!" #$ %&'#&!()$*+,))- %#&. #/01 23 #' %#&1#4 /#3 %'& %#&4' #5&'3 %'& %#&1%#%3 6 *# '& *2!1'%&'3 %/#$ #' * #$#'3 $'$'

Size: px
Start display at page:

Download "!" #$ %&'#&!()$*+,))- %#&. #/01 23 #' %#&1#4 /#3 %'& %#&4' #5&'3 %'& %#&1%#%3 6 *# '& *2!1'%&'3 %/#$ #' * #$#'3 $'$'"

Transcription

1 !" #$ %&'#&!()$*+,))- %#&. #/01 23 #' %#&1#4 /#3 %'& %#&4' #5&'3 %'& %#&1%#%3 6 *# '& *2!1'%&'3 %/#$ #' * #$#'3 $'$'

2

3

4 !"#$%&'""'"#"'"($! " # $ %&' ( )* )+ * (, - * )./ 0 1 % " 9++.)02 * - -. * : %; 9 0 < %, =56 >,?% $#8 (! #+ $ B #1/ #; % (!

5 )*"+"'$," -./ '"2"(#"+"*34+3'"+&1 """"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""(( #*"+"34*#$%(+&!&"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""(,.-.-7 "$$"'"($($3$%!&8""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( "':&"&!%;''&(%*%2:&"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( < %$$%(""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( $=%+"+"$'$%("""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""( >.-7-. %$%#%*"+"43*,!"'"($"((*6"+"4%4&*$%(""""""""""""""""""""""""""""""""""""""""(: "%(+"*'$#"+(?%'$%(+"=""""""""""""""""""""""""""""""""""""""""""""""( $,""$*2%$='"%4$'$%("""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""",,.-7-9 %2#"*"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""", >.-< 0-7/ / &'3""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""7) $#*".&)*3"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""7( ;A &'3""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""7, $#*"5&)*3"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""77 5

6 )*"+"'$," / &'3""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""7; $#*"7##"4$3"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" /7-5 -7B &'3""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""7< $$+"*+%#&'"($$%(+"7-5"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""" > > &'3""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""7: $#*"9##"4$3"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""";) &'3"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""";( $#*"<(434$%("""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""";, <5 6

7 %+&#$%(#"($?:&"*3"C*$=," $#*"##"4$3 -D "3 " #=%* '%# * '6 =% #%#!# *6 ==$'*&!'!%#*%!>1!& '%# # % '#%='='%!#? '%# &# * * $%2# *$*%!" 3,))-3,:3"(-;)/(-8<" "3 "3 -D " # %'* '%# # #%#!# *6 ==$' *%! &# $%' =&#$'%#>!$ '%# '% B%#' *%! %= #=!6* + # *'%'6 ' * 2-3,))-3 7:3" 778(/ 77<:" -3. "3 / "3 0 "3 "3 4 "" #' $!!&! * #''%1!> $%! '%# C' & $'%# # '#' C' 32 9B 3,))-3%&" "3 "3 " # 1!& '%# # %'* '%# # *&!'! %##%#!# *6==$'*%!>7")"29 ) 3,))-3%&" $#*""(434$%( -3"30"34 "30.""3 "3 "3 " # ',/ ((( '&2 %&" %&! '%# * #!2%=?%1&#3! *1&# #' $'1*' +%!'# '#'>B%#'*%!!# ##%'* '%#"# '%#%& 2 7

8 %+&#$%(#"($?:&"*3"C*$=," %''&(#$%(%*" -3 "3 " %&! '%# # 1!& '%# #%'* '%# =% *&!'! %#*%!>!$ '%#'%' * D # D/" C9-1!,))93%&!%&3 #$" -3 "3 " %&! '%# # # %#!# 6 ==$' &!'! %# %!> 6'#%#%= # 1!& '%# +2 *&! '%# C' # " 9 D +.,.&#,))93 #C$3 #!'" -3 "3 " %'%$%! %&! '%# %& %! 6' E %#&!'!"%:+0 %1*+,))93 3 #$" -3"3"3 "'*!#C'$%'=&#$'%#=% ' * #D/" 9D+.,.&#,)):3 3 #$" %$" "3-3"3 "3 "%&! '%## 1!& '%# #%'* '%##>'=&#$'%# #'#C= '&" EF 9.,))93%# &3 -3"3 "%&! '%####%#!# *6==$'*&!'! %# *%!> 6'#%# %= # 1!& '%# +2 *&! '%# C' # "EF 9.,))93%# &3 -3"3 "#6'#%#%==%%'*!%&! '%## # *&!'! %# #%#!# *6 ==$' *%!> 7")" 2 9,)):3&$%#3' '/#" 8

