SUDAS Revision Submittal Form

Size: px
Start display at page:

Download "SUDAS Revision Submittal Form"

Transcription

1 SUDAS Revision Submittal Form Status Date: As of 3/13/15 Topic: Permeable interlocking pavers Manual: Design & Specs Manual Location: Design Section 5L-1; Spec Section 7080 Requested Revision: Reason for Revision: Comments: See attached additions. Developed new sections to include in both manuals. None. District: Initial Comments: None. Final Comments: None. Action: Deferred Not Approved Approved District: Initial Comments: None. Final Comments: None. Action: Deferred Not Approved Approved District: Initial Comments: Clarify the second paragraph on page 1 of the Design section ("Permeable pavements can dramatically reduce the surface runoff from most rainfall events"). Note - added "disconnecting and distributing runoff through filtration and detention" to the end of the sentence. Final Comments: Delete "concrete" (when referencing the pavers) throughout the figures. Note - done. Action: Deferred Not Approved Approved District: Initial Comments: Page 2 of the Design section states that the operating speed of the facility should be below 45 mph; should that be 35 mph? What about clay pavers? In Spec Section 7080, 1.07, delete the surcharge language. Note - the speed was changed to 35 mph, clay pavers were added, and the surcharge language was deleted. Final Comments: None. Action: Deferred Not Approved Approved District: Initial Comments: Are there prequalification requirements? Show a detail of the curb and gutter section with intakes. Extend the aggregates under the curb and gutter section, similar to Figure Note - prequalification requirements were added and the figures were modified. Final Comments: PCC collar brings storm sewer collars to mind. Suggested using "PCC edge restraint" or "PCC band." Note - changed to PCC edge restraint. Action: Deferred Not Approved Approved

2 District: Initial Comments: None. Final Comments: In 1.08, F, 3 it says "refilling joint material after 6 months." Suggested deleting "material" because it makes it sound like the contractor just has to provide the material and maybe not doing the work. Note - done. Action: Deferred Not Approved Approved Final District Action Summary: All 6 districts approved; see comments above. Board of Directors Action:

3 DRAFT Design Manual Chapter 5 - Roadway Design 5L - Permeable Interlocking Pavers 5L-1 Permeable Interlocking Pavers A. General Permeable pavements are designed to infiltrate runoff, whereas runoff sheds off the surface of conventional pavements. In permeable pavements, runoff passes through the surface and is stored in the aggregate base. In pervious soils, the runoff infiltrates the soil; in less permeable soils, a subdrain system is placed to slowly discharge the runoff. Runoff volume reduction is achieved as the water is infiltrated into the underlying soils. Peak runoff rate reduction is realized due to the stormwater being stored in the aggregate subbase and slowly released to the downstream piping systems. Traditionally, at a minimum, the depth of the aggregate subbase is designed to meet the storage needs for the Water Quality Volume (WQv), which is 1.25 inches of rainfall in Iowa. Permeable pavements can dramatically reduce the surface runoff from most rainfall events by disconnecting and distributing runoff through filtration and detention. The use of permeable pavements can result in stormwater runoff conditions that approximate the predevelopment site conditions for the immediate area covered by the pavers. The design of permeable interlocking pavements (PIP) involves both structural and hydrological analyses. Figure 5L-1.01 illustrates a typical cross-section of a PIP. These two design elements are typically not interconnected and in reality are often in conflict. This is particularly the case with the subgrade treatment and volume of aggregate subbase. Structural design requires a compacted subgrade and the hydrologic design desires an uncompacted subgrade to allow as much infiltration as possible. In most instances, the hydrologic requirements for filter and storage aggregate exceed the structural needs for the unbound aggregate subbase. Figure 5L-1.01: Permeable Interlocking Paver Cross-section 1 DRAFT

4 Chapter 5 - Roadway Design 5L-1 - Permeable Interlocking Pavers PIP are used for low speed/low volume streets, alleys, parking lots, and driveways. The design and operating speed of the facility should be below 35 mph. Permeable paver projects should only be developed in areas dominated by impermeable surfaces or surfaces that are fully vegetated so that sediment runoff is minimized and life of the pavement is maximized. PIP are capable of handling truck traffic. The following elements should be reviewed prior to undertaking a detailed design process: Underlying geology and soils NRCS hydrologic soils groups History of fill, disturbance, or compaction of underlying soils Current drainage patterns and volume of runoff Local and downstream drainage facilities Distances to potable water supply wells Elevation of the static water table Traffic volumes, including percent trucks Because water is stored in the subbase rock, it may be necessary to protect structures that are adjacent to the permeable paver project by sealing the foundation walls. The PIP must be a minimum of 100 feet from a municipal water supply well. There are two types of permeable interlocking pavers. One type is concrete pavers that are 3 1/8 inches thick; the other type is clay brick pavers that are at least 2 5/8 inches thick. The concrete pavers must comply with ASTM C 936. There are two ASTM standards for brick pavers, depending on the traffic loading. ASTM C 902 is for pedestrian and light vehicular traffic locations. ASTM C 1272 is for heavier vehicular traffic and will be the type listed in the SUDAS Specifications. The clay pavers should be 2 3/4 inches thick, Type F brick for PX applications according to ASTM C B. Structural Design The design procedure for permeable interlocking pavers is the same as for flexible pavements. Research has shown that the load distribution and failure modes of PIP are similar to other flexible pavements. Because the designs are the same as for flexible pavements, the AASHTO Guide for Design of Pavement Structures (AASHTO, 1993) can be used. The paver used in design for concrete pavers is a 3 1/8 inch thick paver with a minimum 1 inch bedding layer. The structural coefficient is 0.44 per inch. This provides a structural number of The clay brick paver is 2 3/4 inches thick, which has a corresponding structural number of The remaining structural support comes from the aggregate layers and the soil subgrade. The American Society of Civil Engineers has developed a design standard called Structural Design of Interlocking Concrete Pavement for Municipal Streets and Roadways (ASCE/T&DI/ICPI 58-10). The structural design for clay brick pavers is the same as for concrete pavers. The engineer will need to determine or select the following: Design traffic loading (ESALS) Design life (40 years minimum) Design reliability (usually 75% to 80%) Overall standard deviation (0.45) Required structural number to meet traffic loading Initial serviceability (flexible pavements = 4.2) Terminal serviceability (local streets = 2.0) Subgrade resilient modulus based on saturated soil characteristics, including seasonal variability 2 DRAFT

5 Chapter 5 - Roadway Design 5L-1 - Permeable Interlocking Pavers Drainage conditions Once these elements are determined, the design thickness of the unbound aggregate subbase can be determined. The ASCE design standard has tables showing thickness of the layers that were developed using the AASHTO 1993 Guide. Thickness is selected based on the ESALS, the soil category, and the drainage. Three types of interlock are critical to achieve: vertical, rotational, and horizontal. Vertical interlock is achieved by the shear transfer of loads to surrounding pavers through the material in the joints. Rotational interlock is maintained by the pavers being of sufficient thickness and aspect ratio (3:1 minimum), being placed close together, and restrained by a curb from lateral forces of vehicle tires. Rotational interlock can be further enhanced if there is a slight crown to the pavement cross-section. Horizontal interlock is primarily achieved through the use of laying patterns that disperse forces from braking, turning, and accelerating vehicles. Herringbone patterns, either 45 or 90, are the most effective patterns for maintaining interlock. A string or soldier course should be used at the interface between the pavers and the edge restraint. A PCC edge restraint is typically used for street and alley projects. The edge restraint may be a standard curb and gutter section, a vertical curb section, or a narrow concrete slab, and should be placed on the subbase aggregates. After placement, the pavers are compacted with a high frequency plate compactor, which forces the joint material into the joints and begins compaction of the paver into the bedding layer. The pavement is transformed from a loose collection of pavers into an interlocked system capable of spreading vertical loads horizontally through the shear forces in the joints. One of the direct conflicts with the hydrologic design of PIP is the compaction of the subgrade soils. The structural design calls for subgrades compacted to 95% Modified Proctor Density according to AASHTO T 180. The effective compaction depth should be 12 inches minimum. This compaction requirement will prevent efficient infiltration of water through the subgrade and thus will likely necessitate a piping design to handle the stormwater that accumulates in the storage aggregate (unbound subbase). The engineer should provide a geotextile between the subgrade and the storage aggregate (subbase) as a means of preventing mixing of the materials. The geotextile should comply with Iowa DOT Section 4196 for subsurface drainage. C. Hydrologic Design The design process follows traditional storm sewer procedures for pavements. The initial step in the hydrologic design is the determination of the design storm event. Some agencies may establish the storm return period and the rainfall intensity. Information on intensity-duration-frequency for various return periods can be found in Chapter 2. In addition, the contributing area must be determined. The runoff volume should be determined according to the methods described in Chapter 2 using a design rainfall depth of 1.25 inches as a minimum, unless the jurisdiction has a different policy. The next step involves establishing the drainage area. The storm event is then applied to the drainage area and the volume of runoff is determined. The permeability of the subgrade soil is a critical design element. If the subgrade soil permeability is less than 1/2 inch per hour, a subdrain piping network will be needed. Soil compaction to support vehicular traffic will decrease permeability. Good design practice for vehicular traffic loads is to provide a minimum CBR of 5. Thus as the soil permeability is determined it should be assessed at 3 DRAFT

