Simulation of DNS(Domain Name System) Using SimLib

Size: px
Start display at page:

Download "Simulation of DNS(Domain Name System) Using SimLib"

Transcription

1 Simulation of DNS(Domain Name System) Using SimLib Submitted by Prem Tamang Submitted to Dr. Lawrence J. Osborne

2 Table of Contents 1. Introduction 3 2. Motivation and Challenges Assumptions 5 4. Implementations.. 7 Event Graph Selection of Input Probability Distribution for the Random variables existing in the Model i) Assessment of Sample Independence ii) Hypothesizing Families of Distributions iii) Estimation of Parameters iv) Determining How Representative the Fitted Distribution are v) Goodness-of Fits Tests 5. Simulation Results Analysis of results References.. 18

3 1. Introduction The Domain Name System (DNS) is a distributed database that allows local control of the segments of the overall database, yet data in each segment are available across the entire network through a client-server scheme. This hierarchical naming system contains programs called name servers which stores information about some segment of the database and make it available to clients, called resolvers. Resolvers are often just library routines that create queries and send them across a network to a name server. This project simulates the behavior of the name servers which resolves domain names meaningful to humans into the numerical (binary) identifiers associated with networking equipment for the purpose of locating and addressing these devices worldwide. Client1 Client2 Client3 Client4 Client5 NS Queuries[e.g.google.com] QUEUE NS Queuries[e.g.google.com] NameServer1 NameServer 2 Reply[COM:IP Address] Root General Top Level Domaim COM Name Servers EDU Microsoft.com Novell.com Google.com Query Resolved [e.g.google.com : ] Model of the Simulation System Lamar.edu Tamu.edu Gatech.edu This simulation system consists of the name servers that receive requests one at a time from the set of clients within its network in a continuous manner. Name servers are present in three levels, the root level, the top level domains and the respective authoritive name servers. Name Servers

4 supports Iterative Queries or Non-Recursive Queries i.e. the requester must be capable of pursuing referrals. The requests from the clients are queued in the name server if the name server is busy in processing the packet. Once the request packet is processed, the query will passed to the Root level Domain which contains information regarding all the top level domains like com, edu, info etc. Then the root level domain refers the respective top level domain (i.e. provides the IP Address) to the names server.the request will again be queued in the name server since the packets needs to be processed. The request will be redirected to the top level domains which again sends the referrals(ip Address) of the respective Name Server. Finally the respective Authoritive name servers provides the IP Address for the given domain name back and the response will be forwarded back to the Client. e.g. Client 1 sends the request to the NameServer1. There exist equal chances of selection of the NameServers based on the equal probability. If NS1 is busy processing the packet, it will be stored into the queue. Then the reqest is forwarded to the Root Level Domain [XX.XX.XX.XX]. It replies back with the IP Address of the Top Level Domains - COM. The request are again queued on the NS1 server. Once its turns comes, again the request will be forwarded for resolving to the COM Top Level Domain. The COM Top level domains again replies back with the IPAddress of the NameServer of Google.com. The request is again processed at NS1 and the redirected to the NameServer of the Google. Finally the Authoritive NameServer of google.com provides the IP Address of the WebServer in the DNS Reply to the NS1. The NS1 then replies back to the client with the valid IP Address of the requested domain

5 2. Motivation and Challenges In the internet, DNS is one of the mostly used systems since for accessing any resource on the internet, it requires the IP Address of that resource and DNS provides this. Every network consists of at least one DNS Server. The performance of the network is heavily dependent upon the Name Servers. So it s always important to know how well the DNS performs in the network. Various factors like the total number of queries, type of queries, the response time, and numbers of available master DNS Servers affects the performance of DNS Servers. So this project provides the simulation model of the DNS system to measure the arrival rate of the DNS queries, response time of the Queries, handling of various types of valid and invalid queries and load balancing depending upon the numbers of DNS Servers etc. The biggest challenge in this project was hypothesizing the probability distribution for the random variable like Inter-arrival Time of DNS Queries, Service type for the packet processing, Round Trip time to the Domain Name Servers. Also, designing the work-flow model for representing the name servers and various zones was quite difficult. 3. Assumptions: The system consist of basic components only i.e. Client Machines, Name Servers. The zone contains three levels, Root zone, general Top Level Domain(gTLD) and the authoritive name servers. Currently the system implements only two types of gtld, COM and EDU. Each gtld at least contains the name server information of 5 authoritive name servers. NameServer supports only Iterative Queries and doesn t provide the caching. Interarrival time of the DNS Queries are IID and arrives the system one at a time. Data for estimating the Mean Value for Interarrival time has been obtained from the internet sites [2][3].. The servers takes time ( though very less) for the packet processing and if the server is busy processing the packet, the request from the client as well as the responses from the other root, gtld and authoritive name servers has to wait in queue.

6 Response time i.e. the total time when the client gets back the response for this DNS Queries is dependent upon the Service Time or Packet Processing Time of the DNS Server, Round Trip Time from the DNS Server to the zone servers. The simulation is performed for length of 5 hrs. List Specifications: The simulation model measure the performance of the DNS on the basis of following measures : Average Response Time of the System Average Delay in the Queue Time Average No. of the Request and Responses in the Queue Utilization of the Name Servers Efficiency of the system depending upon the various numbers of name servers Proportion of the DNS Queries for Invalid Domains Proportion of the NDS Queries for COM and EDU Domains.