9 %+&#$%(#"($?:&"*3"C*$=," -D"30"34 "30.""3 "3 "3 " #',/ ((('&2%&"%&! '%# * D #' $'1*' +%!'D/# '#'>B%#'*%!!# ##%'* '%#" E4 9.,)):3!!3 #$" "3"30"34 "30.""3 "3 "3 " #',/ ((('&2%&" * *1&# #' $'1*' +%!'# '#'&#B%#'%&! '%# % $"EG 7HB2 *71 3,))-3*' *3 2/4 " "3"30"34 "30.""3 "3 "3 " #',/ ((('&2%&"$'%#%=%C%=''%= $' $%1 ' # #=!&#$ %= ' # # %&! '%# #!2>!$ '%# '% B%#' * #!%" E6 9.3,))-3 #'/'+%&3&" "3"30"34 "30.""3 "3 "3 " #',/ ((('&2%&"$'%#%=%C%=''%= $' $%1 ' # #=!&#$ %= ' # # %&! '%# #!2>!$ '%# '% B%#' * *%! =% #&$!% #!%" 2 9,))-3 2'$3' '/#" %2#"* "3 "3 "3 " 7-/> =%#$'%# %&!F1!& '%# '!F%'* '%# %'%$%! #! *%! #%#!# E ==' *6' E %# *&!'!" %$!!+' %$&*#' '%# '!! %#+! &! '> ''>AACCC"=*"+%' '"=" G' &!F#$ %'$'%# % **3 B#1,)):3 3 #$" (%2' H 7") %!# 4??%!3 2!1 '%&'3 ** #&!! %*'3 #$#'/#1' %' I 9

10 &!J#'=$ '%#&1&!J**&#%=$#$&* #KI#(-:73B* #!J'%! *$#3! E! $%#$'J&#*! #J ' & 5& #! $ & 2#%*!J**&#%=$#$ $5& KI" #(--<3!F '%#! ' #''%1! * 5&&#%$= #!' '*#'!F#=$'%#E"!! * &'$%# +!*#'! *%+''! *%'!' #! 25&2 1 #'! *#' $$"!&# #!' &'5&$% #'3!$$1%!%5&'!1!%*#' ' #$1!*&#'=5&#'"! L'5&! *&$%#$#' '%#! * '5& #''%1 &6'&#%&'!#' #'&&$$' &'5&! ' #''%1!" #=='3&#! '%#$! ''%&1#'! $%#$#' '%#! * '5& #''%1 &6'!F==$ $' K$%' 3(---M 4& 3,))7I%& +#! '%6$' K%!!# 3,))9I" # 1 #$3 %&! #''%1 &6 '! 5&! #+'& #&$!%5&! ' #$' #13*' +%! #! $!!&!%&1# $'=3! %#1%!%5&'!&'G'! &6 $%#$#' '%# #' $!!&! 3 5& %#'!& ==$! ' $%N'& E*&"! # &!' 5& %&$'&3!%'%$%!$&!%##''%&1#'# %3'#%&'3! F ' F&# %'%$%! 1$&# &!1*#'"! '!%#$ F#' E *'%F #!2 'E$'2'&3$%*%' #'&!1*#' &B'" #$$ 3*'%' ''5&$=5&% #'&*%!#%#!# E =='*6'%#' ' %% %& #!2 $%#B%#'*#'! %## F&# #*+! &B' K%# ' #$!!3(--9I"! *''#' &!F'* '%# *' '!& 1 +!' #'/#1&" '' %$ '!*#''&'! %&!*%! E %# *&!'!3 6*!!%5&!F%# 1&' $ $' $%#B%#'*#'! * $%$#'5& '! * $%2# * '#'3 %& +#3! * $%$#'5& F&# %&' #' ' %# *' +%!'3 $$ ' #' '$&!*#' ' & $ * #''%1 &6" # =='3%#'#' # $%*'!F#$''& &! *' &6 %# E! =%!%! *%! '%#"# #'3 1 #'F==$'&$ #!23*O*!''%&B%&= +!F 1% 10