6 Chapter 5 - Roadway Design 5L-1 - Permeable Interlocking Pavers the density required to realize a CBR of 5 under soaked conditions. To maximize the effectiveness of the PIP, the pavement grade should be as flat as possible, although steeper grades can be used. The general guideline is that the longitudinal grade should be greater than 1% and less than 12%. Three design alternatives exist for the PIP. They are: Full infiltration: All of the stormwater runoff from the design storm is infiltrated into the subgrade soils. See Figure 5L-1.02.A. Partial exfiltration: Some of the design storm runoff is infiltrated and the remainder is collected in the subdrain system and slowly discharged into the downstream systems. This is accomplished by setting the subdrain pipe above the top of the subgrade. See Figure 5L B. Full Exfiltration: Soil permeability is limited and thus all of the runoff volume is carried away through the subdrain piping. See Figure 5L-1.02.C. Designers must also evaluate and provide for larger storm events. One way to provide for the larger storms but still provide for infiltration of the water quality storms is to raise the elevation of the intakes above the pavers so the small storms are infiltrated and the large storms are handled by the intakes and pipe network. Once the volume of runoff and the soil permeability are known, the thickness of the storage aggregate layer (Iowa DOT Gradation No. 13/ASTM Gradation No. 2) can be determined. The void space (volume of voids/volume of aggregate) for Iowa DOT Gradation No. 13 is 40%. A 40% void space provides 0.4 cubic feet of stormwater storage for each cubic foot of aggregate. Thus, the volume of the storage aggregate will need to be 2.5 times the volume of water to be stored. Due to the need to compact the subgrade soil to handle vehicles, it is very likely that subdrains will be needed to discharge at least a portion of the runoff. The elevation and sizing of the subdrains should be set to provide for full discharge of the design storm within 72 hours either through infiltration into the subgrade soil or through subdrain pipe discharge. In order to prevent absorption of the bedding stone into the storage aggregate layer, a layer of filter aggregate (Iowa DOT Gradation No. 3/ ASTM Gradation No. 57) is needed. This layer is typically 4 inches thick. The bedding aggregate (Iowa DOT Gradation No. 29/ASTM Gradation No. 8) is then placed 2 inches thick, compacted, and leveled. Fine graded sand should not be used as the bedding and for filling of voids due to the increased clogging potential. The pavers are placed, additional bedding stone is added to fill the voids in between the pavers, the area is swept, and finally the pavers are compacted. Sweeping prior to compaction is important to prevent stones on the surface from marring or cracking the pavers. That process may need to be repeated to entirely fill the voids. The final step is to sweep and remove any excess void filler stone. 4 DRAFT

7 Chapter 5 - Roadway Design 5L-1 - Permeable Interlocking Pavers Figure 5L-1.02: Permeable Interlocking Paver Design Alternatives 5 DRAFT

8 Chapter 5 - Roadway Design 5L-1 - Permeable Interlocking Pavers D. Construction Elements Monitoring and controlling the construction activities of a permeable interlocking paver project are critical to the long-term performance of the permeable pavement. Preventing and diverting sediment from entering the aggregates and pavement during construction must be of the highest priority. Aggregate stockpiles must be isolated to prevent contamination by sediment. Erosion and sediment control devices must be placed and maintained throughout the project until vegetation is fully established. All unnecessary vehicle and pedestrian traffic should be restricted once the aggregate placement has initiated. It may be necessary to wash vehicle and equipment tires to prevent tracking dirt and mud onto the aggregate layers. A test section (approximately 5 feet by 5 feet) should be constructed to provide a basis for construction monitoring. The test section should be placed on the prepared subgrade to illustrate the processes used to place the pavers and illustrate the paver pattern and the edge details. Restrict all equipment and workers from the paver placement area once the bedding stone has been placed, leveled, and compacted. Pavers may be placed by hand or mechanically. Placement should proceed from one end or side and continue work from the completed placement areas. An important consideration with mechanically placed pavers for large projects it to ensure the wear on the paver molds does not change the size of the pavers and thus impact the ability to correctly place the pavers. E. Maintenance As with any pavement, particularly permeable pavements, specific maintenance activities are necessary to achieve the design life of the pavement. PIP can become clogged with sediment that affects its infiltration rate. The rate of sedimentation can depend on the number and type of vehicles using the pavement, as well as the control of erosive soils adjacent to the pavement. The most important element of maintenance is keeping the sediment out of the pavement by vacuum sweeping. Regular vacuum street sweeping will maintain a high infiltration rate and keep out vegetation. Calibration of the vacuum force may be necessary to remove the sediment but minimize removal of the filler material from the joints. Over time, it may be necessary to add additional joint filler material to prevent intrusion by sediment. Winter maintenance involves plowing snow and applications of de-icing chemicals. Although not required, snowplows can be equipped with rubber edged blades to minimize chipping of the pavers. Use of de-icing chemicals is often not necessary because the PIP remains warmer throughout the winter. Sand should not be used as an abrasive for traction. The sand will clog the filler material in the pavement joints. 6 DRAFT

9 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers PERMEABLE INTERLOCKING PAVERS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Subgrade Preparation B. Placement of Storage Aggregate C. Placement of Filter Aggregate D. Placement of Bedding Course E. Placement of Permeable Interlocking Pavers F. Quality Control G. Protection of the Pavement 1.02 DESCRIPTION OF WORK Construct permeable interlocking pavement for mitigation of stormwater runoff SUBMITTALS A. Sample Pavers: Representative of the type and color proposed for the project. B. Installation Instructions: Manufacturer s published installation instructions. C. Material Certification: Submit certification letter from paver manufacturer indicating compliance with the ASTM specifications and the contract documents. D. Bedding, Filter, and Storage Aggregates: Submit 5 pound samples of each aggregate type. Include aggregate type, source, gradation, and compacted void content. E. Project Details: Include schedule, construction procedures, and quality control plan that describes material staging; paving direction; details of placement and compaction of the storage, filter, and bedding aggregate; and the paver installation procedures. F. Involved Parties: Submit a list of all subcontractors, material suppliers, and testing laboratories SUBSTITUTIONS Comply with Division 1 - General Provisions and Covenants DELIVERY, STORAGE, AND HANDLING Comply with Division 1 - General Provisions and Covenants SCHEDULING AND CONFLICTS Comply with Division 1 - General Provisions and Covenants. 1 DRAFT

