era Eric B. Ford UF Frontiers September 2, 2011 w/ results from UF students/postdocs (Althea Moorhead, Robert Morehead, Benjamin Nelson, Matthew Payne), Kepler Follow-Up

More information

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES

SCIENCE 101 DISTANCES IN ASTRONOMY LECTURE NOTES SCIENCE 0 DISTANCES IN ASTRONOMY LECTURE NOTES Distances in the Solar System Distance to Venus can be obtained using radar ranging Send signal, determine how long it takes to return Radio waves move at

More information

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

Supernova Remnant SN 1006

Supernova Remnant SN 1006 National Aeronautics and Space Administration Supernova Remnant SN 1006 Taken from: Hubble 2008: Science Year in Review Produced by NASA Goddard Space Flight Center and the Space Telescope Science Institute.

More information

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics The Known Solar System How big is the solar system? a tidal R 0 M Sun M Galaxy 1/3 200,000AU How big is

More information

Supplementary Material

Supplementary Material Supplementary Material Contents 1. Alternative designations, celestial coordinates and apparent magnitudes 2. Stellar properties 3. Data preparation and transit modeling 4. Kepler data validation 5. Follow

More information

Unit 1: Understanding the Universe

Unit 1: Understanding the Universe Write your name here Surname Other names Edexcel GCSE Centre Number Astronomy Unit 1: Understanding the Universe Candidate Number Wednesday 15 May 2013 Afternoon Time: 2 hours You must have: Calculator,

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

Submitted to the Planetary Decadal Survey

Submitted to the Planetary Decadal Survey Study of Planetary Systems and Solar System Objects with JWST G. Sonneborn (NASA/GSFC), J. Lunine (U. Arizona), R. Doyon (Dept. Physics, U. Montreal), M. McCoughrean (U. Exeter, U.K.), M. Rieke (U. Arizona)*

More information

The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars

The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars Knut A.G. Olsen National Optical Astronomy Observatory kolsen@noao.edu Phone: (520)-318-8555 Co-authors: Aaron J. Romanowsky (UCO/Lick)

More information

Pianeti extrasolari, un opportunità di Education and Public Outreach

Pianeti extrasolari, un opportunità di Education and Public Outreach Pianeti extrasolari, un opportunità di Education and Public Outreach Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Why so an interesting topic Fundamental question

More information

Astronomy & Physics Resources for Middle & High School Teachers

Astronomy & Physics Resources for Middle & High School Teachers Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the

More information

An Update on the Wide Field, Multi-Object, Moderate-Resolution, Spectrograph for the Giant Magellan Telescope

An Update on the Wide Field, Multi-Object, Moderate-Resolution, Spectrograph for the Giant Magellan Telescope An Update on the Wide Field, Multi-Object, Moderate-Resolution, Spectrograph for the Giant Magellan Telescope D. L. DePoy a, R. Allen a, T. Li a, J. L. Marshall a, C. Papovich a, T. Prochaska a, and S.

More information

The Search for Extrasolar Earth-like Planets S. Seager

The Search for Extrasolar Earth-like Planets S. Seager 1 Earth and Planetary Science Letters 208,113-124 (2003) The Search for Extrasolar Earth-like Planets S. Seager Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC,

More information

Light Telescopes. Grade Level: 5. 2-3 class periods (more if in-depth research occurs)

Light Telescopes. Grade Level: 5. 2-3 class periods (more if in-depth research occurs) Light Telescopes Grade Level: 5 Time Required: Suggested TEKS: Science - 5.4 Suggested SCANS Information. Acquires and evaluates information. National Science and Math Standards Science as Inquiry, Earth

More information

The Value of the Keck Observatory to NASA and Its Scientific Community

The Value of the Keck Observatory to NASA and Its Scientific Community The Value of the Keck Observatory to NASA and Its Scientific Community Rachel Akeson 1 and Tom Greene 2, NASA representatives to the Keck Science Steering Committee Endorsed by: Geoffrey Bryden Bruce Carney

