Are We Alone?! Exoplanet Characterization and Direct Imaging!

Size: px
Start display at page:

Download "Are We Alone?! Exoplanet Characterization and Direct Imaging!"

Transcription

1 From Cosmic Birth to Living Earths A Vision for Space Astronomy in the 2020s and Beyond Are We Alone?! Exoplanet Characterization and Direct Imaging! A Study Commissioned by the Associated Universities for Research in Astronomy The Beyond JWST Committee Co-Chairs: Sara Seager (MIT) Julianne Dalcanton (Washington) Presenter: Marc Postman (STScI)

2 Can we find another planet like Earth orbiting a nearby star? To find such a planet would complete the revolution, started by Copernicus nearly 500 years ago, that displaced the Earth as the center of the universe The observational challenge is great but armed with new technologies astronomers are poised to rise to it. - New Worlds, New Horizons (Astro 2010) 21st century astronomers are uniquely positioned to study the evolution of the Universe in order to relate causally the physical conditions during the Big Bang to the development of RNA and DNA. - Riccardo Giacconi This is a quest sought by all of humanity and the search will require international cooperation.

3 The path has been laid for characterizing Earth 2.0 Kepler Hubble Spitzer CoRoT Ground-based Coronagraphs Gaia WFIRST 30-m class telescopes TESS JWST PLATO What is a logical next step?

4 The High Definition Space Telescope (HDST) A space-based telescope at the Earth-Sun L2 point. Goal is for a 12 m effective aperture diameter. Motivated by exoplanet yield, high-res images of galaxies, cosmic gas flows, and high-definition stellar populations in many environments. A segmented, deployable mirror. Diffraction-limited performance at visible wavelengths Full complement of coronographic, imaging, and spectroscopic instruments. UV to near-ir wavelengths (non-cryogenic optics). Serviceability is a goal but not a requirement.

5 Exoplanet Discovery Space: Direct Imaging Venus and Earth look the same to all planet-finding techniques except those that enable planet atmosphere spectra: predominantly transits and direct imaging. Only direct imaging can reach and distinguish rocky planets around hundreds of sun-like stars via spectroscopic characterization of their atmospheres. Planet / Star Contrast! This is the region we need! Terrestrial to explore! Planets! From WFIRST SDT Interim Report (2014)! Angular Separation (arcsec)! Delta Magnitude (mag)! Transiting planets around bright stars are rare because of the low probability to transit. Transmission spectra of Earth analogs and the cross-correlation technique (Snellen et al.) might only work around the very brightest sun-like stars and, even then, would be extremely challenging.

6 How Many Planets Must We Search? Even Earth-like planets in their HZ may have a great diversity of atmospheric properties owing to differences in mass, solar irradiation, and complex history. Sub Neptune Planet Albedo Spectra Fig courtesy of Aki Roberge, data in part from Renyu Hu. We want to maximize our chances of detecting these biosignature gases on Earth-like planets. If biomarkers can be found on 10% of Earth-like planets, and we want to reduce the chance of randomly missing these systems to <1%, spectra of ~50 planets must be obtained. With N = 10, biosignatures must occur at 37% probability to have <1% chance of missing it. courtesy Aki Roberge" Searching hundreds of stars also insures against η Earth on low side of present estimates." To find signs of life, even if it is uncommon, we must search dozens of Earth-like planets orbiting in their habitable zones.

7 How Many Planets Can We Search? Obscurational and photometric completeness make direct exoplanet imaging more challenging than standard faint-object imaging and spectroscopy. In other words, planets are not always visible and may be too faint depending on the planet illlumination phase. Need to be How able to parameterize Many Planets: yield as a function the of aperture Yield and uncertain astrophysical parameters (particularly η Earth and exozodi brightness). Computer simulations of planetary systems around known stars can tell us how exoplanet yield scales with astrophysical and observatory parameters. Yield calculacons by Chris Stark (GSFC) arxiv:1409:1528

8 ExoEarth Yield Results (Stark et al.2014) Optimistic" η Earth = 0.2 IWA = 3λ/D n exozodis = 3 5 Pessimistic" η Earth = 0.05 IWA = 3λ/D N η Earth ( Zodis) 0.23 ( D ) 1.88 ( Tel IWA) 0.64 ( ExpTime) 0.36 ( QE) 0.39 ( Contrast) 0.09 The uncertainty in astrophysical constraints is primarily primarily η Earth and exozodi. There a surprisingly weak dependence of exoearth candidate yield on exozodi level. Yield scales linearly with η Earth.

9 ExoEarth Yield Results (Stark et al.2014) Optimistic" η Earth = 0.2 IWA = 3λ/D n exozodis = 3 5 Pessimistic" η Earth = 0.05 IWA = 3λ/D N η Earth ( Zodis) 0.23 ( D ) 1.88 ( Tel IWA) 0.64 ( ExpTime) 0.36 ( QE) 0.39 ( Contrast) 0.09 A 12-meter telescope can reach Earth-like planets: this is enough to detect or significantly constrain the incidence of biomarker molecules.