10 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers 1.07 SPECIAL REQUIREMENTS A. Qualifications of Paver Installer: 1. Experience: Successful completion of paver installations similar in design, material, and extent. Provide project location, owner name, and contact information. 2. Certification: Successful completion of a permeable paver installation certification course developed by the Interlocking Concrete Paver Institute or the School for Advanced Segmental Paving. B. Test Section: Install a 5 foot by 5 foot mock-up paver area on the prepared substrate to determine joint sizes, lines, laying patterns, paver edge treatments, colors, and texture of the project. If approved by the Engineer, it may be incorporated into the project MEASUREMENT AND PAYMENT A. Class 10, Class 12, or Class 13 Excavation: Comply with Section 2010, 1.08, E. B. Engineering Fabric: 1. Measurement: Measurement will be in square yards for the surface area covered with engineering fabric. Both horizontal and vertical areas covered with engineering fabric will be measured. 2. Payment: Payment will be made at the unit price per square yard of engineering fabric. 3. Includes: Unit price includes, but is not limited to, placing and securing filter fabric and any overlapped areas. C. Underdrain: 1. Measurement: Each type and size of pipe installed will be measured in linear feet from end of pipe to end of pipe along the centerline of pipe, exclusive of outlets. The vertical height of cleanouts; the vertical height of observation wells; and lengths of elbows, tees, wyes, and other fittings will be included in the length of pipe measured. 2. Payment: Payment will be made at the unit price of each type and size of pipe. 3. Includes: Unit price includes, but is not limited to, furnishing and placing pipe, cleanouts, observation wells, and pipe fittings. D. Storage Aggregate: 1. Measurement: Measurement will be in tons based upon scale tickets for the material delivered and incorporated into the project. 2. Payment: Payment will be made at the unit price per ton of storage aggregate. 3. Includes: Unit price includes, but is not limited to, furnishing, hauling, placing, and compacting storage aggregate. 2 DRAFT

11 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers 1.08 MEASUREMENT AND PAYMENT (Continued) E. Filter Aggregate: 1. Measurement: Measurement will be in tons based upon scale tickets for the material delivered and incorporated into the project. 2. Payment: Payment will be made at the unit price per ton of filter aggregate. 3. Includes: Unit price includes, but is not limited to, furnishing, hauling, placing filter, and compacting aggregate. F. Permeable Interlocking Pavers: 1. Measurement: Measurement will be in square yards for the area of each type of permeable interlocking pavers installed. The area of manholes, intakes, or other fixtures in the pavement will not be deducted from the measured pavement area. 2. Payment: Payment will be made at the unit price per square yard of each type of permeable interlocking pavers. 3. Includes: Unit price includes, but is not limited to, testing, placement of bedding course, installing permeable interlocking pavers, placing joint/opening fill material, refilling joint after 6 months, and pavement protection. G. PCC Edge Restraint: 1. Measurement: Measurement will be in linear feet for each type and size of PCC edge restraint. The area of manholes, intakes, or other fixtures in the pavement will not be deducted from the measured pavement area. 2. Payment: Payment will be at the unit price per linear feet for each type and size of PCC edge restraint. 3. Includes: Unit price includes, but is not limited to, final trimming of subgrade or subbase, bars and reinforcement, joints and sealing, surface curing and pavement protection, safety fencing, and boxouts for fixtures. 3 DRAFT

12 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers PART 2 - PRODUCTS 2.01 ENGINEERING FABRIC Comply with Iowa DOT Section 4196, requirements for subsurface drainage UNDERDRAIN A. Provide slotted or perforated pipe(s) complying with the requirements for Type 1 Subdrain in Section B. Provide 6 inch diameter collector pipes unless otherwise specified in the contract documents. C. Provide 4 inch diameter lateral pipes unless otherwise specified in the contract documents AGGREGATE Provide crushed stone with 90% fractured faces. Wash all stone materials to ensure less than 2% passing the No. 200 sieve. A. Storage Aggregate: Aggregate complying with Iowa DOT Section 4122, Gradation No. 13, Class 2 durability (AASHTO M 43/ASTM D 448, Size 2). B. Filter Aggregate: Aggregate complying with Iowa DOT Section 4115, Gradation No. 3, Class 2 durability (AASHTO M 43/ASTM D 448, Size 57). C. Bedding/Joint/Void Filler Aggregate: Crushed stone complying with Iowa DOT Section 4125, Gradation No. 29 (AASHTO M 43/ASTM D 448, Size 8) PERMEABLE INTERLOCKING PAVERS A. Interlocking Concrete Pavers: Comply with ASTM C 936 for minimum 3 1/8 inch thick pavers. B. Clay Brick Pavers: Comply with ASTM C 1272 for minimum 2 3/4 inch thick, Type F brick for PX applications PCC EDGE RESTRAINT Provide PCC edge restraint complying with Section A PCC edge restraint may be standard curb and gutter section, a vertical curb section, or a narrow concrete slab. 4 DRAFT

13 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers PART 3 - EXECUTION 3.01 PRE-INSTALLATION PROTECTION A. Complete grading, utility installation, and other earth disturbing operations prior to excavating for the permeable paver system. B. Prior to placing permeable interlocking pavers, install sediment control practices upstream to protect the area from sediment in stormwater runoff from disturbed soil SUBGRADE PREPARATION FOR PERMEABLE INTERLOCKING PAVERS A. Excavate area to the elevations and grades specified in the contract documents. B. When underdrain is specified, excavate a minimum 12 inch wide by 8 inch deep trench at locations specified in the contract documents. C. Where fill materials are required, compact materials to 95% of maximum Modified Proctor Density. Do not over compact. D. Fill and lightly re-grade any areas damaged by erosion, ponding, or traffic compaction prior to placing the engineering fabric ENGINEERING FABRIC A. Install engineering fabric over completed subgrade, including trench for underdrain when specified. B. Overlap adjacent strips of fabric a minimum of 12 inches. C. Extend fabric up the sides of the subbase trench to the bottom of the proposed pavement UNDERDRAIN A. Underdrain Collector Pipes: 1. Place 2 inches of filter aggregate in the bottom of the underdrain trench over engineering fabric. 2. Begin underdrain collector installation at the outlet and continue upgrade. 3. Lay underdrain collector pipe to the proper line and grade. Place pipe with perforations down. 4. Place filter aggregate over installed pipe in layers no more than 6 inches thick. Thoroughly tamp each layer with mechanical tampers. 5. Provide cleanouts where specified in the contract documents. Comply with Figure Connect underdrain collector to outlet. Comply with Figure Install rodent guard on all underdrain pipe 6 inches or smaller. 7. Install underdrain cleanout pipes and observation wells as specified in the contract documents. 5 DRAFT

14 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers 3.04 UNDERDRAIN (Continued) B. Underdrain Lateral Pipes: 1. Place 2 inches of filter aggregate over the bottom of the prepared subgrade at lateral pipe locations specified in the contract documents. 2. Lay underdrain lateral over filter aggregate to the proper line and grade. Place pipe with perforations down. 3. Connect underdrain laterals to underdrain collector with wye or tee fitting. 4. Install plug or cap on upstream end of lateral pipe. 5. Place additional filter aggregate along each side of the lateral pipe to the springline of the pipe STORAGE AGGREGATE A. Place storage aggregate in 6 inch maximum lifts to the thickness specified in the contract documents. If underdrain system is specified, take care not to damage or displace pipe during placement of storage aggregate. B. Compact each lift with a vibratory drum roller until no visible movement can be seen in the aggregate layer. Do not crush aggregate. Do not operate compaction equipment directly over underdrain, until a minimum of 12 inches of storage aggregate is placed over the underdrain. C. Install storage aggregate to the elevation specified in the contract documents FILTER AGGREGATE A. Place filter aggregate directly over storage aggregate. B. Install aggregate in a single lift with a thickness of 4 inches. C. Lightly compact filter aggregate with one or two passes from a vibratory plate compactor or vibratory roller. If a vibratory roller is utilized, perform the final pass without vibration. Do not crush aggregate BEDDING AGGREGATE A. Place bedding aggregate directly over filter aggregate. B. Install aggregate in a single lift with a thickness of 2 inches. C. Use laser guided spreader or place screed rails on the completed filter aggregate layer. Use screed width no less than the full width of each cross-section component of the roadway and no less than 16 feet for parking areas. Surface variations must be within 3/8 inch when tested with a 10 foot straightedge prior to compaction. D. Lightly compact bedding aggregate with one or two passes from a vibratory plate compactor or vibratory roller. Recheck tolerance following compaction and make necessary corrections. Ensure surface is even, smooth with no roller ridges, and at the proper elevation to accommodate the pavers. E. Restrict pedestrians and equipment from screeded bedding prior to placement of pavers. 6 DRAFT