11 ($%+&#$%( &!1*#' '#'3! *O*=P%#3!'$%** #5&F!%#'#=%* '= K%% #&*#' '%#3(---I"!%3%!%+!*&$&!%##3 #%' **#'3! $%#'&$'%#&%'%$%!E&'!%&==$'&!!1*#'"!' # #$ %&1%1!&%'%$%! =#!$%* 3*!*#'%&1%! %'* '!! %' E # # $%*'! $%#' #' 6*#'! K#%*+'%'!!1*#' %+!3% %+!!1*#'3QI* &'5& K#%*+!1*#' '#'3QI3%&1#''#'!%!! #=$ '%#F'&" #! * $'%# $'' #'%&$'%#3#%& #'%&%# =P%# #!! ' '*#' #''%1 &6 #!F#=$'%#! & " #! $'%# (",3 #%& $1%#!F %$ %&! '%# + &! *%! #%#!# E ==' *6' # * $%$#'5&" %&!%#! *'%%!%&'! %&!F1!& '%# '!F%'* '%# %'%$%!%&$*%! #! $'%#("7" $'%#(";#'%&'!*%!#%#!# E=='*6'!&$%*!6##'%& #'!&&%#"#=#3#%&'!!%#!%+B$'=$' 1!'#'%#!! #$* #&$' #! '("8" '"2"(#"+"*34+3'"+&1 * #!J* *%#'#' E! =# ## (-9)3!%5& *$# C ' # #$$% J P%1#' 5&#%*+&6 %#'!& '#' %*%6&! %&== #' F&# =%* ' '25& $ #$ K$%**! $%* R %I" # B&!!'(-:(3&# =5&#$ *%' #' ' #%*! $%* R % '%+1 # '$&! $?! %*%6&!! #' =% %#'%! # 1#'%# KI J'! #' K%''!+3(-:(I"J6'#$J&#%+!* #' ' 1' #!J '%# J&##%&1 & 1& 1%5& (-:,>! 1&!J**&#%=$#$ &* # KI" '&' %1*#'! 2'* **&#' # #=$' #'!!2*%$2' ; ' # #' L# #'!F $'1 '%# & 2'* **&#' %& #' $'%# **&#%!%5& '%!%5& $%**! '&$'%# ; ' # =1% #'! 1!%*#' F#=$'%# %%'&#'"?%1&# KDI3&# #+'&#&$!%5&! ' #$' #13 =&'! * *%!$&!&'! #!' '*#'&"*#'#*%#%' $?! '#'3%# ==$ $'$%#'!!$ '%#$1&=&'*%#'K$!3(-:9I" '#'' ' $'' *%!$&! %#' 1&!& ' ' F *!% 1 #' '% E #%&1 &" F &' *%!$&! $'' $! =&#' 1!%! ## 5& &1#'* # *'' %& 11

12 ($%+&#$%( &' #' &# &$$ ' &'5& %!%#" #! ## -)3 &# #%&1!! $! F #''%1 &63!#+'&%' 3=&'*&!* $'!F==$ $''' %& ' '*#' #''%1 &6 &'*#' $'= K %&!2 $'1 #''%1! 2I %' &6*%#%' ' &6+' '*#1#$K **3 (--<M(---I"6 #!F*#$&1&3! 1 '#' 1 ' &*#'() #%& -)SF#'&6"!!' '&# #E! $%&1'&1&K%'3,))7I" #*"+"34*#$%(+&!& 1&&'&#'%1&>$%#'1&#1!%F&##1!%5&%#'! '$&! ' F#'!& #%* %& =%* J %1!3! %1&3 # $!&! $!!&! G'3 %& #&' J6* # #''%&'! 1 $'1! $!!&!" J#=$'%# $ 1& #' L# &# *%=$ '%# #'5& =#'1! $!!&! 5& 1#' &# $!!&! $ #$& >!! %!= =P%# #$%#'G!" 1& &' ' %&&# =%*! '#' #! $!!&!#=$'%&#'# &*%*#'%$&#!$ '%# "$2$!!$ '%#&1&'!!&'! =&("(36' 'F&# '$!,))7&! $$&!'!K &$3,))7I"$!!&!$+!&%#'#$!*#'!!2*%$2' ;T'E*%#*&3!* $% '!*%#%$2'" &("(2$!!$ '%#&' $'%# #''%1 &6 %&$> '&$#H '&&+!#%& 12