10 Other Advantages: Detecting Diurnal Photometric Variability in Exoplanets Ford et al. 2003: Model of broadband photometric temporal variability of Earth 0.09 Earth at 10 pc Reflectivity m 8-m 4-meter Earth at 20 pc ~9 days 12-m 8-meter 4-meter Time (days) Require S/N ~ 20 (5% photometry) to detect ~20% temporal variations in reflectivity. Reconstruction of Earth s land-sea ratio from disk-averaged time-resolved imaging with the EPOXI mission.

11 R=500 Spectrum of 1 Earth-mass Terrestrial Exoplanet at 10 pc 760 nm H 2 O H 2 O H 2 O H 2 O O 2 (α) O 2 (B) H 2 O O 2 (A) H 2 O 12 m: ~900 ksec O 2 (A) 750 nm We don t expect all potentially habitable worlds to have spectra like this but interpreting their spectra will likely require this kind of instrumental capability.

12 Good Statistics Provide the Answer to: Are We Alone? While we can already estimate the probability of Earth-like worlds orbiting other stars, we do not know how often life occurs on those planets. This is what we are trying to determine! The incidence of life and its biomarker molecules may be small: 10% or even 1% on otherwise Earth-like planets in their HZ. If so, a small sample of planets (~10 or less) is very likely to fail to answer our most important question. Only by surveying dozens of worlds do we make the chance of detecting life s signature a good one, even if it is uncommon. An HDST-like telescope will be able to detect dozens of Earth-like planets orbiting in their habitable zones and systematically search for biosignature gases to address Are We Alone? with a robust statistical sample.

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements

Adaptive Optics (AO) TMT Partner Institutions Collaborating Institution Acknowledgements THIRTY METER TELESCOPE The past century of astronomy research has yielded remarkable insights into the nature and origin of the Universe. This scientific advancement has been fueled by progressively larger

More information

TRANSITING EXOPLANETS

TRANSITING EXOPLANETS TRANSITING EXOPLANETS Introduction 11 Chapter 1 Our Solar System from afar 13 Introduction 13 1.1 Direct imaging 20 1.1.1 Coronagraphy 24 1.1.2 Angular difference imaging 25 1.2 Astrometry 26 1.3 Radial

More information

Towards the Detection and Characterization of Smaller Transiting Planets

Towards the Detection and Characterization of Smaller Transiting Planets Towards the Detection and Characterization of Smaller Transiting Planets David W. Latham 27 July 2007 Kepler MISSION CONCEPT Kepler Mission is optimized for finding habitable planets ( 10 to 0.5 M )

More information

Planet Detection Techniques and Results (outline of lectures)

Planet Detection Techniques and Results (outline of lectures) Planet Detection Techniques and Results (outline of lectures) These notes are meant to be read in conjunction with the lecture presentation. A pdf of the powerpoint presentation containing all the illustrations

More information

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset.

Chapter 6 Telescopes: Portals of Discovery. How does your eye form an image? Refraction. Example: Refraction at Sunset. Chapter 6 Telescopes: Portals of Discovery 6.1 Eyes and Cameras: Everyday Light Sensors Our goals for learning:! How does your eye form an image?! How do we record images? How does your eye form an image?

More information

A short history of telescopes and astronomy: Galileo to the TMT

A short history of telescopes and astronomy: Galileo to the TMT A short history of telescopes and astronomy: Galileo to the TMT Telescopes in the last 400 years Galileo 1608 Hans Lippershey applied for a patent for seeing things far away as if they were nearby 1609

More information

Detecting and measuring faint point sources with a CCD

Detecting and measuring faint point sources with a CCD Detecting and measuring faint point sources with a CCD Herbert Raab a,b a Astronomical ociety of Linz, ternwarteweg 5, A-400 Linz, Austria b Herbert Raab, chönbergstr. 3/1, A-400 Linz, Austria; herbert.raab@utanet.at

More information

Top 10 Discoveries by ESO Telescopes

Top 10 Discoveries by ESO Telescopes Top 10 Discoveries by ESO Telescopes European Southern Observatory reaching new heights in astronomy Exploring the Universe from the Atacama Desert, in Chile since 1964 ESO is the most productive astronomical

More information

CAUP s Astronomical Instrumentation and Surveys

CAUP s Astronomical Instrumentation and Surveys CAUP s Astronomical Instrumentation and Surveys CENTRO DE ASTROFÍSICA DA UNIVERSIDADE DO PORTO www.astro.up.pt Sérgio A. G. Sousa Team presentation sousasag@astro.up.pt CAUP's Astronomical Instrumentation

More information

Exploring the Universe Through the Hubble Space Telescope

Exploring the Universe Through the Hubble Space Telescope Exploring the Universe Through the Hubble Space Telescope WEEK FIVE: THE HUBBLE DEEP FIELD + LIMITATIONS OF HUBBLE, COLLABORATIONS, AND THE FUTURE OF ASTRONOMY Date: October 14, 2013 Instructor: Robert