15 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers 3.08 INSTALLING PCC EDGE RESTRAINT Place PCC edge restraint according to Section INSTALLING INTERLOCKING PERMEABLE PAVER SYSTEM Place and install pavers according to the pattern specified, the paver manufacturer s published installation specifications, and the following: A. Where pavers are placed against a curb and gutter or other pavement, installation of an edge course or soldier course is required if the pavement edge is not straight. Trim pavers as required to compensate for deviations in the adjacent pavement edge. Do not cut pavers to less than 1/3 their original size. B. Install PCC edge restraint. C. Place chalk lines on the bedding course to maintain straight joint lines. D. After pavers have been installed on the bedding course, and all cut pavers have been inserted to provide a full and complete surface, inspect pavers for damaged units and irregular joint lines. Remove and replace pavers as required. E. After inspection and replacement of damaged pavers, fill joint openings with bedding stone. Sweep the surface clean. F. Compact pavement surface with two passes of a vibratory plate compactor capable of at least 5,000 pounds centrifugal compaction force. Do not operate plate compactor within 6 feet of an unrestrained pavement edge. G. Re-inspect pavers, and remove and replace all damaged units. Refill joint openings completely. Sweep pavers clean. Complete compaction with two passes of the plate compactor. H. Refill all paver joint openings with bedding aggregate 6 months after installation QUALITY CONTROL A. Ensure horizontal alignment of the PCC edge restraint is within 1/2 inch of design alignment. B. Ensure final surface is within 3/8 inch when tested with a 10 foot straightedge. C. Ensure no greater than 1/8 inch difference in height between adjacent pavers. D. Maintain surface elevation within 1/4 inch above adjacent drainage inlets, gutters, and other appurtenances PROTECTION OF PAVEMENT A. Protect pavement from heavy construction traffic, including trucks, skid steers, loaders, and all tracked vehicles. B. Provide barriers and protection as necessary. 7 DRAFT

16 DRAFT Division 7 - Streets and Related Work Section Permeable Interlocking Pavers 3.11 PROTECTION OF PAVEMENT (Continued) C. Do not place soil, mulch, sand, aggregate, or stockpile other materials on the pavement surface that may contaminate the pavement and plug the porous surface. D. Remove by vacuuming any base and bedding materials contaminated with sediment and replace with clean materials at no cost to the contracting authority. END OF SECTION 8 DRAFT

17 REVISION Refer to the contract documents for dimensions, grades, and additional requirements for permeable interlocking pavers and associated improvements. 1 Permeable interlocking pavers as specified in the contract documents. 2 2 inch minimum permeable pavement bedding aggregate to accomodate imperfections in the permeable pavement filter aggregate layer. 3 Permeable pavement storage aggregate thickness as specified in the contract documents. 4 When underdrain collectors and/or laterals are specified, install to the line and grade specified in the contract documents. Place permeable pavement filter aggregate to springline of pipe. Possible PCC curb and gutter or adjacent 6 pavement. 1 Set 4" below pavers Slope at 0% or as specified in the contract documents. 5 6 Place 4 inches of filter aggregate under curb and gutter section. Extend to 12 inches beyond the back of curb. Extend engineering fabric under aggregate. Install paver edge restraint system along unrestrained edges. 12" Permeable interlocking pavers Bedding Aggregate 2 4" Layer of Filter Aggregate 1 FIGURE SHEET 1 OF 1 5 Place filter aggregate around underdrain. 8" Place engineering fabric over subgrade and up sides of excavation. 12" 2" minimum Install 6" perforated underdrain collector when specified. 4 Install 4" slotted underdrain laterals and filter material when specified. 4 Slope subgrade as specified. Storage Aggregate 3 New SHEET 1 of 1 SUDAS Standard Specifications PERMEABLE INTERLOCKING PAVERS

18 REVISION Refer to the contract documents for dimensions, grades, and additional requirements for permeable interlocking pavers and associated improvements Permeable interlocking pavers as specified in the contract documents. 2 inch minimum permeable pavement bedding aggregate to accomodate imperfections in the permeable pavement filter aggregate layer. Permeable pavement storage aggregate thickness as specified in the contract documents. Set PCC edge restraint 1/4 inch below pavers. Alley Width (as specified) 2'-0" Bedding Aggregate 2 2'-0" 4 0% Slope Permeable Pavers 1 4 2% Slope 2% Slope 6" PCC Edge Restraint 4" Layer of Filter Aggregate Storage Aggregate 3 FIGURE SHEET 1 OF 1 Place engineering fabric over subgrade and up sides of excavation. Place filter aggregate around underdrain. 8" Slope subgrade at 1%. Install 6" perforated underdrain collector. New SHEET 1 of 1 SUDAS Standard Specifications TYPICAL ALLEY WITH PERMEABLE PAVERS

SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795)

SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795) SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795) Note: This guide specification for U.S. applications describes construction of permeable interlocking concrete

More information

Division 2 Section 32 14 13.19 Section 02795

Division 2 Section 32 14 13.19 Section 02795 Note: The text must be edited to suit specific project requirements. It should be reviewed by a qualified civil or geotechnical engineer, or landscape architect familiar with the site conditions. Edit

More information

SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795)

SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795) SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT (1995 MasterFormat Section 02795) Note: This guide specification for U.S. applications describes construction of permeable interlocking concrete

More information

SECTION 02795 UNI PERMEABLE INTERLOCKING CONCRETE PAVEMENT

SECTION 02795 UNI PERMEABLE INTERLOCKING CONCRETE PAVEMENT SECTION 02795 UNI PERMEABLE INTERLOCKING CONCRETE PAVEMENT Note: This guide specification is intended for use in the U.S. It describes construction of permeable interlocking concrete pavers on a permeable,

More information

SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT

SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT PART 1 GENERAL 1.1 SECTION INCLUDES SECTION 32 14 13.19 PERMEABLE INTERLOCKING CONCRETE PAVEMENT A. The requirements for construction of permeable interlocking concrete pavement: 1. Install the interlocking

More information

PERMEABLE INTERLOCKING CONCRETE PAVEMENT

PERMEABLE INTERLOCKING CONCRETE PAVEMENT [NOTE TO SPECIFICATION WRITER: This guide specification for the use of permeable interlocking concrete pavers for pedestrian and vehicular traffic application was developed based on the use of an open-graded

More information

SECTION 32 14 00 PERVIOUS INTERLOCKING CERAMIC PAVERS

SECTION 32 14 00 PERVIOUS INTERLOCKING CERAMIC PAVERS SECTION 32 14 00 PERVIOUS INTERLOCKING CERAMIC PAVERS Pervious interlocking pavers.doc Note: This guide specification for U.S. applications describes construction of permeable interlocking ceramic pavers

More information

PICP Construction. Why PICPs The Big Picture. Key things to know about PICPs

PICP Construction. Why PICPs The Big Picture. Key things to know about PICPs PICP Construction Permeable Interlocking Concrete Pavement Presenter: Frank Gandora, President Creative Hardscape Why PICPs The Big Picture Germany was first to develop PICPs 2005 Clean Water Act Federal

More information

SUBDRAINS AND FOOTING DRAIN COLLECTORS. A. Construct subdrains, subdrain cleanouts and outlets, and footing drain collectors.