7 4. Implementation : This project uses the C programming language and SIMLIB package for simulation. Arrival Departure End Simulation Event Graph for DNS System Model. Selection of Input Probability Distribution : This simulation model basically consists of three Random Variables. i) Inter-arrival Time ii) Service Time iii)round Trip Time All the random variables are Identical- Independent Distribution. This project uses the standard techniques of statistical inference to fit a theoretical distribution form to the data and to perform hypothesis tests to determine the goodness of fit. The following steps are performed on the collected data by the help of Expertfit Software from Averill M.Law & Associates to select the Input Probability Distribution:

8 Data Summary from Expertfit Software. i) Inter-arrival Time : Hypothesized Probability Distribution : Weibull Probability Distribution a) Assessment of Sample Independence Scatter Diagram : Lag-Correlation Plot:

9 b) Hypothesizing Families of Distributions: Histograms: c) Estimation of Parameters : The probability distribution hypothesized appears to be Gamma distribution which belongs to the Heavy Tailed Distribution Family. Estimated Parameters :

10 Alpha = Shape Parameter = Beta = Scale Parameter = d) Determining How Representative the Fitted Distribution are : Density-Histogram Plots : Distribution-Function-Differences Plots : e) Goodness-of Fits Tests : H 0 : The X i s are IID random variables with Weibull Probability Distribution function

11 Chi-Square Tests : Kolmogorov-Smirnov Tests : Thus the null Hypothesis H 0 cannot be rejected. The random variates in this simulation model are generated from the probability distribution, Weibull, using the following formula. X=B(-1n U) 1/α where U ~ U(0,1)

12 ii) Service Time or Packet Processing Time : Actual sets of data could not be achieved. However based on the interpreted data on site [4] the value considered for service time is microseconds. So a uniform distribution U( ) is used to generate the Random Variates. iii) Round Trip Time : Actual sets of data could not be achieved. However, the gtld Server [5] shows that the RTT time varies about ms. So a uniform distribution is considered U( ) to generate the Radom Variates. 5. Simulation Results: The simulation is performed with the varying numbers of clients and servers. When the numbers of Servers = 2 and No. of Clients machines is varied from 5 to 15 DNS Server Simulation ===================== Total Number of Server : 2 Number of Client Machines : 5 to 15 by 10 Shape Parameter(Alpha) for Weibull Distribution of Interarrival Time : seconds Scale Parameter(Beta) for Weibull Distribution of Interarrival Time : seconds Lower Limit for Uniform Distribution of Service Time : Upper Limit for Uniform Distribution of Service Time : Lower Limit for Uniform Distribution of Round Trip Time : Upper Limit for Uniform Distribution of Round Trip Time : Total Time for Simulation : minutes seconds seconds seconds seconds No. of Clients : 5 Proportion of DNS Queries Related to COM Domain : (183/564) : Proportion of DNS Queries Related to EDU Domain : (192/564) : Proportion of Invalid Queries : (189/564) : Response Times for Client Machines ===================================

13 sampst Number variable of number Average values Maximum Minimum CPU Utilization ================= File Time number average Maximum Minimum Time Average Number of Delay for Requests and Responses in Queue ================= File Time number average Maximum Minimum E E No. of Clients : 15 Proportion of DNS Queries Related to COM Domain : (557/1676) : Proportion of DNS Queries Related to EDU Domain : (565/1676) : Proportion of Invalid Queries : (554/1676) : Response Times for Client Machines =================================== sampst Number variable of number Average values Maximum Minimum

14 CPU Utilization ================= File Time number average Maximum Minimum Time Average Number of Delay for Requests and Responses in Queue ================= File Time number average Maximum Minimum When the numbers of Servers = 5 and No. of Clients machines is varied from 5 to 15 DNS Server Simulation ===================== Total Number of Server : 5 Number of Client Machines : 5 to 15 by 10 Shape Parameter(Alpha) for Weibull Distribution of Interarrival Time : seconds Scale Parameter(Beta) for Weibull Distribution of Interarrival Time : seconds Lower Limit for Uniform Distribution of Service Time : seconds Upper Limit for Uniform Distribution of Service Time : seconds Lower Limit for Uniform Distribution of Round Trip Time : seconds Upper Limit for Uniform Distribution of Round Trip Time : seconds Total Time for Simulation : minutes No. of Clients : 5 Proportion of DNS Queries Related to COM Domain : (183/564) : Proportion of DNS Queries Related to EDU Domain : (192/564) : Proportion of Invalid Queries : (189/564) : Response Times for Client Machines =================================== sampst Number variable of

15 number Average values Maximum Minimum CPU Utilization ================= File Time number average Maximum Minimum Time Average Number of Delay for Requests and Responses in Queue ====================================================== File Time number average Maximum Minimum E E E E E E E E E+30 No. of Clients : 5 Proportion of DNS Queries Related to COM Domain : (557/1676) : Proportion of DNS Queries Related to EDU Domain : (565/1676) : Proportion of Invalid Queries : (554/1676) : Response Times for Client Machines ============================ sampst Number variable of number Average values Maximum Minimum

16 CPU Utilization ============ File Time number average Maximum Minimum Time Average Number of Delay for Requests and Responses in Queue ====================================================== File Time number average Maximum Minimum E E E E E

17 6. Analysis of Results The results from the simulation model are obtained as expected. As we can see that, keeping the number of servers constant (i.e. 2) in first case, when the no. of clients are increased from 5 to 15, CPU Utilization as well as the time average no. delay of requests and responses in the Queue are also increased. As we can see the packet processing time by the Name Server in comparison to the Round Trip Time, is very small, so we don t have many packets in the queue which also explains the low utilization value of CPU. Server simply processes the packets and redirects it to the other Domain Servers. Similarly, when the numbers of name servers are increased the load is divided resulting into low CPU Utilization as well as low value of time average no. of delay of requests and responses in the Queue. Due to the lack of the output data from the real system, the output of this simulation could not be validated to the full extend. However, regarding the Interarrival time, 100 samples of data were taken from simulation and fed into the Expertfit Software, which confirms the Weibull Distribution of the Interarrival time. Further the Confidence-Interval Approach Based could have been applied for statistical comparison of the real system observed data and simulation output data.