13 ($%+&#$%( $2$!!$ '= & F '$&! &'%&!&& ' " %! =6 '%# K '' $*#' E &# $!!&!I3! $%## L'! *%!$&! ; #' E! &=$!2*%$2' &6! ' =6 E $!!/$!2$%%'# 1! (,)!F#1!%"!J&#%# 1$&# $'& ;3 (,) $ # $%#=%* '%# ' ' '' 1&# $%/ $'&1 #'!*#'O'#'E$G'! *%!$&!;"!J&#%#(,) 1$!$%/$'&3!%! =&%#3!J#1!%1!' ''1! **+ #$2'%! *5&3 &! =&%#**+ #$!!&! '1!!&" $ &#'!% #! $2'%! *! $!!&! M&# =% E!J#'&! $!!&!3!! 3!+ #'! &6 +#J '!#?2*5&J!!$%#'# '"'%1&%#'%&#%*!J '#%#!J 3 &# % '%# ' #$'%#3 U$%#1' #'U!J 1! # 1! ' #$ 3 $ &!!J &' O' #' #! #%*! $!!&! $+!" '' ' #$'%# '!!J#?2* ' #$' #1" J =#! '&#*%!$&! E %&+!/+#" # '$&! '! ' #$' #1 ' # O' =! # ' #$'%#'%&1#'=&"J'! %#%&! 5&!!! &#' # 1 +!' #'5&"! &'3!J +$ '# #' #!#%2& $!!&! 3 %$ E!J#' 'J &'$%*% #'%'5&1 &6'$!!&! "!#' ' 1$!!*#'! **+ ##&$! 3%&! ' 1' #F#' & #!#%*! $!!&! $+!3 %&!J=='!J#?2* #' " F %!2*! $!!&! G'' #$'!F %1!# * 5&*''#'! 2#'%'#1!" &F&#$!!&! G' 1#& %&$'$ & 1& '!%' =+!" # =%! %1& #' # %# #%*3! $!!&!$+!#%&' '%&B%&** '*#'&1&3'!!&' #$$ 1#E&#' '5&$#'" #$'' '3!!2*%$2'E&#&1$%* +!E&# $!!&! #'!$!!&!5&$#'$%#''&#' #&#1%%&!1&".-.-7 "$$"'"($($3$%!&8 ' '*#' #''%1 &6%#+!&!* $ '#' &B%&F&#$#5 $! * $%!%5&>! #+'& %' KI3! #+'&#&$!%5&! ' #$' #1 K I3! #+'& #%# #&$!%5&! ' #$' #1 K I3! #+'& =&%# '! #+'& F#' " & ==' $'= &! %$&F#=$'%#F&#!2*%$2';T!%#' &!!&'! =&("(" #$!J#=$'%#!!'+ #*#'#'%#&&# %$ '%# *%!$&! #''%1!K'' I3!!&%&1#'$%*%&6*%!$&!! $! #+'& #&$!%5&! ' #$' #1 ' F&# *%!$&!! $! #+'& %' %&! $! #+'& #%# #&$!%5&! ' #$' #1"! &'3#%&#'%#!'%$! F #''%1 &6$'$/&'#%& 13