SUBDRAINS AND FOOTING DRAIN COLLECTORS. A. Construct subdrains, subdrain cleanouts and outlets, and footing drain collectors. SUBDRAINS AND FOOTING DRAIN COLLECTORS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Subdrains B. Subdrain Cleanouts and Outlets C. Footing Drain Collectors D. Storm Sewer Service and Connections 1.02 DESCRIPTION

More information

40-9 PERMEABLE INTERLOCKING CONCRETE PAVEMENT

40-9 PERMEABLE INTERLOCKING CONCRETE PAVEMENT 40-9 PERMEABLE INTERLOCKING CONCRETE PAVEMENT 40-9.01 GENERAL 40-9.01A Summary Section 40-9 includes specifications for furnishing and installing concrete pavers for permeable interlocking concrete pavement

More information

GUIDE SPECIFICATIONS FOR CONSTRUCTION OF AQUAPAVE PERMEABLE STORMWATER MANAGEMENT SYSTEM

GUIDE SPECIFICATIONS FOR CONSTRUCTION OF AQUAPAVE PERMEABLE STORMWATER MANAGEMENT SYSTEM GUIDE SPECIFICATIONS FOR CONSTRUCTION OF AQUAPAVE PERMEABLE STORMWATER MANAGEMENT SYSTEM SECTION 32 14 13.19 AquaPave Permeable Interlocking Concrete Pavement Note: This guide specification is for the

More information

Section 2100-Trenching and Tunneling

Section 2100-Trenching and Tunneling SECTION 5200 - STORM SEWER PART 1 - GENERAL 1.01 SCOPE: This Section covers installation of storm sewer mains and culverts. Topics include permits and fees, trench widths, pipe laying, bedding, initial

More information

Guidelines for. Permeable Pavement

Guidelines for. Permeable Pavement What is permeable pavement? Guidelines for Permeable Pavement When rainwater falls on conventional pavement, such as concrete, it accumulates and then flows across and off of this impervious surface as

More information

SPECIFICATIONS. INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP)

SPECIFICATIONS. INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP) SPECIFICATIONS INTERLOCKING CONCRETE POROUS PAVING UNITS or Permeable Interlocking Concrete Pavers (PICP) Part 1 General 1.1 CONFORMITY Conforms to the requirements of the general conditions of the contract.

More information

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13)

SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised 11/5/13) Page 1 of 7 STONE STRONG SYSTEMS SPECIFICATIONS FOR PRECAST MODULAR BLOCK RETAINING WALL SYSTEM (revised ) PART 1: GENERAL 1.01 Description A. Work includes furnishing and installing precast modular blocks

More information

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS

State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS State of Illinois Department Of Transportation CONSTRUCTION INSPECTOR S CHECKLIST FOR STORM SEWERS While its use is not required, this checklist has been prepared to provide the field inspector a summary

More information

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

CONCRETE SEGMENTAL RETAINING WALL SYSTEM CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Classic 8 with PCS unit segmental retaining wall

More information

INSTALLATION SPECIFICATIONS FOR AQUAPERM TM PAVER

INSTALLATION SPECIFICATIONS FOR AQUAPERM TM PAVER INSTALLATION SPECIFICATIONS FOR AQUAPERM TM PAVER Applicable to all AquaPerm TM Permeable Unit Paver Systems FOREWORD These outline specifications have been prepared for the general guidance of architects,

More information

Permeable Pavement Construction Guide

Permeable Pavement Construction Guide Permeable Pavement Construction Guide Permeable pavement at Olympic Park, Waitakere Final Construction result What are permeable pavements? Permeable pavements are hard surface paving systems that reduce

More information

SECTION 02780 UNIT PAVERS. Logo Display hidden notes to specifier by using Tools / Options / View / Hidden Text.

SECTION 02780 UNIT PAVERS. Logo Display hidden notes to specifier by using Tools / Options / View / Hidden Text. SECTION 02780 UNIT PAVERS Logo Display hidden notes to specifier by using Tools / Options / View / Hidden Text. PART 1 GENERAL 1.1 SECTION INCLUDES A. Interlocking unit pavers and accessories with sand-filled

More information

Permeable Interlocking Concrete Pavements. The Stormwater Problem

Permeable Interlocking Concrete Pavements. The Stormwater Problem Permeable Interlocking Concrete Pavements The Stormwater Problem 1 Stormwater Management Objectives Water Quantity Accommodate water volumes & peak flows Water Quality Control pollutant levels A Low Impact

More information

Permeable Pavement Operation & Maintanence Guide

Permeable Pavement Operation & Maintanence Guide Permeable Pavement Operation & Maintanence Guide Permeable pavement at Olympic Park, Waitakere Final Construction result What are permeable pavements? Permeable pavements are hard surface paving systems

More information

Structural/Hydrologic Design & Maintenance of Permeable Interlocking Concrete Pavement

Structural/Hydrologic Design & Maintenance of Permeable Interlocking Concrete Pavement Structural/Hydrologic Design & Maintenance of Permeable Interlocking Concrete Pavement David R. Smith, Technical Director Interlocking Concrete Pavement InsCtute, Herndon, Virginia USA William F. Hunt,

More information

CONCRETE SEGMENTAL RETAINING WALL SYSTEM

CONCRETE SEGMENTAL RETAINING WALL SYSTEM CONCRETE SEGMENTAL RETAINING WALL SYSTEM PART 1: GENERAL SPECIFICATIONS 1.01 Work Included A. Work shall consist of furnishing and constructing a Rockwood Vintage TM unit segmental retaining wall (SRW)

More information

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701)

SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) SECTION 55 PIPE FOR STORM DRAINS AND CULVERTS (FAA D-701) 55-1 GENERAL The Contractor shall perform all work required by the plans for construction of pipe for storm drains, precast polymer trench drains

More information

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1

Index. protection. excavated drop inlet protection (Temporary) 6.50.1 6.51.1. Block and gravel inlet Protection (Temporary) 6.52.1 6 Index inlet protection excavated drop inlet protection (Temporary) 6.50.1 HARDWARE CLOTH AND GRAVEL INLET PROTECTION Block and gravel inlet Protection (Temporary) sod drop inlet protection ROCK DOUGHNUT

More information

Stormwater/Wetland Pond Construction Inspection Checklist

Stormwater/Wetland Pond Construction Inspection Checklist : Construction Inspection ChecklistsTools Stormwater/Wetland Pond Construction Inspection Checklist Project: Location: Site Status: Date: Time: Inspector: SATISFACTORY/ UNSATISFACTORY COMMENTS Pre-Construction/Materials

More information

Table 4.9 Storm Drain Inlet Protetion Applicable for

Table 4.9 Storm Drain Inlet Protetion Applicable for BMP C220: Storm Drain Inlet Protection Purpose To prevent coarse sediment from entering drainage systems prior to permanent stabilization of the disturbed area. Conditions of Use Type of Inlet Protection

More information

LID-01 Permeable Paving Systems

LID-01 Permeable Paving Systems Greenville County Technical Specification for LID-01 Permeable Paving Systems 1.0 Permeable Paving Systems 1.1 Description Permeable Paving Systems are a best management practice that captures stormwater

More information

DEVELOPMENT OF AN ASCE STANDARD FOR PERMEABLE INTERLOCKING CONCRETE PAVEMENT

DEVELOPMENT OF AN ASCE STANDARD FOR PERMEABLE INTERLOCKING CONCRETE PAVEMENT DEVELOPMENT OF AN ASCE STANDARD FOR PERMEABLE INTERLOCKING CONCRETE PAVEMENT David K. Hein, P. Eng. Vice-President, Applied Research Associates Inc., 5401 Eglinton Avenue West, Suite 204, Toronto, ON,

More information

C. Section 014510 TESTING LABORATORY SERVICE.

C. Section 014510 TESTING LABORATORY SERVICE. SECTION 014500 QUALITY CONTROL PART 1 GENERAL 1.01 RELATED REQUIREMENTS A. Drawings and General Provisions of Contract, including General and Special Conditions and other Division 1 Specification Sections,

More information

Permeable Interlocking Concrete Pavements

Permeable Interlocking Concrete Pavements Permeable Interlocking Concrete Pavements Rick Crooks, Director of Business Development Mutual Materials Co. Bellevue, WA 1-800-477-3008 rcrooks@mutualmaterials.com Stormwater Management Approaches: Restrict

More information

The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified.

The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified. Section 33 0200- Page 1 of 4 PART 1 - GENERAL 1.1 DESCRIPTION OF WORK The work of this Section includes furnishing and installing Reinforced Concrete Pressure Pipe as shown on the Drawings and as specified.

More information

SECTION 08000 STORM DRAINAGE TABLE OF CONTENTS

SECTION 08000 STORM DRAINAGE TABLE OF CONTENTS SECTION 08000 STORM DRAINAGE 08010 DESIGN A. Location B. Sizing TABLE OF CONTENTS 08020 MATERIALS A. Pipe Materials B. Structure Materials C. Installation D. Inlets and Outlets 08030 INSPECTIONS AND TESTING

More information

Chapter 3 CULVERTS. Description. Importance to Maintenance & Water Quality. Culvert Profile

Chapter 3 CULVERTS. Description. Importance to Maintenance & Water Quality. Culvert Profile Chapter 3 CULVERTS Description A culvert is a closed conduit used to convey water from one area to another, usually from one side of a road to the other side. Importance to Maintenance & Water Quality

More information

Porous Pavement Alternatives Cost Analysis

Porous Pavement Alternatives Cost Analysis Porous Pavement Alternatives Cost Analysis Prepared by Century West Engineering for Metro This cost analysis compares the construction costs of six different types of pavement for three different scenarios.