18 References: 1) Jaeyeon Jung, Emil Sit, Hari Balakrishnan, Reobert Morris,DNS performance and the effectiveness of caching. IEEE/ACM Transactions on Networking (TON ), pages, , ) 3) 4) 5)

CS 348: Computer Networks. - DNS; 22 nd Oct 2012. Instructor: Sridhar Iyer IIT Bombay

CS 348: Computer Networks. - DNS; 22 nd Oct 2012. Instructor: Sridhar Iyer IIT Bombay CS 348: Computer Networks - DNS; 22 nd Oct 2012 Instructor: Sridhar Iyer IIT Bombay Domain Name System Map between host names and IP addresses People: many identifiers: name, Passport #, Internet hosts:

More information

Lecture 2 CS 3311. An example of a middleware service: DNS Domain Name System

Lecture 2 CS 3311. An example of a middleware service: DNS Domain Name System Lecture 2 CS 3311 An example of a middleware service: DNS Domain Name System The problem Networked computers have names and IP addresses. Applications use names; IP uses for routing purposes IP addresses.

More information

Computer Networks: Domain Name System

Computer Networks: Domain Name System Computer Networks: Domain Name System Domain Name System The domain name system (DNS) is an application-layer protocol for mapping domain names to IP addresses DNS www.example.com 208.77.188.166 http://www.example.com

More information

Configuring DNS. Finding Feature Information

Configuring DNS. Finding Feature Information The Domain Name System (DNS) is a distributed database in which you can map hostnames to IP addresses through the DNS protocol from a DNS server. Each unique IP address can have an associated hostname.

More information

Distributed Systems. 09. Naming. Paul Krzyzanowski. Rutgers University. Fall 2015

Distributed Systems. 09. Naming. Paul Krzyzanowski. Rutgers University. Fall 2015 Distributed Systems 09. Naming Paul Krzyzanowski Rutgers University Fall 2015 October 7, 2015 2014-2015 Paul Krzyzanowski 1 Naming things Naming: map names to objects Helps with using, sharing, and communicating

More information

THE UNIVERSITY OF AUCKLAND

THE UNIVERSITY OF AUCKLAND COMPSCI 742 THE UNIVERSITY OF AUCKLAND SECOND SEMESTER, 2008 Campus: City COMPUTER SCIENCE Data Communications and Networks (Time allowed: TWO hours) NOTE: Attempt all questions. Calculators are NOT permitted.

More information

Distributed Systems. 22. Naming. 2013 Paul Krzyzanowski. Rutgers University. Fall 2013

Distributed Systems. 22. Naming. 2013 Paul Krzyzanowski. Rutgers University. Fall 2013 Distributed Systems 22. Naming Paul Krzyzanowski Rutgers University Fall 2013 November 21, 2013 2013 Paul Krzyzanowski 1 My 15 MacBook Pro The rightmost computer on my desk Paul s aluminum laptop, but

More information

First Midterm for ECE374 02/25/15 Solution!!

First Midterm for ECE374 02/25/15 Solution!! 1 First Midterm for ECE374 02/25/15 Solution!! Instructions: Put your name and student number on each sheet of paper! The exam is closed book. You have 90 minutes to complete the exam. Be a smart exam

More information

DNS. The Root Name Servers. DNS Hierarchy. Computer System Security and Management SMD139. Root name server. .se name server. .

DNS. The Root Name Servers. DNS Hierarchy. Computer System Security and Management SMD139. Root name server. .se name server. . Computer System Security and Management SMD139 Lecture 5: Domain Name System Peter A. Jonsson DNS Translation of Hostnames to IP addresses Hierarchical distributed database DNS Hierarchy The Root Name

More information

Introduction to the Domain Name System

Introduction to the Domain Name System CHAPTER 14 The Domain Name System (DNS) handles the growing number of Internet users. DNS translates names, such as www.cisco.com, into IP addresses, such as 192.168.40.0 (or the more extended IPv6 addresses),

More information

CS3250 Distributed Systems

CS3250 Distributed Systems CS3250 Distributed Systems Lecture 4 More on Network Addresses Domain Name System DNS Human beings (apart from network administrators and hackers) rarely use IP addresses even in their human-readable dotted

More information

Part 5 DNS Security. SAST01 An Introduction to Information Security 2015-09-21. Martin Hell Department of Electrical and Information Technology

Part 5 DNS Security. SAST01 An Introduction to Information Security 2015-09-21. Martin Hell Department of Electrical and Information Technology SAST01 An Introduction to Information Security Part 5 DNS Security Martin Hell Department of Electrical and Information Technology How DNS works Amplification attacks Cache poisoning attacks DNSSEC 1 2

More information

Names & Addresses. Names & Addresses. Names vs. Addresses. Identity. Names vs. Addresses. CS 194: Distributed Systems: Naming

Names & Addresses. Names & Addresses. Names vs. Addresses. Identity. Names vs. Addresses. CS 194: Distributed Systems: Naming Names & Addresses CS 9: Distributed Systems: Naming Computer Science Division Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA 970-77 What is a?

More information

Understand Names Resolution

Understand Names Resolution Understand Names Resolution Lesson Overview In this lesson, you will learn about: Domain name resolution Name resolution process steps DNS WINS Anticipatory Set 1. List the host name of 4 of your favorite

More information

Measurements and Laboratory Simulations of the Upper DNS Hierarchy

Measurements and Laboratory Simulations of the Upper DNS Hierarchy Measurements and Laboratory Simulations of the Upper DNS Hierarchy Duane Wessels 1, Marina Fomenkov 2, Nevil Brownlee 2, and kc claffy 2 1 The Measurement Factory, Inc. wessels@measurement-factory.com

More information

1 DNS Packet Structure

1 DNS Packet Structure Fundamentals of Computer Networking Project 1 Primer: DNS Overview CS4700/CS5700 Fall 2009 17 September 2009 The DNS protocol is well-documented online, however, we describe the salient pieces here for

More information

1 DNS in the real world

1 DNS in the real world New York University Computer Science Department G22.2620-001, Fall 07 Problem Set 1 Solution by Hui Zhang 1 DNS in the real world In this problem, you will learn more about DNS using the UNIX utility dig.