More information

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

MAST: The Mikulski Archive for Space Telescopes

MAST: The Mikulski Archive for Space Telescopes MAST: The Mikulski Archive for Space Telescopes Richard L. White Space Telescope Science Institute 2015 April 1, NRC Space Science Week/CBPSS A model for open access The NASA astrophysics data archives

More information

Kepler Data and Tools. Kepler Science Conference II November 5, 2013

Kepler Data and Tools. Kepler Science Conference II November 5, 2013 Kepler Data and Tools Kepler Science Conference II November 5, 2013 Agenda Current and legacy data products (S. Thompson) Kepler Science Center tools (M. Still) MAST Kepler Archive (S. Fleming) NASA Exoplanet

More information

A.-L. Maire, S. Desidera, S. Esposito, A. Skemer, P. Hinz, & the LEECH & HOSTS teams

A.-L. Maire, S. Desidera, S. Esposito, A. Skemer, P. Hinz, & the LEECH & HOSTS teams A.-L. Maire, S. Desidera, S. Esposito, A. Skemer, P. Hinz, & the LEECH & HOSTS teams LEECH LBTI Exozodi Exoplanet Common Hunt PI: A. Skemer/Univ. Arizona (~130 nights) Search for & characterization young

More information

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:

More information

Spatially resolved spectroscopy of the exoplanet HR 8799 c

Spatially resolved spectroscopy of the exoplanet HR 8799 c Spatially resolved spectroscopy of the exoplanet HR 8799 c M. Janson 1,4, C. Bergfors 2, M. Goto 2, W. Brandner 2, D. Lafrenière 3 janson@astro.utoronto.ca ABSTRACT HR 8799 is a multi-planet system detected

More information

Ares V Launch Capability Enables Future Space Telescopes

Ares V Launch Capability Enables Future Space Telescopes Ares V Launch Capability Enables Future Space Telescopes H. Philip Stahl ------------J~S_A_MarshallSpace..Elig.ht-CenteI=,-Hun~&.:~--------- ABSTRACT NASA's Ares V cargo Immch vehicle offers the potential

More information

Asteroid Compositions: Spectra S. K. Croft

Asteroid Compositions: Spectra S. K. Croft Asteroid Compositions: Spectra S. K. Croft Activity Description In this activity, you will estimate the surface composition of selected asteroids by comparing their reflectance spectra with the spectra

More information

FRESIP: A Mission to Determine the Character and Frequency of Extra-Solar Planets Around Solarlike

FRESIP: A Mission to Determine the Character and Frequency of Extra-Solar Planets Around Solarlike FRESIP: A Mission to Determine the Character and Frequency of Extra-Solar Planets Around Solarlike Stars W. J. Borucki, E. W. Dunham, D. G. Koch (NASA Ames Research Center, Moffett Field, CA 94035) W.

More information

Some Basic Principles from Astronomy

Some Basic Principles from Astronomy Some Basic Principles from Astronomy The Big Question One of the most difficult things in every physics class you will ever take is putting what you are learning in context what is this good for? how do

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

Colorado State Standards Mathematics Standards 3.4 Science Standard 1, 2. Teaching Time: One 40-minute period

Colorado State Standards Mathematics Standards 3.4 Science Standard 1, 2. Teaching Time: One 40-minute period Lesson Summary Students use the spectrograph from the Building a Fancy Spectrograph lesson to gather data about light sources. Using the data they ve collected, students are able to make comparisons between

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Direct Imaging of Exoplanets

Direct Imaging of Exoplanets Direct Imaging of Exoplanets Wesley A. Traub Jet Propulsion Laboratory, California Institute of Technology Ben R. Oppenheimer American Museum of Natural History A direct image of an exoplanet system is

More information

Stony Brook University Caltech Palomar Observatory Partnership

Stony Brook University Caltech Palomar Observatory Partnership Stony Brook University Caltech Palomar Observatory Partnership Proposal Stanimir Metchev, Jin Koda, Frederick Walter, Michal Simon Department of Physics & Astronomy, Stony Brook University, NY 11794 and