More information

Civil. 2. City of Seattle Supplement to the Specification for Road, Bridge and Municipal Construction, most current addition.

Civil. 2. City of Seattle Supplement to the Specification for Road, Bridge and Municipal Construction, most current addition. Design Guide Basis of Design This section applies to the design and installation of earthwork and backfill. Design Criteria No stockpiling of excavation materials is allowed unless the Geotechnical Engineer

More information

Pervious Pavers. By: Rich Lahren. Hebron Brick & Block Supply

Pervious Pavers. By: Rich Lahren. Hebron Brick & Block Supply Pervious Pavers By: Rich Lahren Hebron Brick & Block Supply Stormwater Management and Control Issues Past emphasis was on flood control Today s emphasis is also on pollution More impermeable areas are

More information

Solutions Library Solution 4: Permeable Pavement

Solutions Library Solution 4: Permeable Pavement SOILS TREES RAINGARDENS Solutions Library Solution 4: "Think like water. Go with the flow." -Frances Kato, Issaquah School District Student 59 60 How Works? Explanation of Diagram The most significant

More information

Permeable Interlocking Concrete Pavements

Permeable Interlocking Concrete Pavements Permeable Interlocking Concrete Pavements Rick Crooks, Director of Business Development Mutual Materials Co. Bellevue, WA 1-800-477-3008 rcrooks@mutualmaterials.com Stormwater Management Approaches: Restrict

More information

CHAPTER 17: STORM SEWER STANDARDS. 17.00 Introduction. 17.01 Administration. 17.02 Standards 17.1

CHAPTER 17: STORM SEWER STANDARDS. 17.00 Introduction. 17.01 Administration. 17.02 Standards 17.1 CHAPTER 17: STORM SEWER STANDARDS 17.00 Introduction 17.01 Administration 17.02 Standards 17.1 17.00 INTRODUCTION The purpose of this chapter is to provide guidance for the design and construction of storm

More information

>S`[SOPZS 7\bS`Z]QYW\U 1]\Q`SbS >OdS[S\b

>S`[SOPZS 7\bS`Z]QYW\U 1]\Q`SbS >OdS[S\b BSQV\WQOZ 5cWRS >S`[SOPZS 7\bS`Z]QYW\U 1]\Q`SbS >OdS[S\b / 0S 0Sab ab ;O ;O\O \OUS \O US[S\b US \b >` >`OQ OQbW OQ bwqs bw QS b] 1] 1]\b \b`] \b `]ZZ Ab `] Ab]` ]`[e [eob [e ObS` Ob S` @c @c\] \]TT \]

More information

Caltrans non-standard Special Provisions Pervious Concrete. David Akers Feb 28, 2012

Caltrans non-standard Special Provisions Pervious Concrete. David Akers Feb 28, 2012 Caltrans non-standard Special Provisions Pervious Concrete David Akers Feb 28, 2012 Section Paragraph Content 19 RSS 19-5.03B Changes title of the section 19-5.03B USAGE NOTES FOR PERVIOUS CONCRETE AND

More information

APPENDIX F. RESIDENTIAL WATER QUALITY PLAN: ALLOWABLE BMP OPTIONS

APPENDIX F. RESIDENTIAL WATER QUALITY PLAN: ALLOWABLE BMP OPTIONS APPENDIX F. RESIDENTIAL WATER QUALITY PLAN: ALLOWABLE BMP OPTIONS The following section provides descriptions, advantages, limitations, and schematics of allowable best management practices (BMPs) for

More information

SECTION 311 PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE

SECTION 311 PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE PLACEMENT AND CONSTRUCTION OF CEMENT TREATED SUBGRADESOIL CEMENT BASE COURSE 311.1 DESCRIPTION: This item shall consist of a cement treated subgrade base course composed of a mixture of local soil, portland

More information

SECTION 31 20 00 EARTH MOVING

SECTION 31 20 00 EARTH MOVING SECTION 31 20 00 PART 1 - GENERAL 1.01 DESCRIPTION A. This Section describes the requirements for excavating, filling, and grading for earthwork at Parking Structure, new exit stair and as required to

More information

Permeable Interlocking Concrete Pavement (PICP) A Low Impact Development Tool Training for Schools and Universities

Permeable Interlocking Concrete Pavement (PICP) A Low Impact Development Tool Training for Schools and Universities Permeable Interlocking Concrete Pavement (PICP) A Low Impact Development Tool Training for Schools and Universities Presented by: Interlocking Concrete Pavement Institute The Low Impact Development Center,

More information

CONSTRUCTION MANAGER S WEEKLY PROGRESS REPORT

CONSTRUCTION MANAGER S WEEKLY PROGRESS REPORT Volkert Field Office 80 M Street SE, Suite 725 Washington, DC 20003 RIVERSMART WASHINGTON - CONSTRUCTION RIVERSMART MACFARLAND, RIVERSMART LAFAYETTE AND GREEN ALLEYS CHEVY CHASE D.C. Contract No.: DCKA-2013-C-0160

More information

Building Your Interlocking Concrete Pavement to Last a Lifetime

Building Your Interlocking Concrete Pavement to Last a Lifetime Building Your Interlocking Concrete Pavement to Last a Lifetime A Guide for Consumers Contents Building Your Interlocking Concrete Pavement to Last a Lifetime.... 3 What Does Installation Involve?....

More information

SECTION 02530 STORM DRAINAGE STRUCTURES. 1. Trench excavation, backfill, and compaction; Section 02250.

SECTION 02530 STORM DRAINAGE STRUCTURES. 1. Trench excavation, backfill, and compaction; Section 02250. 02530-1 of 5 SECTION 02530 STORM DRAINAGE STRUCTURES 02530.01 GENERAL A. Description Storm drainage structure construction shall include, but not necessarily be limited to, furnishing and installing or

More information

DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS

DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS DESCRIPTION OF STORMWATER STRUCTURAL CONTROLS IN MS4 PERMITS Phase I MS4 permits require continuous updating of the stormwater system inventory owned and operated by the MS4. They also include inspection

More information

Minimizes sediment and debris from entering storm drains that lead to waterways and watercourses.

Minimizes sediment and debris from entering storm drains that lead to waterways and watercourses. 4.5-p DRAIN INLET PROTECTION Alternative Names: DI protection, Drop Inlet Protection DESCRIPTION Storm drain inlet (DI) protection slows and ponds stormwater, and filters sediment and debris before it

More information

Dave Laurie, CTR. Sales Manager, Commercial Sales DESIGNED TO CONNECT

Dave Laurie, CTR. Sales Manager, Commercial Sales DESIGNED TO CONNECT Dave Laurie, CTR Sales Manager, Commercial Sales DESIGNED TO CONNECT Permeable Pavements For Sustainable Development Agenda Unit paver technology Permeable Interlocking Concrete Paver - research, technical

More information

City of Shelbyville Site Inspection Checklist

City of Shelbyville Site Inspection Checklist City of Shelbyville Site Inspection Checklist General Information Project Name: KYR10 Permit Number: Date: Project Location: Contractor: Conractor Representative: Inspector's Name: Title: Signature : Weather

More information

Section 600 Incidental Construction

Section 600 Incidental Construction Table of Contents 1. Pipe Culverts... 600-1 A. Endwalls, Inlets, Manholes, and Spring Boxes... 600-5 2. Grade Adjustment of Existing Miscellaneous Structures... 600-8 3. Rebuilt Miscellaneous Structures...