More information

The Application Layer: DNS

The Application Layer: DNS Recap SMTP and email The Application Layer: DNS Smith College, CSC 9 Sept 9, 0 q SMTP process (with handshaking) and message format q Role of user agent access protocols q Port Numbers (can google this)

More information

EXPERIMENTAL STUDY OF DNS PERFORMANCE

EXPERIMENTAL STUDY OF DNS PERFORMANCE EXPERIMENTAL STUDY OF DNS PERFORMANCE Ananya Tripathi, Farhat Khan, Akhilesh Sisodia Amity School of Engineering & Technology, Amity University, Uttar Pradesh, India {ananya.tripathi9, efarhatkhan, sisodiaakhilesh}@gmail.com

More information

DNS (Domain Name System) is the system & protocol that translates domain names to IP addresses.

DNS (Domain Name System) is the system & protocol that translates domain names to IP addresses. Lab Exercise DNS Objective DNS (Domain Name System) is the system & protocol that translates domain names to IP addresses. Step 1: Analyse the supplied DNS Trace Here we examine the supplied trace of a

More information

DNS and email issues in connecting UNINET-ZA to the Internet

DNS and email issues in connecting UNINET-ZA to the Internet DNS and email issues in connecting UNINET-ZA to the Internet Alan Barrett November 2011 Abstract This article describes some of the activities and configuration relating to the Domain Name System (DNS)

More information

NET0183 Networks and Communications

NET0183 Networks and Communications NET0183 Networks and Communications Lecture 25 DNS Domain Name System 8/25/2009 1 NET0183 Networks and Communications by Dr Andy Brooks DNS is a distributed database implemented in a hierarchy of many

More information

Computer Networks & Security 2014/2015

Computer Networks & Security 2014/2015 Computer Networks & Security 2014/2015 IP Protocol Stack & Application Layer (02a) Security and Embedded Networked Systems time Protocols A human analogy All Internet communication is governed by protocols!

More information

Week 3 / Paper 2. Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, Steve Uhlig ACM IMC 2010.

Week 3 / Paper 2. Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, Steve Uhlig ACM IMC 2010. Week 3 / Paper 2 Comparing DNS Resolvers in the Wild Bernhard Ager, Wolfgang Mühlbauer, Georgios Smaragdakis, Steve Uhlig ACM IMC 2010. Main point How does ISP DNS compare with Google DNS and OpenDNS?

More information

Normality Testing in Excel

Normality Testing in Excel Normality Testing in Excel By Mark Harmon Copyright 2011 Mark Harmon No part of this publication may be reproduced or distributed without the express permission of the author. mark@excelmasterseries.com

More information

Network Time Management Configuration. Content CHAPTER 1 SNTP CONFIGURATION... 1-1 CHAPTER 2 NTP FUNCTION CONFIGURATION... 2-1

Network Time Management Configuration. Content CHAPTER 1 SNTP CONFIGURATION... 1-1 CHAPTER 2 NTP FUNCTION CONFIGURATION... 2-1 Content Content CHAPTER 1 SNTP CONFIGURATION... 1-1 1.1 INTRODUCTION TO SNTP... 1-1 1.2 TYPICAL EXAMPLES OF SNTP CONFIGURATION... 1-1 CHAPTER 2 NTP FUNCTION CONFIGURATION... 2-1 2.1 INTRODUCTION TO NTP

More information

CS3600 SYSTEMS AND NETWORKS

CS3600 SYSTEMS AND NETWORKS CS3600 SYSTEMS AND NETWORKS FALL 2011 Lecture 19: DNS Prof. Alan Mislove (amislove@ccs.neu.edu) Slides used with permissions from Edward W. Knightly, T. S. Eugene Ng, Ion Stoica, Hui Zhang Human Involvement

More information

DYNAMIC LOAD BALANCING IN CLIENT SERVER ARCHITECTURE

DYNAMIC LOAD BALANCING IN CLIENT SERVER ARCHITECTURE DYNAMIC LOAD BALANCING IN CLIENT SERVER ARCHITECTURE PROJECT OF COEN233 SUBMITTED BY Aparna R Lalita V Sanjeev C 12/10/2013 INSTRUCTOR Dr. Prof Ming-Hwa Wang Santa Clara University 1 TABLE OF CONTENTS

More information

1. Comments on reviews a. Need to avoid just summarizing web page asks you for:

1. Comments on reviews a. Need to avoid just summarizing web page asks you for: 1. Comments on reviews a. Need to avoid just summarizing web page asks you for: i. A one or two sentence summary of the paper ii. A description of the problem they were trying to solve iii. A summary of

More information

The Domain Name System

The Domain Name System The Domain Name System Antonio Carzaniga Faculty of Informatics University of Lugano October 9, 2012 2005 2007 Antonio Carzaniga 1 IP addresses and host names Outline DNS architecture DNS process DNS requests/replies

More information

DNS Basics. DNS Basics

DNS Basics. DNS Basics DNS Basics 1 A quick introduction to the Domain Name System (DNS). Shows the basic purpose of DNS, hierarchy of domain names, and an example of how the DNS protocol is used. There are many details of DNS

More information

Domain Name System Richard T. B. Ma

Domain Name System Richard T. B. Ma Domain Name System Richard T. B. Ma School of Computing National University of Singapore CS 3103: Compute Networks and Protocols Names Vs. Addresses Names are easier for human to remember www.comp.nus.edu.sg