14 ($%+&#$%( #&*%# &!*#'! $! ' #'3 #' #&#*%#*& # $' 1!" =='$'=$'%$! &!%$&F#=$'%#F&#!2*%$2';T! %#'!!&'! =&("(" #+'& #&$!%5&! ' #$' #1 K I %#'! * $! J #''%1 &6 &&!* $3 &*!& ##(-:)3 1$! *E%'%#!?%1&# KDI" & &# $' # #%*+ $ *%!$&! %#' ' 1!%>?!$' +#3 #%# KI3 ' 1&# K;I! *1&# K7I3 *'$' +# KI3 + $ 1 K4I" F $' +# ' #$% 6*#'!" $%*% %#' '%%2! #?2*$!!&! '' #=%*#'#&+' #$ $'1$ +!+!%5&! ' #$' #11! $%*''%# 1$!#&$!%# '&!"! #'#+!%5& #'! ' &$'%#!J #! ' #$' #1" # #$!&!*#' # $'' $!! #!%&#&$!%'5&$%**!#%=%1" #+'& #%# #&$!%5&! ' #$' #1 K I # 5&#' %%2! '%#%&#+! ' #$' #13!!%#'F*+! $'1#$%* %# " #1 # '!F=1#? %#'!!&&'! "!& $**#'3 &6 #%&1!!*%!$&!%#''%%>!! 1#35&'%#+! #!&& 23'!F' 1#3&##%&1! %&1&& #!F#%#&%##' &6' '/#" #+'& %' KI #'=#' 1$! #!!$ '%# 1!"! +!%5&#'!J#?2* %' =P%# E *O$!J *+! $%$' 1&#%&1!!*#' =%*" 1& $ %#' %#$3 $%#5&#'3 #$ +! J#=$' J &' $!!&!" #+'& %' $'&!!*#' %&1 $%** #''%1 &6 %#'!F *# 13! =% *# 13!F '?# 13! &# 13!F## 13!!%# 1A'%# 13! #!=# 13! 5&# 1'!' # 1"# &'#+'&! %' '!'%# 1"'%# 1'# ='&'!%& #! &'#+'&%' E ''#=%'$%#$#' '%# #! #'E!* #'#!&!%#'*3$5&*' &6&'! '&$%*+# %#/ '%# 1#!&*$ *#'&#%&&6=% B%&&!*#'"#! # +%%'" #+'& =&%# K%& F#'I '! #+'& F#' %#'! $!!!& $#' & &! * $" *%!$&! &! * $! %#' $ +! F*O$! =&%##'!F#1!%&'! **+ #$!!&!!%5&!*%!$&! &! &6* $! 3 %#' $ +! F#+&# #?2* $=5& & 3! #' 3#$ E!$ '%#" 14

15 ($%+&#$%(.-.-9 "':&"&!%;''&(%*%2:&"! #J2 $' $ %& '%&! '#' =6 #'! +&' J&# ' '*#' #''%1!3 $'' $%# %' O' ' E $ 5& '#'"! *O* =P%#3 &# =%! %%'1' ' +!3&# &1 &!!J#=$'%# %' O' & ==$'&3 %& &&# +%###$! *! ' #1!& &*&6!J' '&*! "&6* 5&& +%!%5&%#'&1!!>!' &6!2*%$2';%&=#!#1 &!J#=$'%#'! $ 1!3 #5& #'!#%*+ 1%# #!J% #* '3 1% $%#5&#$3! 1'!$ '%# & #!J% #*" # $' ' =# # *& #'! $%#$#' '%#!J 1! #! #'*' #!J1%!&'%#!J#=$'%#" *%!#%#!# E=='*6'3%&#$%!V %$%&! '%#W %#' ' #$!*#'!5& E!F'&! '%# % $%#$#' '%# K * $%$#'5&I *$ *#'#%' **#' & $%&!& 1!%*#' K# ' '*3,)))M!! 3,))8I" *%! '%# * $%$#'5& %& +&' $! $%#$#' '%#! * '5&F&#*$ *#' &$%&&'* *#' '%#F&#%&!&& %" F&'!'!F #!2 %&! '%# %&!F1!& '%#! * $%$#'5& F&#*$ *#' '! *#'*%#'K%?3(--<M#''*3,)))M!! 3,))8I"!!*'F'*!$ $''5&%&! '%#3""! *%2##'! 1 +!' #'/#1&!! *'&*%!3*O* #!$ %###1&!! '##$'!F'* '%# *'#1&!"F #!2%&! '%#'!*#' '&'!%&! $ $' '%#! * $%$#'5& '#'$?5&&#%'%$%!$ &#%*+!1!1*#'#F' #1 +!3*O$ #' #&# #!2#1&!! K '#' # $'5&3 #=#' # + X3 %## XQI" '' %$ *'!*#'!F1!& '%# '! 5& #'=$ '%#!F#=!&#$ $%1 +! #1&!! &! *' * $%$#'5&" #=#3 $ '& %&! '%# &1#' '# $%*'! 1 +!' *' F&# &B' #' 1!1*#'3%#! # 1 +!'#'/%$$ %#KR!%#'#3(--7I" %$$%( *%!#%#!# E =='*6' %#'&# 6'#%# *%!#%#!# $! 5&&'!%&!F #!2*&!' #%##$&!!$?!&&#1&" %& #%&! P%#$ #!$ F&#*%!%&! '%#E%#&#5&" 15