More information

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge

Debris disks at high resolution. Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disks at high resolution Mark Wyatt Rachel Smith Institute of Astronomy, Cambridge Debris disk overview Debris disks are remnants of planet formation, planetesimals which failed to grow into planets;

More information

Exoplanet and Solar System Synergy with Future Missions

Exoplanet and Solar System Synergy with Future Missions Exoplanet and Solar System Synergy with Future Missions Britney Schmidt Georgia Tech OPAG Steering Committee Steve Vance, Jet Propulsion Lab Kunio Sayanagi, Hampton University Solar System Targets for

More information

ASTR 405: Exoplanetary Science. Stephen Kane

ASTR 405: Exoplanetary Science. Stephen Kane ASTR 405: Exoplanetary Science Stephen Kane Transiting planets discovered via radial velocity HD 209458 b HD 149026 b HD 189733 b GJ 436 b 55 Cancri e GJ 3470 b HD 17156 b (P = 21 days) HD 80606 b (P =

More information

El programa de ciencias del espacio de la ESA

El programa de ciencias del espacio de la ESA El programa de ciencias del espacio de la ESA Fabio Favata European Space Agency Astronomy and Fundamental Physics Missions Coordinator A broad mission portfolio A long-term commitment to the excellence

More information

Spectrophotometry of Ap Stars

Spectrophotometry of Ap Stars Spectrophotometry of Ap Stars ASTRA Status Report Barry Smalley Astrophysics Group Keele University Staffordshire United Kingdom bs@astro.keele.ac.uk What is Spectrophotometry? Spectroscopy through a wide

More information

Characterizing Earth-like planets with Terrestrial Planet Finder

Characterizing Earth-like planets with Terrestrial Planet Finder Characterizing Earth-like planets with Terrestrial Planet Finder S. Seager a a Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC 20015 E. B. Ford and E. L. Turner

More information

NASA's Postdoctoral Fellowship Programs

NASA's Postdoctoral Fellowship Programs NASA's Postdoctoral Fellowship Programs Einstein Fellowships Dr. Charles A. Beichman & Dr. Dawn M. Gelino NASA Exoplanet Science Institute Dr. Ron Allen Space Telescope Science Institute Dr. Andrea Prestwich

More information

Undergraduate Studies Department of Astronomy

Undergraduate Studies Department of Astronomy WIYN 3.5-meter Telescope at Kitt Peak near Tucson, AZ Undergraduate Studies Department of Astronomy January 2014 Astronomy at Indiana University General Information The Astronomy Department at Indiana

More information

Einstein Rings: Nature s Gravitational Lenses

Einstein Rings: Nature s Gravitational Lenses National Aeronautics and Space Administration Einstein Rings: Nature s Gravitational Lenses Leonidas Moustakas and Adam Bolton Taken from: Hubble 2006 Science Year in Review The full contents of this book

More information

The Observatorio del Teide welcomes SONG: the Stellar Observations Network Group

The Observatorio del Teide welcomes SONG: the Stellar Observations Network Group Highlights of Spanish Astrophysics VI, Proceedings of the IX Scientific Meeting of the Spanish Astronomical Society held on September 13-17, 2010, in Madrid, Spain. M. R. Zapatero Osorio et al. (eds.)

More information

The orbit of Halley s Comet

The orbit of Halley s Comet The orbit of Halley s Comet Given this information Orbital period = 76 yrs Aphelion distance = 35.3 AU Observed comet in 1682 and predicted return 1758 Questions: How close does HC approach the Sun? What

More information

Astro 301/ Fall 2005 (48310) Introduction to Astronomy

Astro 301/ Fall 2005 (48310) Introduction to Astronomy Astro 301/ Fall 2005 (48310) Introduction to Astronomy Instructor: Professor Shardha Jogee TAs: David Fisher, Donghui Jeong, and Miranda Nordhaus Lecture 22 = Tu Nov 15 Lecture 23 = Th Nov 17 http://www.as.utexas.edu/~sj/a301-fa05/

More information

Virtual Observatory tools for the detection of T dwarfs. Enrique Solano, LAEFF / SVO Eduardo Martín, J.A. Caballero, IAC

Virtual Observatory tools for the detection of T dwarfs. Enrique Solano, LAEFF / SVO Eduardo Martín, J.A. Caballero, IAC Virtual Observatory tools for the detection of T dwarfs Enrique Solano, LAEFF / SVO Eduardo Martín, J.A. Caballero, IAC T dwarfs Low-mass (60-13 MJup), low-temperature (< 1300-1500 K), low-luminosity brown

More information

Astronomy of Planets

Astronomy of Planets McDonald Press Releases: Triumphs and Ques7ons Globular Clusters Rotate at Heart Astronomers Discover Ancient Solar System with Five Earth- sized Planets Black Hole Chokes on a Swallowed Star Astronomers

More information

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data

The Gaia Archive. Center Forum, Heidelberg, June 10-11, 2013. Stefan Jordan. The Gaia Archive, COSADIE Astronomical Data The Gaia Archive Astronomisches Rechen-Institut am Zentrum für Astronomie der Universität Heidelberg http://www.stefan-jordan.de 1 2 Gaia 2013-2018 and beyond Progress with Gaia 3 HIPPARCOS Gaia accuracy