More information

2 TCP-like Design. Answer

2 TCP-like Design. Answer Homework 3 1 DNS Suppose you have a Host C, a local name server L, and authoritative name servers A root, A com, and A google.com, where the naming convention A x means that the name server knows about

More information

Motivation. Domain Name System (DNS) Flat Namespace. Hierarchical Namespace

Motivation. Domain Name System (DNS) Flat Namespace. Hierarchical Namespace Motivation Domain Name System (DNS) IP addresses hard to remember Meaningful names easier to use Assign names to IP addresses Name resolution map names to IP addresses when needed Namespace set of all

More information

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2

Application Layer. CMPT371 12-1 Application Layer 1. Required Reading: Chapter 2 of the text book. Outline of Chapter 2 CMPT371 12-1 Application Layer 1 Application Layer Required Reading: Chapter 2 of the text book. Outline of Chapter 2 Network applications HTTP, protocol for web application FTP, file transfer protocol

More information

The Domain Name System (DNS)

The Domain Name System (DNS) The Domain Name System (DNS) Columbus, OH 43210 Jain@CIS.Ohio-State.Edu http://www.cis.ohio-state.edu/~jain/ 24-1 Overview Naming hierarchy hierarchy Name resolution Other information in name servers 24-2

More information

How To Map Between Ip Address And Name On A Domain Name System (Dns)

How To Map Between Ip Address And Name On A Domain Name System (Dns) Computer Networks: Domain Name Service (DNS) CS 3516 D- term 2013 Instructor: Krishna Venkatasubramanian Quiz 2 DNS: domain name system people: many identifiers: SSN, name, passport # Internet hosts, routers:

More information

APPENDIX E THE ASSESSMENT PHASE OF THE DATA LIFE CYCLE

APPENDIX E THE ASSESSMENT PHASE OF THE DATA LIFE CYCLE APPENDIX E THE ASSESSMENT PHASE OF THE DATA LIFE CYCLE The assessment phase of the Data Life Cycle includes verification and validation of the survey data and assessment of quality of the data. Data verification

More information

DNS Measurements. Hua Huang CS8803 NTM

DNS Measurements. Hua Huang CS8803 NTM DNS Measurements Hua Huang CS8803 NTM Outline "DNS measurements at a root server Nevil Brownlee, Kimberly Claffy, and Evi Nemeth, Proceedings of the IEEE GlobeCom, San Antonio, TX, Nov. 2001 "DNS Performance

More information

Chapter 25 Domain Name System. 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 25 Domain Name System. 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 25 Domain Name System 25.1 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 25.2 Figure 25.1 Example of using the DNS service 25-1 NAME SPACE To be unambiguous,

More information

DNS: a statistical analysis of name server traffic at local network-to-internet connections

DNS: a statistical analysis of name server traffic at local network-to-internet connections DNS: a statistical analysis of name server traffic at local network-to-internet connections Chris J. Brandhorst 1, Aiko Pras 2 1 Electrical Engineering, Mathematics and Computer Science, University of

More information

The Domain Name System

The Domain Name System DNS " This is the means by which we can convert names like news.bbc.co.uk into IP addresses like 212.59.226.30 " Purely for the benefit of human users: we can remember numbers (e.g., telephone numbers),

More information

Impact of Local Domain Name System (DNS) on Corporate Network Bandwidth

Impact of Local Domain Name System (DNS) on Corporate Network Bandwidth Impact of Local Domain Name System (DNS) on Corporate Network Bandwidth Mohit Dhawan 1, OP Gupta 2 M.Tech Student, SEEIT, COAET, PAU Ludhiana, India 1 Associate Professor, SEEIT, COAET, PAU Ludhiana, India

More information

DNS and BIND. David White

DNS and BIND. David White DNS and BIND David White DNS: Backbone of the Internet Translates Domains into unique IP Addresses i.e. developcents.com = 66.228.59.103 Distributed Database of Host Information Works seamlessly behind

More information

Domain Name System. CS 571 Fall 2006. 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved

Domain Name System. CS 571 Fall 2006. 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved Domain Name System CS 571 Fall 2006 2006, Kenneth L. Calvert University of Kentucky, USA All rights reserved DNS Specifications Domain Names Concepts and Facilities RFC 1034, November 1987 Introduction

More information

Domain Name System. DNS is an example of a large scale client-server application. Copyright 2014 Jim Martin

Domain Name System. DNS is an example of a large scale client-server application. Copyright 2014 Jim Martin Domain Name System: DNS Objective: map names to IP addresses (i.e., high level names to low level names) Original namespace was flat, didn t scale.. Hierarchical naming permits decentralization by delegating

More information

Names vs. Addresses. Flat vs. Hierarchical Space. Domain Name System (DNS) Computer Networks. Lecture 5: Domain Name System

Names vs. Addresses. Flat vs. Hierarchical Space. Domain Name System (DNS) Computer Networks. Lecture 5: Domain Name System Names vs. Addresses Computer Networks Lecture 5: Domain Name System Names are easier for human to remember www.umich.edu vs. 141.213.4.4 Addresses can be changed without changing names move www.umich.edu

More information

dnsperf DNS Performance Tool Manual

dnsperf DNS Performance Tool Manual dnsperf DNS Performance Tool Manual Version 2.0.0 Date February 14, 2012 Copyright 2002-2012, Inc. - All Rights Reserved This software and documentation is subject to and made available pursuant to the

More information

Application-layer protocols

Application-layer protocols Application layer Goals: Conceptual aspects of network application protocols Client server paradigm Service models Learn about protocols by examining popular application-level protocols HTTP DNS Application-layer