More information

Land Disturbance, Erosion Control and Stormwater Management Checklist. Walworth County Land Conservation Department

Land Disturbance, Erosion Control and Stormwater Management Checklist. Walworth County Land Conservation Department Land Disturbance, Erosion Control and Stormwater Management Checklist Walworth County Land Conservation Department The following checklist is designed to assist the applicant in complying with the Walworth

More information

Permeable Clay Brick Pavements

Permeable Clay Brick Pavements TECHNICAL NOTES on Brick Construction 1850 Centennial Park Drive, Reston, Virginia 20191 www.gobrick.com 703-620-0010 Permeable Clay Brick Pavements 14D February 2012 Abstract: This Technical Note describes

More information

Local Road Assessment and Improvement Drainage Manual

Local Road Assessment and Improvement Drainage Manual Local Road Assessment and Improvement Drainage Manual Donald Walker, T.I.C. Director, author Lynn Entine, Entine & Associates, editor Susan Kummer, Artifax, design Transportation Information Center University

More information

Storm Drain Inlet Protection

Storm Drain Inlet Protection Categories EC Erosion Control SE Sediment Control TC Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control Legend: Primary Category

More information

AUSTRALIAN PAVING CENTRE

AUSTRALIAN PAVING CENTRE AUSTRALIAN PAVING CENTRE The Concept 02 The concept of Ecopave permeable paving is already well established in many countries where development threatens already over-stretched drainage and river systems.

More information

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission.

SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS. Prepared by Risi Stone Systems Used by permission. SIENA STONE GRAVITY RETAINING WALL INSTALLATION SPECIFICATIONS Prepared by Risi Stone Systems Used by permission. 1-800-UNILOCK www.unilock.com FOREWORD This outline specification has been prepared for

More information

UFGS-02362 (August 2004) UNIFIED FACILITIES GUIDE SPECIFICATIONS

UFGS-02362 (August 2004) UNIFIED FACILITIES GUIDE SPECIFICATIONS USACE / NAVFAC / AFCEC / NASA UFGS-31 31 16.20 (April 2006) Change 2-11/14 ----------------------------- Preparing Activity: NAVFAC Replacing without change UFGS-02362 (August 2004) UNIFIED FACILITIES

More information

SECTION 33 41 13 PUBLIC STORM UTILITY DRAINAGE PIPING

SECTION 33 41 13 PUBLIC STORM UTILITY DRAINAGE PIPING SECTION 33 41 13 PUBLIC STORM PART 1 - GENERAL 1.01 SECTION INCLUDES A. Storm drainage piping, fittings, and accessories at proposed station areas and locations other than under and immediately adjacent

More information

Storm Drain Inlet Protection

Storm Drain Inlet Protection Objectives EC Erosion Control SE Sediment Control TR Tracking Control WE Wind Erosion Control Non-Stormwater NS Management Control Waste Management and WM Materials Pollution Control Legend: Primary Objective

More information

BMP-7. A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet.

BMP-7. A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet. BMP-7 BMP: STORM DRAIN INLET PROTECTION Definition A sediment filter or an excavated impounding area around a storm drain drop inlet or curb inlet. To prevent sediment from entering storm drainage systems

More information

Permeable Interlocking Concrete Pavement

Permeable Interlocking Concrete Pavement Permeable Interlocking Concrete Pavement A Comparison Guide to Porous Asphalt and Pervious Concrete Permeable pavement is becoming a major tool for on-site stormwater management. Background The past century

More information

Seven. Easy Steps. Your Own Walkway, Without Mortar. or Concrete. to Installing. Driveway and Patio

Seven. Easy Steps. Your Own Walkway, Without Mortar. or Concrete. to Installing. Driveway and Patio Seven Easy Steps to Installing Your Own Walkway, Driveway and Patio Without Mortar or Concrete Brick is one of the world s oldest and most enduring building materials. Those same qualities also make it

More information

SE-10 STORM DRAIN INLET PROTECTION. Objectives

SE-10 STORM DRAIN INLET PROTECTION. Objectives STORM DRAIN INLET PROTECTION SE-10 Objectives Erosion Control - EC Sediment Control - SE Tracking Control - TC Wind Erosion Control - WE Non-Storm Water Management - NS Waste and Materials Management -

More information

Specification Guidelines: Allan Block Modular Retaining Wall Systems

Specification Guidelines: Allan Block Modular Retaining Wall Systems Specification Guidelines: Allan Block Modular Retaining Wall Systems The following specifications provide Allan Block Corporation's typical requirements and recommendations. At the engineer of record's

More information

Installation PowerPoint for Grasscrete Formers

Installation PowerPoint for Grasscrete Formers Installation PowerPoint for Grasscrete Formers 1 This document describes the two single-use tools utilized to create the Grasscrete product. The original Former is a vacuum formed light gauge plastic mold

More information

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS

SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS SECTION 36 - CAST-IN-PLACE CONCRETE PIPE (CIPCP) TABLE OF CONTENTS Section Page 36-1 GENERAL... 36.1 36-2 PIPEMAKING EQUIPMENT... 36.1 36-3 TRENCH EXCAVATION... 36.1 36-4 SPECIAL FOUNDATION TREATMENT...

More information

Improving Storm Water Management

Improving Storm Water Management Improving Storm Water Management Situation / Impervious surfaces negative effects / Challenges for city officials Sustainable development is meeting the needs of the present without compromising the ability

More information

SECTION 02400 - STORM DRAIN SYSTEM

SECTION 02400 - STORM DRAIN SYSTEM SECTION 02400 - STORM DRAIN SYSTEM CONTENTS: Part 1 - General... 1 1.01 Work Included... 1 1.02 Related Requirements... 1 1.03 Reference Standards... 1 1.04 Quality Assurance... 1 1.05 Measurement And

More information

SECTION 02150 REMOVAL OR ABANDONMENT OF EXISTING UTILITIES AND UNDERGROUND STRUCTURES. 1. Trench excavation, backfill, and compaction; Section 02250.

SECTION 02150 REMOVAL OR ABANDONMENT OF EXISTING UTILITIES AND UNDERGROUND STRUCTURES. 1. Trench excavation, backfill, and compaction; Section 02250. 02150-1 of 6 SECTION 02150 REMOVAL OR ABANDONMENT OF EXISTING 02150.01 GENERAL A. Description Removal or abandonment of existing utilities and underground structures shall include, but not necessarily

More information

STORM DRAINS CHAPTER 7

STORM DRAINS CHAPTER 7 CHAPTER 7 Chapter 7 - Storm Drains A storm drain is a drainage system that conveys water or stormwater, consisting of two or more pipes in a series connected by one or more structures. Storm drains collect

More information

Permeable Pavement Treatment Capacity

Permeable Pavement Treatment Capacity Permeable Pavement Treatment Capacity April 20 2011 This investigation will analyze the pollutant removal capacity of various types of permeable paving techniques. Daniel Sullivan Joseph Fleury Contents

More information

2J-1 General Information for Permeable Pavement Systems

2J-1 General Information for Permeable Pavement Systems Iowa Stormwater Management Manual 2J-1 2J-1 General Information for Permeable Pavement Systems A. Introduction This section provides design guidelines for a group of stormwater management BMPs broadly

More information

CLEANING, INSPECTION, AND TESTING OF SEWERS

CLEANING, INSPECTION, AND TESTING OF SEWERS CLEANING, INSPECTION, AND TESTING OF SEWERS PART 1 - GENERAL 1.01 SECTION INCLUDES A. Cleaning, Inspecting, and Testing Sanitary Sewers B. Cleaning, Inspecting, and Testing Storm Sewers C. Cleaning and

More information

Vehicle Tracking Pad

Vehicle Tracking Pad Stormwater Quality Best Management Practices Construction Sites s When to use: Where construction vehicles leave active construction areas onto surfaces where runoff is not checked by sediment controls

More information

Other variations of permeable pavement that are DDOE-approved permeable pavement surface materials are also encompassed in this section.

Other variations of permeable pavement that are DDOE-approved permeable pavement surface materials are also encompassed in this section. Section 3.4. Permeable Pavement Systems Definition. Alternative paving surfaces that capture and temporarily store the Stormwater Retention Volume (SWRv) by filtering runoff through voids in the pavement

More information

Interlocking Concrete Pavement Institute (ICPI) Model Stormwater Ordinance for Permeable Interlocking Concrete Pavements August 2010

Interlocking Concrete Pavement Institute (ICPI) Model Stormwater Ordinance for Permeable Interlocking Concrete Pavements August 2010 Interlocking Concrete Pavement Institute (ICPI) Model Stormwater Ordinance for Permeable Interlocking Concrete Pavements August 2010 Background What are permeable interlocking concrete pavements (PICP)?