More information

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping

California Standards Grades 9 12 Boardworks 2009 Science Contents Standards Mapping California Standards Grades 912 Boardworks 2009 Science Contents Standards Mapping Earth Sciences Earth s Place in the Universe 1. Astronomy and planetary exploration reveal the solar system s structure,

More information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

1.1 A Modern View of the Universe Our goals for learning: What is our place in the universe? Chapter 1 Our Place in the Universe 1.1 A Modern View of the Universe What is our place in the universe? What is our place in the universe? How did we come to be? How can we know what the universe was

More information

Class 2 Solar System Characteristics Formation Exosolar Planets

Class 2 Solar System Characteristics Formation Exosolar Planets Class 1 Introduction, Background History of Modern Astronomy The Night Sky, Eclipses and the Seasons Kepler's Laws Newtonian Gravity General Relativity Matter and Light Telescopes Class 2 Solar System

More information

Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001

Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001 Gauging the Sun: Comparative photometric and magnetic activity measurements of sunlike stars, 1984-2001 G. W. Lockwood, J. C. Hall, & B. A. Skiff (Lowell Obs.) G. W. Henry (Tennessee State University)

More information

Detection of Transiting Planet Candidates in Kepler Mission Data

Detection of Transiting Planet Candidates in Kepler Mission Data Detection of Transiting Planet Candidates in Kepler Mission Data Peter Tenenbaum For the Kepler Transiting Planet Search Team 2012-June-06 SAO STScI! The Kepler Mission A space-based photometer searching

More information

AtmoSpheres in a test tube. Giuseppe Galletta Università di Padova

AtmoSpheres in a test tube. Giuseppe Galletta Università di Padova AtmoSpheres in a test tube Giuseppe Galletta Università di Padova INAF IASP INFN LF Dept. of Biology INAF OAPD Dept. of Physics and Astronomy Dept. of Biology INAF OAPA E. Pace A. Ciaravella G. Micela

More information

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.) Scale of the Solar System Scale of the Universe How big is Earth compared to our solar system? How far away are the stars? How big is the Milky Way Galaxy? How big is the Universe? How do our lifetimes

More information

Main Belt Comets. Asteroid belt s new class of objects and possible source of water and volatiles for the Earth

Main Belt Comets. Asteroid belt s new class of objects and possible source of water and volatiles for the Earth Main Belt Comets Asteroid belt s new class of objects and possible source of water and volatiles for the Earth A science white paper submitted to Astro2010 Decadal Survey (Planetary Systems and Star Formation)

More information

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room

Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room Welcome to Class 4: Our Solar System (and a bit of cosmology at the start) Remember: sit only in the first 10 rows of the room What is the difference between dark ENERGY and dark MATTER? Is Earth unique,

More information

Observing the Universe

Observing the Universe Observing the Universe Stars & Galaxies Telescopes Any questions for next Monday? Light Doppler effect Doppler shift Doppler shift Spectra Doppler effect Spectra Stars Star and planet formation Sun Low-mass

More information

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley

Chapter 1: Our Place in the Universe. 2005 Pearson Education Inc., publishing as Addison-Wesley Chapter 1: Our Place in the Universe Topics Our modern view of the universe The scale of the universe Cinema graphic tour of the local universe Spaceship earth 1.1 A Modern View of the Universe Our goals

More information

Census of Exoplanets (w/ Doppler observations) NASA

Census of Exoplanets (w/ Doppler observations) NASA Planetary Dynamics in the Kepler Era Eric B. Ford UF Frontiers September 2, 2011 w/ results from UF students/postdocs (Althea Moorhead, Robert Morehead, Benjamin Nelson, Matthew Payne), Kepler Follow-Up

More information

The Value of the Keck Observatory to NASA and Its Scientific Community

The Value of the Keck Observatory to NASA and Its Scientific Community The Value of the Keck Observatory to NASA and Its Scientific Community Rachel Akeson 1 and Tom Greene 2, NASA representatives to the Keck Science Steering Committee Endorsed by: Geoffrey Bryden Bruce Carney

More information

1 A Solar System Is Born

1 A Solar System Is Born CHAPTER 3 1 A Solar System Is Born SECTION Formation of the Solar System BEFORE YOU READ After you read this section, you should be able to answer these questions: What is a nebula? How did our solar system

More information

SPECTRAL EVOLUTION OF AN EARTH-LIKE PLANET

SPECTRAL EVOLUTION OF AN EARTH-LIKE PLANET SPECTRAL EVOLUTION OF AN EARTH-LIKE PLANET LISA KALTENEGGER Harvard Smithsonian Center for Astrophysics, 60 Garden Street, 02138 MA Cambridge, USA; lkaltenegger@cfa.harvard.edu WESLEY A. TRAUB Jet Propulsion

More information

arxiv:1101.4158v1 [astro-ph.sr] 21 Jan 2011

arxiv:1101.4158v1 [astro-ph.sr] 21 Jan 2011 HERMES high-resolution spectroscopy of HD 149382 Where did the planet go? arxiv:1101.4158v1 [astro-ph.sr] 21 Jan 2011 V.A. Jacobs, R.H. Østensen, H. Van Winckel, S. Bloemen, P.I. Pápics, G. Raskin, J.