More information

Discover the Universe AST-1002 Section 0427, Spring 2016

Discover the Universe AST-1002 Section 0427, Spring 2016 Discover the Universe AST-1002 Section 0427, Spring 2016 Instructor: Dr. Francisco Reyes Office: Room 12 Bryant Space Science Center Telephone: 352-294-1885 Email: freyes@astro.ufl.edu Office hours: Monday

More information

High-contrast coronagraph for ground-based imaging of Jupiter-like planets *

High-contrast coronagraph for ground-based imaging of Jupiter-like planets * High-contrast coronagraph for ground-based imaging of Jupiter-like planets * Jiang-Pei Dou 1, 2, De-Qing Ren 1, 2, 3, Yong-Tian Zhu 1, 2 1 National Astronomical Observatories/Nanjing Institute of Astronomical

More information

Architecture Frameworks in System Design: Motivation, Theory, and Implementation

Architecture Frameworks in System Design: Motivation, Theory, and Implementation Architecture Frameworks in System Design: Motivation, Theory, and Implementation Matthew Richards Research Assistant, SEARI Daniel Hastings Professor, Engineering Systems Division Professor, Dept. of Aeronautics

More information

1) The final phase of a star s evolution is determined by the star s a. Age b. Gravitational pull c. Density d. Mass

1) The final phase of a star s evolution is determined by the star s a. Age b. Gravitational pull c. Density d. Mass Science Olympiad Astronomy Multiple Choice: Choose the best answer for each question. Each question is worth one point. In the event of a tie, there will be a tie-breaking word problem. 1) The final phase

More information

Understanding Solar Variability as Groundwork for Planet Transit Detection

Understanding Solar Variability as Groundwork for Planet Transit Detection Stars as Suns: Activity, Evolution, and Planets IAU Symposium, Vol. 219, 2004 A. K. Dupree and A. O. Benz, Eds. Understanding Solar Variability as Groundwork for Planet Transit Detection Andrey D. Seleznyov,

More information

Science Focus 9 Space Exploration Review Booklet

Science Focus 9 Space Exploration Review Booklet Science Focus 9 Unit E Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6 Topic 7 Topic 8 Space Exploration Space Link: NASA http://www.nasa.gov/home/index.html For Our Eyes Only Frames of Reference What

More information

Lecture 19 Big Bang Cosmology

Lecture 19 Big Bang Cosmology The Nature of the Physical World Lecture 19 Big Bang Cosmology Arán García-Bellido 1 News Exam 2: you can do better! Presentations April 14: Great Physicist life, Controlled fusion April 19: Nuclear power,

More information

A Preliminary Summary of The VLA Sky Survey

A Preliminary Summary of The VLA Sky Survey A Preliminary Summary of The VLA Sky Survey Eric J. Murphy and Stefi Baum (On behalf of the entire Science Survey Group) 1 Executive Summary After months of critical deliberation, the Survey Science Group

More information

The Sino-French Gamma-Ray Burst Mission SVOM (Space-based multi-band astronomical Variable Objects Monitor)

The Sino-French Gamma-Ray Burst Mission SVOM (Space-based multi-band astronomical Variable Objects Monitor) The Sino-French Gamma-Ray Burst Mission SVOM (Space-based multi-band astronomical Variable Objects Monitor) Didier BARRET on behalf of the SVOM collaboration didier.barret@cesr.fr Outline SVOM background

More information

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5)

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5) 14b. Pluto, Kuiper Belt & Oort Cloud Pluto Pluto s moons The Kuiper Belt Resonant Kuiper Belt objects Classical Kuiper Belt objects Pluto Data: Numbers Diameter: 2,290.km 0.18. Earth Mass: 1.0. 10 22 kg

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

Galaxy Survey data analysis using SDSS-III as an example

Galaxy Survey data analysis using SDSS-III as an example Galaxy Survey data analysis using SDSS-III as an example Will Percival (University of Portsmouth) showing work by the BOSS galaxy clustering working group" Cosmology from Spectroscopic Galaxy Surveys"

More information