16 ($%+&#$%( %' yi!1$'& ni%+1 '%#!F#1& 3 1 #' EE 8"%' &# =%#$'%#3 $1 #'! %$& E*%! ' # #' * ##%#!# θ i3! 1$'& *'!F#1&"#&% $5& ξ #'! 1$'& '* &65&!%#'==$'&!!1*#'%&!F#1&3 ξ = ( (, ) ' ''5&%&!F#1&'!%%## > "*%! y i = f θ, ξ ) + ε ( σ + σ f ( θ, ξ )) ( i i i int er slope i i %Y ε i '! 1$'& & &!! $%%# #' E! ' %+1 '%# #%# 6!5&!*%! " # &% 5& $ & &!! %#' ## #' F&# %+1 '%#E!F &''5&F!!%#''+&!%#&#!%#%*! ε N(0, ) ~ i i I n 1$ I n &# i * '$#''*#%#K I" σ#'' σ %#'&6 *'$ $' #'! 1 #$ &*%!F&"*%!F&''%*%$ '5& σ = )"#*%!F& 'E$%==$#'1 '%#$%#' #' σ #' = )"$ #!%Y!&6 *'%#' ==#')'!$%*+#" #$*%!#%#!# E=='*6'3!*%!'&%$%**&#E'%&! #1&3*!1$'& *' θ i%&!f#1&3&'1 F&##1&E!F &' #! %&! '%#" # ' $ 1 '%# &' O' 6!5& $ $''5& #1&!!3'!!5&!FX3!63!%3!$%1 +!"%'D 3!1$'&$ $%1 +! $?!F#1& " *' &1#' & == 1 '%# #6!5&M $ 1 '%# %#' 5& #'=!F#'%&$'%# *'! '% b i" 1$'& *' θi!f#1&&'!%f6*x$e&#*%!'z$%# #1 &[3! #' &#=%#$'%#$%##&!1$'&=='=6 β $%**&#E'%&! #1&3!1$'&=='! '% bi %E!F#1&'!1$'&$%1 +! Zi > θ = Kβ33I I" # &% 5&! 1$'& =='! '% b i ~ N(0, Ω) 35& ε b i i %#' ## #' F&# &B' E!F &' ' 5& %& &# *O* #1& 3 εi ' bi %#' ## #'" Ω$%%#E! * '$1 #$=='! '%%&! 5&!!$ 5&!*#'$%%# &$%*% #'&1$'& #=#3%&'#$%*' #!*%!! 1 +!'#'/%$$ %# *'F&# &B'#'1%!1*#'3%# B%&'&# &' *'! '% κ #! *%! $%##1 & KR!%# ' #3(--7I" #3!!1*#' %#' ==$'& 16