More information

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics

Explorations of the Outer Solar System. B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics Explorations of the Outer Solar System B. Scott Gaudi Harvard-Smithsonian Center for Astrophysics The Known Solar System How big is the solar system? a tidal R 0 M Sun M Galaxy 1/3 200,000AU How big is

More information

Supplementary Material

Supplementary Material Supplementary Material Contents 1. Alternative designations, celestial coordinates and apparent magnitudes 2. Stellar properties 3. Data preparation and transit modeling 4. Kepler data validation 5. Follow

More information

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture

The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture The Birth and Assembly of Galaxies: the Relationship Between Science Capabilities and Telescope Aperture Betsy Barton Center for Cosmology University of California, Irvine Grateful acknowledgements to:

More information

The Search for Extrasolar Earth-like Planets S. Seager

The Search for Extrasolar Earth-like Planets S. Seager 1 Earth and Planetary Science Letters 208,113-124 (2003) The Search for Extrasolar Earth-like Planets S. Seager Department of Terrestrial Magnetism, Carnegie Institution of Washington, Washington, DC,

More information

PLATO: PLAnetary Transits and Oscillations of stars

PLATO: PLAnetary Transits and Oscillations of stars Home Search Collections Journals About Contact us My IOPscience PLATO: PLAnetary Transits and Oscillations of stars This content has been downloaded from IOPscience. Please scroll down to see the full

More information

Science Standard 4 Earth in Space Grade Level Expectations

Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Grade Level Expectations Science Standard 4 Earth in Space Our Solar System is a collection of gravitationally interacting bodies that include Earth and the Moon. Universal

More information

The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars

The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars The Star Formation Histories of Disk and E/S0 Galaxies from Resolved Stars Knut A.G. Olsen National Optical Astronomy Observatory kolsen@noao.edu Phone: (520)-318-8555 Co-authors: Aaron J. Romanowsky (UCO/Lick)

More information

Pianeti extrasolari, un opportunità di Education and Public Outreach

Pianeti extrasolari, un opportunità di Education and Public Outreach Pianeti extrasolari, un opportunità di Education and Public Outreach Antonio Maggio Istituto Nazionale di Astrofisica Osservatorio Astronomico di Palermo Why so an interesting topic Fundamental question

More information

Astronomy & Physics Resources for Middle & High School Teachers

Astronomy & Physics Resources for Middle & High School Teachers Astronomy & Physics Resources for Middle & High School Teachers Gillian Wilson http://www.faculty.ucr.edu/~gillianw/k12 A cosmologist is.... an astronomer who studies the formation and evolution of the

More information

MAST: The Mikulski Archive for Space Telescopes

MAST: The Mikulski Archive for Space Telescopes MAST: The Mikulski Archive for Space Telescopes Richard L. White Space Telescope Science Institute 2015 April 1, NRC Space Science Week/CBPSS A model for open access The NASA astrophysics data archives

More information

Light Telescopes. Grade Level: 5. 2-3 class periods (more if in-depth research occurs)

Light Telescopes. Grade Level: 5. 2-3 class periods (more if in-depth research occurs) Light Telescopes Grade Level: 5 Time Required: Suggested TEKS: Science - 5.4 Suggested SCANS Information. Acquires and evaluates information. National Science and Math Standards Science as Inquiry, Earth

More information

Lecture 13. Gravity in the Solar System

Lecture 13. Gravity in the Solar System Lecture 13 Gravity in the Solar System Guiding Questions 1. How was the heliocentric model established? What are monumental steps in the history of the heliocentric model? 2. How do Kepler s three laws

More information

Solar Ast ro p h y s ics

Solar Ast ro p h y s ics Peter V. Foukal Solar Ast ro p h y s ics Second, Revised Edition WI LEY- VCH WILEY-VCH Verlag Co. KCaA Contents Preface 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1 2.1.1 2.1.2 2.2 2.2.1 2.2.2 2.2.3 2.3

More information

Kepler Data and Tools. Kepler Science Conference II November 5, 2013

Kepler Data and Tools. Kepler Science Conference II November 5, 2013 Kepler Data and Tools Kepler Science Conference II November 5, 2013 Agenda Current and legacy data products (S. Thompson) Kepler Science Center tools (M. Still) MAST Kepler Archive (S. Fleming) NASA Exoplanet

More information

Spatially resolved spectroscopy of the exoplanet HR 8799 c

Spatially resolved spectroscopy of the exoplanet HR 8799 c Spatially resolved spectroscopy of the exoplanet HR 8799 c M. Janson 1,4, C. Bergfors 2, M. Goto 2, W. Brandner 2, D. Lafrenière 3 janson@astro.utoronto.ca ABSTRACT HR 8799 is a multi-planet system detected