More information

HTG XROADS NETWORKS. Network Appliance How To Guide: EdgeDNS. How To Guide

HTG XROADS NETWORKS. Network Appliance How To Guide: EdgeDNS. How To Guide HTG X XROADS NETWORKS Network Appliance How To Guide: EdgeDNS How To Guide V 3. 2 E D G E N E T W O R K A P P L I A N C E How To Guide EdgeDNS XRoads Networks 17165 Von Karman Suite 112 888-9-XROADS V

More information

Information- Centric Networks. Section # 3.2: DNS Issues Instructor: George Xylomenos Department: Informatics

Information- Centric Networks. Section # 3.2: DNS Issues Instructor: George Xylomenos Department: Informatics Information- Centric Networks Section # 3.2: DNS Issues Instructor: George Xylomenos Department: Informatics Funding These educational materials have been developed as part of the instructors educational

More information

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph

Assignment #3 Routing and Network Analysis. CIS3210 Computer Networks. University of Guelph Assignment #3 Routing and Network Analysis CIS3210 Computer Networks University of Guelph Part I Written (50%): 1. Given the network graph diagram above where the nodes represent routers and the weights

More information

IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy. and of course there can be sub-sub-!!

IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy. and of course there can be sub-sub-!! The Domain Hierarchy IP addresses have hierarchy (network & subnet) Internet names (FQDNs) also have hierarchy the general form for a fully qualified name is and of course there can be sub-sub-!! -sub-domains

More information

The story of dnsdist - or - Do we need a DNS Delivery Controller? http://dnsdist.org/

The story of dnsdist - or - Do we need a DNS Delivery Controller? http://dnsdist.org/ The story of dnsdist - or - Do we need a DNS Delivery Controller? http://dnsdist.org/ PowerDNS Very briefly so you know where we come from Open source nameserver, around since 2000, open source since 2002,

More information

ARP and DNS. ARP entries are cached by network devices to save time, these cached entries make up a table

ARP and DNS. ARP entries are cached by network devices to save time, these cached entries make up a table ARP and DNS Both protocols do conversions of a sort, but the distinct difference is ARP is needed for packet transfers and DNS is not needed but makes things much easier. ARP Address Resolution Protocol

More information

Domain Name System (or Service) (DNS) Computer Networks Term B10

Domain Name System (or Service) (DNS) Computer Networks Term B10 Domain Name System (or Service) (DNS) Computer Networks Term B10 DNS Outline DNS Hierarchial Structure Root Name Servers Top-Level Domain Servers Authoritative Name Servers Local Name Server Caching and

More information

Lab 2. CS-335a. Fall 2012 Computer Science Department. Manolis Surligas surligas@csd.uoc.gr

Lab 2. CS-335a. Fall 2012 Computer Science Department. Manolis Surligas surligas@csd.uoc.gr Lab 2 CS-335a Fall 2012 Computer Science Department Manolis Surligas surligas@csd.uoc.gr 1 Summary At this lab we will cover: Basics of Transport Layer (TCP, UDP) Broadcast ARP DNS More Wireshark filters

More information

DNS: Domain Name System

DNS: Domain Name System DNS: Domain Name System People: many identifiers: SSN, name, passport # Internet hosts, routers: IP address (32 bit) - used for addressing datagrams name, e.g., ww.yahoo.com - used by humans Q: map between

More information

Send document comments to nexus7k-docfeedback@cisco.com.

Send document comments to nexus7k-docfeedback@cisco.com. CHAPTER 4 This chapter describes how to configure the Domain Name Server (DNS) client. This chapter includes the following sections: Information About DNS Clients, page 4-1 Licensing Requirements for DNS

More information

Monitoring the DNS. Gustavo Lozano Event Name XX XXXX 2015

Monitoring the DNS. Gustavo Lozano Event Name XX XXXX 2015 Monitoring the DNS Gustavo Lozano Event Name XX XXXX 2015 Agenda 1 2 3 Components of the DNS Monitoring gtlds Monitoring other components of the DNS 4 5 Monitoring system Conclusion 2 Components of the

More information

Teldat Router. DNS Client

Teldat Router. DNS Client Teldat Router DNS Client Doc. DM723-I Rev. 10.00 March, 2003 INDEX Chapter 1 Domain Name System...1 1. Introduction...2 2. Resolution of domains...3 2.1. Domain names resolver functionality...4 2.2. Functionality

More information

The story of dnsdist - or - Do we need a DNS Delivery Controller? http://dnsdist.org/

The story of dnsdist - or - Do we need a DNS Delivery Controller? http://dnsdist.org/ The story of dnsdist - or - Do we need a DNS Delivery Controller? http://dnsdist.org/ PowerDNS Very briefly so you know where we come from Open source nameserver, around since 2000, open source since 2002,

More information

Chapter 9: Name Services. 9.1 Introduction 9.2 Name services and the DNS 9.3 Directory services 9.6 Summary

Chapter 9: Name Services. 9.1 Introduction 9.2 Name services and the DNS 9.3 Directory services 9.6 Summary Chapter 9: Name Services 9.1 Introduction 9.2 Name services and the DNS 9.3 Directory services 9.6 Summary Learning objectives To understand the need for naming systems in distributed systems To be familiar

More information

How To Manage Dns On An Elfiq Link Load Balancer (Link Balancer) On A Pcode (Networking) On Ipad Or Ipad (Netware) On Your Ipad On A Ipad At A Pc Or Ipa

How To Manage Dns On An Elfiq Link Load Balancer (Link Balancer) On A Pcode (Networking) On Ipad Or Ipad (Netware) On Your Ipad On A Ipad At A Pc Or Ipa White paper The IDNS module for incoming load balancing For Elfiq Operating System (EOS) version 3.x Document Revision 1.5 October 2007 Elfiq Solutions www.elfiq.com COPYRIGHT The content of this document

More information

3. The Domain Name Service

3. The Domain Name Service 3. The Domain Name Service n Overview and high level design n Typical operation and the role of caching n Contents of DNS Resource Records n Basic message formats n Configuring/updating Resource Records