17 ($%+&#$%( & #'*%$$ %#3!1$'& *'#1&!&&B'E!F%$$ %#31 #'EE *3 &' # F$> θ = Kβ3 3I 3 κ I"=='! '% κ %#'&%'+& #%*!*#'3*%2###&!!'* '$1 #$/$%1 #$ Γ > κ 8 K)3 ΓI" =P%# #!3! =%#$'%# #'!!& %&1#' &# *%! '= %& 6%##'!" 6*! %&&#*%! *! # $%1 +!3! 1$'& *'!F#1&E!F%$$ %#3F$'!%> θ = β + + κ %#$ %'3! 1$'& +κ %& θ = β 3$'1*#'" Ψ! 1$'& 9 *' E '* ' Ψ = ( β, vec( Ω), vec( Γ )', σ, σ )"!F%#% λ!1$'&%& #'! *' int er slope 1 #$'!5& λ J = ( KΩIJ3 KΓIJ3 σ#' 3 σ ) 3%#&'$ Ψ $%** Ψ ' = ( β ', λ ') " $=%+"+"$'$%(!& ' *'%&'! #!*%!#%#!# E =='*6' %#' &!F'* '%#!* 6*&*1 *+! #$"# #'3&='! #%#!# '# *'3! #'! #! 1 *+! #$ %+1 '%# #F%#' %!&'%# #!2'5&"!#F2 %#$ F6%#$'! 1 *+! #$" %& %& $!!&& *'% %#' ' %%" * *'% %% ' #' + &!!# '%# &*%!"!&&'! %#'!!%'* ' '='KI''%#'%#!'* 'KI31!%#%' **#' 4! ' # K(--,I ' #'%* ' 4 ' K(--)I" * %!&'%# 3 $%#' E!#!*%!'&$'&!3 &#!# '%# &*% &'%&!F #$ =='! '%3" = ) "''%&B%&+ &&#!# '%#&*%!E!F%( * $'' =%/$ &'%&! 1!& #1&!! =='! '%" *'% %#' *!*#' #!!%$! 3'&'! # $#'5& %&! '%# K!! 3,))8M%!!#3,))9I" =%#$'%#!%$!'/!&K#%'4 '3,)))I*' &!*#'&# %6* '%#&'2"#1 #$3&#!# '%#&*%!'2 '*!*#' #! %$& " #!'# '1E$!%'*'!F&'! '%#*'%&'! #' %6* '%# #'! $%#'#& #! 1 *+! #$3'!! 5&! \& '& & K#% ' 4 '3(--8I%&!*'%+ &! \& '& & ' '135&'*# ]&1 #! %$& &!%$!"!& $**#'3&##%&1!!%'* F'* '%# K'%$ '$ %6* '%# 6$' '%#/ 6* '%#I ' %%! $ 1!!" '!%'* ' + &!F&'! '%#!J!%'*K6$' '%#/ 6* '%#I%% *''!"K(-99I"! 17

18 ($%+&#$%( F ' F&#!%'* ' '= 5& *' * 6*! 1 *+! #$ # $? # &6 *%! E %## #$%*!'" '!%'*# &' $ O'&'! $ 3 #$% &#=%3! #%#!# '&*%!#*'!!J' $'!%'*3$J'/E/ $!$&!!J #$ $%#'%##!!!!%/1 *+! #$ $%*!' & *%!" J!%'* K'%$ '$ %6* '%# %= I %%!2%# '!" K(---I *! $!J'!J!%'* &# %6* '%# '%$ '5& $'' #$"! &% %#$ *&! E $ 5& ' '%#!J!%'*! =='! '% 1$!& '+&'%#$%#'%##!!3#&'! #'! 1!&$%& #' *'"R&#' 1!!K,))8I %%#'! $'' ' *&! '%# &*%2# J&#!%'* ' '##'!%!&!' '$%#1#$%+'#&$**#'!2%#'!"K(---I"'!%'* # #$' %#$!# '%#" '!%'* ' *!*#' # &#!%$! K,))9I" '' *'%%!% ' '#& &6 *%! 1$ %## $#& E &$ K *%# 3,))<I3 &6*%! $' 5& '%# ==#'!! %# K%##' ' *%#3,))9I3 E *%! $%*# #' &# #1 & &!*#' J=='! '%%&$! 1 +!'#'/%$$ %#K # ' *%#3,))-I" %$%#%*"+"43*,!"'"($"((*6"+"4%4&*$%( ==#'*'% 6% #! $'%# $#' # 5&! ==#'!%$! #!5&!!$#%#'*!*#'#%#'!&=$'&!*' #'%&!F'* '%# *' * 6*&*1 *+! #$E 'F&#B&%##" #$ $%#'6'3! +!*#'E!F #!2%##3!%+!*&$%6&%'%$%!$&! %##'&#%+!* '5&=%# *#'!'$%*!6" #=#'&#%'%$%!%&! '%# Ξ "# 8&B' &65&!%# ''+&&# %'%$%!'!*#' ξ 31 #'EE8" $&#%'%$%!!*#' ξ '=# &# #%*+!1*#' # 5&! '* &65&!! %#' ' ==$'&> ξ = ( (, ) " %'%$%! %&! '%# '!%!F#*+! 8 %'%$%!!*#' > Ξ = { } ξ,, 1 ξ N "! ' $'! 8 %'%$%!!*#' %&&##%*+ 18