More information

A.-L. Maire, S. Desidera, S. Esposito, A. Skemer, P. Hinz, & the LEECH & HOSTS teams

A.-L. Maire, S. Desidera, S. Esposito, A. Skemer, P. Hinz, & the LEECH & HOSTS teams A.-L. Maire, S. Desidera, S. Esposito, A. Skemer, P. Hinz, & the LEECH & HOSTS teams LEECH LBTI Exozodi Exoplanet Common Hunt PI: A. Skemer/Univ. Arizona (~130 nights) Search for & characterization young

More information

Ares V Launch Capability Enables Future Space Telescopes

Ares V Launch Capability Enables Future Space Telescopes Ares V Launch Capability Enables Future Space Telescopes H. Philip Stahl ------------J~S_A_MarshallSpace..Elig.ht-CenteI=,-Hun~&.:~--------- ABSTRACT NASA's Ares V cargo Immch vehicle offers the potential

More information

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics

Chapter 7 Our Planetary System. Agenda. Intro Astronomy. Intro Astronomy. What does the solar system look like? A. General Basics Chapter 7 Our Planetary System Agenda Pass back & discuss Test 2 Where we are (at) Ch. 7 Our Planetary System Finish Einstein s Big Idea Earth, as viewed by the Voyager spacecraft A. General Basics Intro

More information

FRESIP: A Mission to Determine the Character and Frequency of Extra-Solar Planets Around Solarlike

FRESIP: A Mission to Determine the Character and Frequency of Extra-Solar Planets Around Solarlike FRESIP: A Mission to Determine the Character and Frequency of Extra-Solar Planets Around Solarlike Stars W. J. Borucki, E. W. Dunham, D. G. Koch (NASA Ames Research Center, Moffett Field, CA 94035) W.

More information

Asteroid Compositions: Spectra S. K. Croft

Asteroid Compositions: Spectra S. K. Croft Asteroid Compositions: Spectra S. K. Croft Activity Description In this activity, you will estimate the surface composition of selected asteroids by comparing their reflectance spectra with the spectra

More information

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8.

The Main Point. Lecture #34: Solar System Origin II. Chemical Condensation ( Lewis ) Model. How did the solar system form? Reading: Chapter 8. Lecture #34: Solar System Origin II How did the solar system form? Chemical Condensation ("Lewis") Model. Formation of the Terrestrial Planets. Formation of the Giant Planets. Planetary Evolution. Reading:

More information

What is the Sloan Digital Sky Survey?

What is the Sloan Digital Sky Survey? What is the Sloan Digital Sky Survey? Simply put, the Sloan Digital Sky Survey is the most ambitious astronomical survey ever undertaken. The survey will map one-quarter of the entire sky in detail, determining

More information

Direct Imaging of Exoplanets

Direct Imaging of Exoplanets Direct Imaging of Exoplanets Wesley A. Traub Jet Propulsion Laboratory, California Institute of Technology Ben R. Oppenheimer American Museum of Natural History A direct image of an exoplanet system is

More information

Some Basic Principles from Astronomy

Some Basic Principles from Astronomy Some Basic Principles from Astronomy The Big Question One of the most difficult things in every physics class you will ever take is putting what you are learning in context what is this good for? how do

More information

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00

This paper is also taken for the relevant Examination for the Associateship. For Second Year Physics Students Wednesday, 4th June 2008: 14:00 to 16:00 Imperial College London BSc/MSci EXAMINATION June 2008 This paper is also taken for the relevant Examination for the Associateship SUN, STARS, PLANETS For Second Year Physics Students Wednesday, 4th June

More information

Architecture Frameworks in System Design: Motivation, Theory, and Implementation

Architecture Frameworks in System Design: Motivation, Theory, and Implementation Architecture Frameworks in System Design: Motivation, Theory, and Implementation Matthew Richards Research Assistant, SEARI Daniel Hastings Professor, Engineering Systems Division Professor, Dept. of Aeronautics

More information

Stony Brook University Caltech Palomar Observatory Partnership

Stony Brook University Caltech Palomar Observatory Partnership Stony Brook University Caltech Palomar Observatory Partnership Proposal Stanimir Metchev, Jin Koda, Frederick Walter, Michal Simon Department of Physics & Astronomy, Stony Brook University, NY 11794 and

More information

Discover the Universe AST-1002 Section 0427, Spring 2016

Discover the Universe AST-1002 Section 0427, Spring 2016 Discover the Universe AST-1002 Section 0427, Spring 2016 Instructor: Dr. Francisco Reyes Office: Room 12 Bryant Space Science Center Telephone: 352-294-1885 Email: freyes@astro.ufl.edu Office hours: Monday

More information

High-contrast coronagraph for ground-based imaging of Jupiter-like planets *

High-contrast coronagraph for ground-based imaging of Jupiter-like planets * High-contrast coronagraph for ground-based imaging of Jupiter-like planets * Jiang-Pei Dou 1, 2, De-Qing Ren 1, 2, 3, Yong-Tian Zhu 1, 2 1 National Astronomical Observatories/Nanjing Institute of Astronomical

More information

- the. or may. scales on. Butterfly wing. magnified about 75 times.