More information

BITS-Pilani Hyderabad Campus CS C461/IS C461/CS F303/ IS F303 (Computer Networks) Laboratory 3

BITS-Pilani Hyderabad Campus CS C461/IS C461/CS F303/ IS F303 (Computer Networks) Laboratory 3 BITS-Pilani Hyderabad Campus CS C461/IS C461/CS F303/ IS F303 (Computer Networks) Laboratory 3 Aim: To give an introduction to HTTP, SMTP, & DNS, and observe the packets in a LAN network. HTTP (Hypertext

More information

Load Balancing using MS-Redirect Mechanism

Load Balancing using MS-Redirect Mechanism Load Balancing using MS-Redirect Mechanism G. Naveen Kumar 1, T. Ram Kumar 2 and B.Phijik 3 Vignan s Institute of Technology and Aeronautical Engineering Deshmukhi(v), Pochampalli(M), Nalgonda, Hyderabad

More information

Overview of Computer Networks

Overview of Computer Networks Overview of Computer Networks Client-Server Transaction Client process 4. Client processes response 1. Client sends request 3. Server sends response Server process 2. Server processes request Resource

More information

- Domain Name System -

- Domain Name System - 1 Name Resolution - Domain Name System - Name resolution systems provide the translation between alphanumeric names and numerical addresses, alleviating the need for users and administrators to memorize

More information

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013

CSE 473 Introduction to Computer Networks. Exam 2 Solutions. Your name: 10/31/2013 CSE 473 Introduction to Computer Networks Jon Turner Exam Solutions Your name: 0/3/03. (0 points). Consider a circular DHT with 7 nodes numbered 0,,...,6, where the nodes cache key-values pairs for 60

More information

DNS Domain Name System

DNS Domain Name System Domain Name System DNS Domain Name System The domain name system is usually used to translate a host name into an IP address Domain names comprise a hierarchy so that names are unique, yet easy to remember.

More information

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination

COMP 361 Computer Communications Networks. Fall Semester 2003. Midterm Examination COMP 361 Computer Communications Networks Fall Semester 2003 Midterm Examination Date: October 23, 2003, Time 18:30pm --19:50pm Name: Student ID: Email: Instructions: 1. This is a closed book exam 2. This

More information

Fig 1A portion of the Internet domain name space.

Fig 1A portion of the Internet domain name space. 1 Asst. Lecturar ahmed S. Kareem DNS The Domain Name System Although programs theoretically could refer to hosts, mailboxes, and other resources by their network (e.g., IP) addresses, these addresses are

More information

HW2 Grade. CS585: Applications. Traditional Applications SMTP SMTP HTTP 11/10/2009

HW2 Grade. CS585: Applications. Traditional Applications SMTP SMTP HTTP 11/10/2009 HW2 Grade 70 60 CS585: Applications 50 40 30 20 0 0 2 3 4 5 6 7 8 9 0234567892022223242526272829303323334353637383940442 CS585\CS485\ECE440 Fall 2009 Traditional Applications SMTP Simple Mail Transfer

More information

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION

CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 31 CHAPTER 3 CALL CENTER QUEUING MODEL WITH LOGNORMAL SERVICE TIME DISTRIBUTION 3.1 INTRODUCTION In this chapter, construction of queuing model with non-exponential service time distribution, performance

More information

Study of Load Balancing of Resource Namespace Service

Study of Load Balancing of Resource Namespace Service Study of Load Balancing of Resource Namespace Service Masahiro Nakamura, Osamu Tatebe University of Tsukuba Background Resource Namespace Service (RNS) is published as GDF.101 by OGF RNS is intended to

More information

Computer Networks: DNS a2acks CS 1951e - Computer Systems Security: Principles and Prac>ce. Domain Name System

Computer Networks: DNS a2acks CS 1951e - Computer Systems Security: Principles and Prac>ce. Domain Name System Computer Networks: DNS a2acks CS 1951e - Computer Systems Security: Principles and Prac>ce 18/02/15 Networks: DNS attacks 1 Domain Name System The domain name system (DNS) is an applica>on- layer protocol

More information

The Domain Name System (DNS)

The Domain Name System (DNS) The Domain Name System (DNS) Each Internet host is assigned a host name and an IP address Host names are structured character strings, e.g., www.cs.iastate.edu IP addresses are 32 bit integers, e.g., 129.186.3.6

More information

what s in a name? taking a deeper look at the domain name system mike boylan penn state mac admins conference

what s in a name? taking a deeper look at the domain name system mike boylan penn state mac admins conference what s in a name? taking a deeper look at the domain name system mike boylan penn state mac admins conference whoami work for robert morris university, pittsburgh, pa primarily mac and voip admin @mboylan

More information

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements

Lecture 8 Performance Measurements and Metrics. Performance Metrics. Outline. Performance Metrics. Performance Metrics Performance Measurements Outline Lecture 8 Performance Measurements and Metrics Performance Metrics Performance Measurements Kurose-Ross: 1.2-1.4 (Hassan-Jain: Chapter 3 Performance Measurement of TCP/IP Networks ) 2010-02-17

More information

Understanding DNS (the Domain Name System)

Understanding DNS (the Domain Name System) Understanding DNS (the Domain Name System) A white paper by Incognito Software January, 2007 2007 Incognito Software Inc. All rights reserved. Understanding DNS (the Domain Name System) Introduction...2

More information

Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14

Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14 1 Homework 2 assignment for ECE374 Posted: 02/21/14 Due: 02/28/14 Note: In all written assignments, please show as much of your work as you can. Even if you get a wrong answer, you can get partial credit

More information

Simulation Software 1

Simulation Software 1 Simulation Software 1 Introduction The features that should be programmed in simulation are: Generating random numbers from the uniform distribution Generating random variates from any distribution Advancing