More information

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS

CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS December 2014 CW 3110 SUB-GRADE, SUB-BASE AND BASE COURSE CONSTRUCTION TABLE OF CONTENTS 1. DESCRIPTION... 1 1.1 General... 1 1.2 Definitions... 1 1.3 Referenced Standard Construction Specifications...

More information

SECTION 33 31 00.11 GRAVITY SANITARY SEWERS

SECTION 33 31 00.11 GRAVITY SANITARY SEWERS SECTION 33 31 00.11 GRAVITY SANITARY SEWERS PART 1: GENERAL 1.01 SCOPE A. Gravity sanitary sewers and appurtenances. 1.02 SUBMITTALS A. Conform to requirements of Section 01 33 00 Submittals. B. Submit

More information

ARTICLE VI (ALTERNATE) STANDARD SPECIFICATIONS. for (PVC) SANITARY SEWER MAIN CONSTRUCTION

ARTICLE VI (ALTERNATE) STANDARD SPECIFICATIONS. for (PVC) SANITARY SEWER MAIN CONSTRUCTION ARTICLE VI (ALTERNATE) STANDARD SPECIFICATIONS for (PVC) SANITARY SEWER MAIN CONSTRUCTION VI(A).1 General VI(A).2 Materials and Equipment VI(A).3 Installation of Sanitary Sewer Mains VI(A).4 Laying of

More information

4-02 Gravel Base. 4-04 Ballast and Crushed Surfacing

4-02 Gravel Base. 4-04 Ballast and Crushed Surfacing Chapter 4 Bases 4-02 Gravel Base GEN 4-02.1 General Instructions Gravel Base is typically used in the construction of the roadway section and provides support for the pavement. For the pavement to provide

More information

Advancements in Permeable Pavements

Advancements in Permeable Pavements Advancements in Permeable Pavements Engineers Workshop Saint Vincent College March 14 & 15 2013 Permeable Pavements There are several different words that are used to describe a pavement that water drains

More information

SPECIFICATION FOR CONSTRUCTION OF UNBOUND GRANULAR PAVEMENT LAYERS

SPECIFICATION FOR CONSTRUCTION OF UNBOUND GRANULAR PAVEMENT LAYERS TNZ B/02:2005 SPECIFICATION FOR CONSTRUCTION OF UNBOUND 1. SCOPE This specification shall apply to the construction of unbound granular pavement layers. The term pavement layer shall apply to any layer

More information

Replace with: Section 3.4.1 2011-09-01 REQUEST FOR TENDER RFT 15 (2011-08) PARKING LOT 2 RESURFACING ADDENDUM # 2. - Page 1 of 2 -

Replace with: Section 3.4.1 2011-09-01 REQUEST FOR TENDER RFT 15 (2011-08) PARKING LOT 2 RESURFACING ADDENDUM # 2. - Page 1 of 2 - 2011-09-01 REQUEST FOR TENDER RFT 15 (2011-08) PARKING LOT 2 RESURFACING ADDENDUM # 2 - Page 1 of 2 - This addendum shall be incorporated into, and form part of RFT 15 (2011-08) and take precedence over

More information

Section 402. STORM SEWERS

Section 402. STORM SEWERS 402.02 Section 402. STORM SEWERS 402.01. Description. This work consists of constructing storm sewers of the size and class required, including excavation, bedding, and backfill. 402.02. Materials. Provide

More information

Industry Guidelines for Permeable Interlocking Concrete Pavement in the United States and Canada

Industry Guidelines for Permeable Interlocking Concrete Pavement in the United States and Canada Summary 10 th International Conference on Concrete Block Paving Industry Guidelines for Permeable Interlocking Concrete Pavement in the United States and Canada David R. Smith, Technical Director Interlocking

More information

Bethel Township Municipal Authority (BTMA) RESIDENTIAL SEWER CONNECTION MANUAL

Bethel Township Municipal Authority (BTMA) RESIDENTIAL SEWER CONNECTION MANUAL 155 E. Front Street (rear) Lititz, PA 17543 Phone (717) 625-1930 Fax (717) 625-1931 Bethel Township Municipal Authority (BTMA) RESIDENTIAL SEWER CONNECTION MANUAL CONSTRUCTION SPECIFICATIONS AND DETAILS

More information

BMP #: Dry Wells / French Drains

BMP #: Dry Wells / French Drains Structural BMP Criteria BMP #: Dry Wells / French Drains A Dry Well, or French Drain, is a variation on an Infiltration Trench that is designed to temporarily stores and infiltrate rooftop runoff. Key

More information

GREEN ROOFS. Location. Design SMALL COMMERCIAL GUIDE CITY OF ATLANTA, GEORGIA DEPARTMENT OF WATERSHED MANAGEMENT

GREEN ROOFS. Location. Design SMALL COMMERCIAL GUIDE CITY OF ATLANTA, GEORGIA DEPARTMENT OF WATERSHED MANAGEMENT SMALL COMMERCIAL GUIDE CITY OF ATLANTA, GEORGIA DEPARTMENT OF WATERSHED MANAGEMENT GREEN ROOFS A green roof is a system consisting of waterproofing material, growing medium, and vegetation, and is used

More information

Storm Drain Inlet Protection - IP

Storm Drain Inlet Protection - IP Storm Drain Inlet Protection - IP DEFINITION A temporary protective device formed around a storm drain drop inlet to trap sediment. PURPOSE To prevent sediment from entering storm drainage systems, prior

More information

Guidelines for Control of Water Runoff on Small Lots. Revised 6/09

Guidelines for Control of Water Runoff on Small Lots. Revised 6/09 Guidelines for Control of Water Runoff on Small Lots Revised 6/09 Table of Contents Introduction and Purpose 3 Administrative Procedures 3 Plan Submittal Requirements 3 General Design Criteria 4 Dry Wells

More information

LS 2540 SEWER LATERALS AND INSPECTION TEES

LS 2540 SEWER LATERALS AND INSPECTION TEES LS 2540 SEWER LATERALS AND INSPECTION TEES A. Summary B. Submittals C. Site Information D. Sewer Pipe and Fittings E. Lateral Locations F. Lateral Installation G. Inspection Tee Installation H. Removal

More information

MDWASD 8/1999 SECTION 02315 TRENCHING AND BACKFILLING FOR PIPING SYSTEMS

MDWASD 8/1999 SECTION 02315 TRENCHING AND BACKFILLING FOR PIPING SYSTEMS PART 1 - GENERAL 1.01 WORK INCLUDED SECTION 02315 TRENCHING AND BACKFILLING FOR PIPING SYSTEMS A. The work included under this Section consists of excavating, backfilling and compaction as required for

More information

Installing Porous Pavement Waukesha County Dept. of Parks & Land Use Storm Water BMP Design and Installation Workshop March 11, 2009

Installing Porous Pavement Waukesha County Dept. of Parks & Land Use Storm Water BMP Design and Installation Workshop March 11, 2009 Installing Porous Pavement Waukesha County Dept. of Parks & Land Use Storm Water BMP Design and Installation Workshop March 11, 2009 Presented by Willie Gonwa, P.E., Ph.D. West Allis, Wisconsin Porous

More information

TABLE OF CONTENTS. Manhole, Frame, and Cover Installation (includes Drop Manhole) Additional Manhole Depth

TABLE OF CONTENTS. Manhole, Frame, and Cover Installation (includes Drop Manhole) Additional Manhole Depth TABLE OF CONTENTS NO. MP-1 MP-2 MP-3 MP-4 MP-4.01 MP-4.02 MP-4.03 MP-5 MP-5.01 MP-5.02 MP-5.03 MP-5.04 MP-5.05 MP-5.06 MP-5.07 MP-5.08 MP-5.11 MP-5.12 MP-5.13 MP-5.14 MP-5.15 MP-5.16 MP-5.18 MP-5.19 MP-5.20

More information

STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION

STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION STANDARD AND SPECIFICATIONS FOR STORM DRAIN INLET PROTECTION Design Criteria Drainage Area The drainage area for storm drain inlets shall not exceed one acre. The crest elevations of these practices shall

More information