- the. or may. scales on. Butterfly wing. magnified about 75 times. Lecture Notes (Applications of Diffraction) Intro: - the iridescent colors seen in many beetles is due to diffraction of light rays hitting the small groovess of its exoskeleton - these ridges are only

More information

A Preliminary Summary of The VLA Sky Survey

A Preliminary Summary of The VLA Sky Survey A Preliminary Summary of The VLA Sky Survey Eric J. Murphy and Stefi Baum (On behalf of the entire Science Survey Group) 1 Executive Summary After months of critical deliberation, the Survey Science Group

More information

The Expanding Universe

The Expanding Universe Stars, Galaxies, Guided Reading and Study This section explains how astronomers think the universe and the solar system formed. Use Target Reading Skills As you read about the evidence that supports the

More information

Understanding Solar Variability as Groundwork for Planet Transit Detection

Understanding Solar Variability as Groundwork for Planet Transit Detection Stars as Suns: Activity, Evolution, and Planets IAU Symposium, Vol. 219, 2004 A. K. Dupree and A. O. Benz, Eds. Understanding Solar Variability as Groundwork for Planet Transit Detection Andrey D. Seleznyov,

More information

Archival Science with the ESAC Science Archives and Virtual Observatory

Archival Science with the ESAC Science Archives and Virtual Observatory Archival Science with the ESAC Science Archives and Virtual Observatory Deborah Baines Science Archives and VO Team Scientist European Space Agency (ESA) European Space Astronomy Centre (ESAC) Science

More information

Swarthmore College Newsletter

Swarthmore College Newsletter 93 Fog, clouds, and light pollution limit the effectiveness of even the biggest optical telescopes on Earth. Astronomers who study ultraviolet or X-ray emission of stars have been more limited because

More information

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5)

Pluto Data: Numbers. 14b. Pluto, Kuiper Belt & Oort Cloud. Pluto Data (Table 14-5) 14b. Pluto, Kuiper Belt & Oort Cloud Pluto Pluto s moons The Kuiper Belt Resonant Kuiper Belt objects Classical Kuiper Belt objects Pluto Data: Numbers Diameter: 2,290.km 0.18. Earth Mass: 1.0. 10 22 kg

More information

The Milky Way Galaxy is Heading for a Major Cosmic Collision

The Milky Way Galaxy is Heading for a Major Cosmic Collision The Milky Way Galaxy is Heading for a Major Cosmic Collision Roeland van der Marel (STScI) [based on work with a team of collaborators reported in the Astrophysical Journal July 2012] Hubble Science Briefing

More information

Using Photometric Data to Derive an HR Diagram for a Star Cluster

Using Photometric Data to Derive an HR Diagram for a Star Cluster Using Photometric Data to Derive an HR Diagram for a Star Cluster In In this Activity, we will investigate: 1. How to use photometric data for an open cluster to derive an H-R Diagram for the stars and

More information

Galaxy Survey data analysis using SDSS-III as an example

Galaxy Survey data analysis using SDSS-III as an example Galaxy Survey data analysis using SDSS-III as an example Will Percival (University of Portsmouth) showing work by the BOSS galaxy clustering working group" Cosmology from Spectroscopic Galaxy Surveys"

More information

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10

The Celestial Sphere. Questions for Today. The Celestial Sphere 1/18/10 Lecture 3: Constellations and the Distances to the Stars Astro 2010 Prof. Tom Megeath Questions for Today How do the stars move in the sky? What causes the phases of the moon? What causes the seasons?

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE

Data Provided: A formula sheet and table of physical constants is attached to this paper. DARK MATTER AND THE UNIVERSE Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Autumn Semester (2014-2015) DARK MATTER AND THE UNIVERSE 2 HOURS Answer question

More information

J-PAS: low-resolution (R 50) spectroscopy over 8000 deg 2

J-PAS: low-resolution (R 50) spectroscopy over 8000 deg 2 J-PAS: low-resolution (R 50) spectroscopy over 8000 deg 2 C. López-Sanjuan J. Cenarro, L. A. Díaz-García, J. Varela, K. Viironen, & the J-PAS team Centro de Estudio de Física del Cosmos de Aragón 10th

More information

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points.

Due Tuesday, January 27th IN CLASS. Grading Summary: Question 11: 12 points. Question 12: 26 points. Question 13: 12 Points. HOMEWORK #1 Solar System Exploration Due Tuesday, January 27th IN CLASS Answers to the questions must be given in complete sentences (except where indicated), using correct grammar and spelling. Please

More information

Big Data @ STScI. Enhancing STScI s Astronomical Data Science Capabilities over the Next Five Years

Big Data @ STScI. Enhancing STScI s Astronomical Data Science Capabilities over the Next Five Years Big Data @ STScI Enhancing STScI s Astronomical Data Science Capabilities over the Next Five Years Science Definition Team Report March 15, 2016 1 Table of Contents 1 Executive Summary... 3 2 Charter of