More information

How To Guide Edge Network Appliance How To Guide:

How To Guide Edge Network Appliance How To Guide: How To Guide Edge Network Appliance How To Guide: ActiveDNS v 4.01 Edge Network Appliance How To Guide: ActiveDNS 2007 XRoads Networks 17165 Von Karman, Suite 112 888-9-XROADS v 4.01 updated 09/11/07 Table

More information

DNS and BIND Primer. Pete Nesbitt pete @ linux1.ca. April 2012

DNS and BIND Primer. Pete Nesbitt pete @ linux1.ca. April 2012 DNS and BIND Primer Pete Nesbitt pete @ linux1.ca April 2012 1 When we access the Internet we typically do so by accessing systems using a somewhat meaningful hostname often in the form of a web based

More information

Veri cation and Validation of Simulation Models

Veri cation and Validation of Simulation Models of of Simulation Models mpressive slide presentations Faculty of Math and CS - UBB 1st Semester 2010-2011 Other mportant Validate nput- Hypothesis Type Error Con dence nterval Using Historical nput of

More information

DNS + DHCP. Michael Tsai 2015/04/27

DNS + DHCP. Michael Tsai 2015/04/27 DNS + DHCP Michael Tsai 2015/04/27 lubuntu.ova http://goo.gl/bax8b8 DNS + DHCP DNS: domain name < > IP address DHCP: gives you a IP + configuration when you joins a new network DHCP = Dynamic Host Configuration

More information

An Intrusion Detection System for Kaminsky DNS Cache poisoning

An Intrusion Detection System for Kaminsky DNS Cache poisoning An Intrusion Detection System for Kaminsky DNS Cache poisoning Dhrubajyoti Pathak, Kaushik Baruah Departement of CSE, IIT Guwahati drbj153@alumni.iitg.ernet.in, b.kaushik@iitg.ernet.in Abstract : Domain

More information

Domain Name System Submitted in partial fulfillment of the requirement for the award of degree of Computer Science

Domain Name System Submitted in partial fulfillment of the requirement for the award of degree of Computer Science A Seminar report On Domain Name System Submitted in partial fulfillment of the requirement for the award of degree of Computer Science SUBMITTED TO: www.studymafia.org SUBMITTED BY: www.studymafia.org

More information

CMPE 80N: Introduction to Networking and the Internet

CMPE 80N: Introduction to Networking and the Internet CMPE 80N: Introduction to Networking and the Internet Katia Obraczka Computer Engineering UCSC Baskin Engineering Lecture 11 CMPE 80N Spring'10 1 Announcements Guest lecture on intellectual property and

More information

Domain Name System (DNS)

Domain Name System (DNS) Domain Name System (DNS) Instructor: Anirban Mahanti Office: ICT 745 Email: mahanti@cpsc.ucalgary.ca Class Location: ICT 121 Lectures: MWF 12:00 12:50 Notes derived from Computer Networking: A Top Down

More information

Wireshark DNS. Introduction. nslookup

Wireshark DNS. Introduction. nslookup Wireshark DNS Introduction The Domain Name System (DNS) translates hostnames to IP addresses, fulfilling a critical role in the Internet infrastructure. In this lab, we ll take a closer look at the client

More information

OpenFlow Based Load Balancing

OpenFlow Based Load Balancing OpenFlow Based Load Balancing Hardeep Uppal and Dane Brandon University of Washington CSE561: Networking Project Report Abstract: In today s high-traffic internet, it is often desirable to have multiple

More information

HTG XROADS NETWORKS. Network Appliance How To Guide: DNS Delegation. How To Guide

HTG XROADS NETWORKS. Network Appliance How To Guide: DNS Delegation. How To Guide HTG X XROADS NETWORKS Network Appliance How To Guide: DNS Delegation How To Guide DNS Delegation (The Simple Redundancy Solution) The key requirement when performing DNS based network redundancy and load

More information

The Domain Name System

The Domain Name System Internet Engineering 241-461 Robert Elz kre@munnari.oz.au kre@coe.psu.ac.th http://fivedots.coe.psu.ac.th/~kre DNS The Domain Name System Kurose & Ross: Computer Networking Chapter 2 (2.5) James F. Kurose

More information

Discrete-Event Simulation

Discrete-Event Simulation Discrete-Event Simulation Prateek Sharma Abstract: Simulation can be regarded as the emulation of the behavior of a real-world system over an interval of time. The process of simulation relies upon the

More information

Domain Name System (DNS) RFC 1034 RFC 1035 http://www.ietf.org

Domain Name System (DNS) RFC 1034 RFC 1035 http://www.ietf.org Domain Name System (DNS) RFC 1034 RFC 1035 http://www.ietf.org TCP/IP Protocol Suite Application Layer DHCP DNS SNMP HTTP SMTP POP Transport Layer UDP TCP ICMP IGMP Network Layer IP Link Layer ARP ARP

More information

The Internet Domain Name System

The Internet Domain Name System The Internet Domain Name System Hari Balakrishnan 6.829 Fall 2002 Goals DNS architecture How DNS works DNS uses Mail Content Distribution Networks (CDNs) DNS Performance How well does it work? Why does

More information

Authority Server Selection of DNS Caching Resolvers

Authority Server Selection of DNS Caching Resolvers Authority Server Selection of DNS Caching Resolvers ABSTRACT Yingdi Yu UCLA yingdi@cs.ucla.edu Matt Larson Verisign mlarson@verisign.com Operators of high-profile DNS zones utilize multiple authority servers

More information

HYPOTHESIS TESTING: POWER OF THE TEST

HYPOTHESIS TESTING: POWER OF THE TEST HYPOTHESIS TESTING: POWER OF THE TEST The first 6 steps of the 9-step test of hypothesis are called "the test". These steps are not dependent on the observed data values. When planning a research project,

More information