More information

Chapter 25.1: Models of our Solar System

Chapter 25.1: Models of our Solar System Chapter 25.1: Models of our Solar System Objectives: Compare & Contrast geocentric and heliocentric models of the solar sytem. Describe the orbits of planets explain how gravity and inertia keep the planets

More information

Activity: Multiwavelength Bingo

Activity: Multiwavelength Bingo ctivity: Multiwavelength background: lmost everything that we know about distant objects in the Universe comes from studying the light that is emitted or reflected by them. The entire range of energies

More information

Impact of Multi-Planet Systems on Exoplanet Searches

Impact of Multi-Planet Systems on Exoplanet Searches Impact of Multi-Planet Systems on Exoplanet Searches Eric B. Ford University of Florida Towards Other Earths: Perspectives and Limitations in the ELT Era Porto, Portugal October 21, 2009 Multi-Planet Systems

More information

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following: Unit 4 The Solar System Chapter 7 ~ The History of the Solar System o Section 1 ~ The Formation of the Solar System o Section 2 ~ Observing the Solar System Chapter 8 ~ The Parts the Solar System o Section

More information

Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations.

Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. Identifying the rotation rate and the presence of dynamic weather on extrasolar Earth-like planets from photometric observations. E. Pallé 1, Eric B. Ford 2, S. Seager 3, P. Montañés-Rodríguez 1, M. Vazquez

More information

Astronomy on Antarctic Plateau

Astronomy on Antarctic Plateau Astronomy on Antarctic Plateau Lifan Wang 1,8, Roger Angel 2, Michael Ashley 14, Xuelei Chen 3, Xiangqun Cui 1,16, Darren Depoy 8, Longlong Feng 1,5, Yipeng Jing 17, Eamonn Kerins 10, Jon Lawrence 14,

More information

Pathway Toward a Mid-Infrared Interferometer for the Direct Characterization of Exoplanets.

Pathway Toward a Mid-Infrared Interferometer for the Direct Characterization of Exoplanets. White Paper submitted to the US Decadal Survey Astro2010 (Planetary Systems and Star Formation Panel) Pathway Toward a Mid-Infrared Interferometer for the Direct Characterization of Exoplanets. Jean Schneider

More information

How To Set Up A Rov-Dfd (Rov Zero Point) Du)

How To Set Up A Rov-Dfd (Rov Zero Point) Du) DU640 Radial Velocity Zero-Point Software Requirement Specifications prepared by: approved by: reference: issue: 4 revision: 1 date: 28-03-2008 status: Issued G. Jasniewicz, F. Crifo, D. Hestroffer, A.

More information

Science@ESA vodcast series. Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia

Science@ESA vodcast series. Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia Science@ESA vodcast series Script for Episode 6 Charting the Galaxy - from Hipparcos to Gaia Available to download from http://sci.esa.int/gaia/vodcast Hello, I m Rebecca Barnes and welcome to the Science@ESA

More information

Astronomy Club of Asheville October 2015 Sky Events

Astronomy Club of Asheville October 2015 Sky Events October 2015 Sky Events The Planets this Month - page 2 Planet Highlights - page 10 Moon Phases - page 13 Orionid Meteor Shower Peaks Oct. 22 nd - page 14 Observe the Zodiacal Light - page 15 2 Bright

More information

englishforeveryone.org Name Date

englishforeveryone.org Name Date englishforeveryone.org Name Date Advanced Critical Reading - Hubble 5 10 15 20 25 30 35 40 The 32,000 word novella The Time Machine by H.G. Wells, published in 1895, is generally credited with popularizing

More information

United Nations - Nations Unies. COSPAR Symposium. Measuring the Universe. Looking Back in Time with Modern Astronomy. Monday, 2nd February 2015

United Nations - Nations Unies. COSPAR Symposium. Measuring the Universe. Looking Back in Time with Modern Astronomy. Monday, 2nd February 2015 United Nations - Nations Unies COSPAR Symposium Measuring the Universe Looking Back in Time with Modern Astronomy Monday, 2nd February 2015 15:00 18:00 Conference Rooms M1, Building M, Vienna International

More information

High Resolution Imaging in the Visible from the Ground without Adaptive Optics: New Techniques and Results

High Resolution Imaging in the Visible from the Ground without Adaptive Optics: New Techniques and Results High Resolution Imaging in the Visible from the Ground without Adaptive Optics: New Techniques and Results Craig Mackay *a, John Baldwin b, Nicholas Law a and Peter Warner b a Institute of Astronomy and

More information

Is There Life Out There?

Is There Life Out There? Is There Life Out There? The Search for Habitable Exoplanets Sara Seager To my sister Julia, for our childhood together Copyright 2009 by Sara Seager All rights reserved. No portion of this publication

More information

Extra-solar massive planets with small semi-major axes?

Extra-solar massive planets with small semi-major axes? Monografías de la Real Academia de Ciencias de Zaragoza. 25: 115 120, (2004). Extra-solar massive planets with small semi-major axes? S. Fernández, D. Giuliodori and M. A. Nicotra Observatorio Astronómico.

More information