19 ($%+&#$%( '%'! F%+1 '%#'!5& n = N i i=1 n " # #'3! '!& =5&#' F 1%&# %'%$%! $%*%<%&&B' 2 #'!*O*%'%$%!!*#' ξ 1$!! #'EE<" { ξ, 1 N ; 1 ξ, ; ;, 2 N2 ξ Q N Q } Ξ = %'%$%!%&! '%#F$'!%> [ ] [ ] $ 5& 8 $%%# &6 #%*+ &B' 2 #'! *O* %'%$%!!*#' ξ 1$ Q q=1 N q Q q q q=1 = N ' n = n N " #3 '*#&# %'%$%! *!5& F&# ' F#'=!'* E!!%& %& $ 5&&B'* &=#! '&$'&&%'%$%!>!#%*+%&3!#%*+!1*#' %& # 5&! %%'%# &B' %$ E $ $&# %&" $ %&&##%*+'%'!!1*#' =6"%&'$#'% '%#%#'*%' #'"# =='3'& *&! '%#%#'$%#=*5&! +! #$#'!#%*+%&3! #%*+ &B' %& '!F!!%$ '%# '*!1*#' # $ 5& %& #=!&#$ =%'*#'! $%# F'* '%# *'3 $%#& #' =% E '& ##'' +!K!/4 ## 3(--)M.%#%#3(--<I"!&3$5&'%#%#'F &' #'!&#'!!3!%5&!'&%#'$%#&' #%&! '%# '$&!'!!5&! #=#'3! %## X %& $? '#'" # +%# $%6 %'%$%! &' %#$ *!%!F==$ $''&*!*#'!#!&'5&3#*#* #'!#%*+ 19 %Y!1*#' &B'3'*%#$%N'&3##!1 #'5&FE'*#=%* '=" O*!F %$ $! 5& + &! *&! '%# *' F 1% &!' ' #' #'%&1!&%'%$%!%&! '%#M*!&&*#'3$'' %$'' $%N'&#'*$!$&!3!*' #' #!#%*+%'%$%!%&1 #'O'1!&#&#'* $$' +!" 4 &! '%! # F6#$&'! # %##%#!# $! 5& '%3(--9I3&# %$#!%&'*# %'%$%! $%#' E*#*! * '$ 1 #$ $%1 #$ F'* '%# *'" 3!%#!F#!' %/ *3!F#1! * '$F#=%* '%#'! +%# #=&! * '$ 1 #$ $%1 #$ '%&' '* '& #%# + " '%!F%'* '%# %'%$%! 1 %#$ % &!F&'! '%#! * '$ F#=%* '%# " "%(+"*'$#"+(?%'$%(+"="!#F6' F6%# #!2'5&6 $'%&! * '$F#=%* '%# #! $%#'6' *%!#%#!# E =='*6'" %** $' & +&'! $'%#

20 ($%+&#$%( $#'3! #%#!# ' & *%! '&$'&! # $ *' # *'! '*# '%# #!2'5&!!%/1 *+! #$3'%#$! * '$F#=%* '%# $!$&! E ' 1 $%# $!!/$" # %6* '%#!F6%#! * '$ F#=%* '%# ' %% #' '!"K(--9I #! $ F&#*%! F& '=%Y! & %#' &% '+&#%*!*#' *%2###&!! ' 1 #$ %*%$ '5&"''6%#'+ &&#!# '%# &*%&*%! &# 1!%*#' 2!% &'%&!F #$ =='! '%3 $%** #! *'% " '' %6* '%# *' F%+'# &# *%!!# %' &6=='! '%'$%#&'E&#6%# #!2'5&! * '$F#=%* '%# "'%&''!"K,)),I%#'! &''#&!1!%*#'! * '$##'%& #' #!1$'& *'E'* σ#' ' σ $ $' #'!*%!F&&!!" 1!%*#'%#' ' 1!& *&! '%# &&# '&!! * $%$#'5& %&! *%!$&!!F#%6 #K'%&'3,)),M'%&''#'3,))7I" * '$F#=%* '%#%&! '%#$%*%$%**! %**8* '$ F#=%* '%#!*#' > KΨ3Ξ I = 8 = ( KΨ3ξ I!%'%$%!%&! '%#'=#!F#*+! %'%$%!!*#' $ $&# #1& Ξ = {, }!!&'F$ M %&" F Q q= 1 ξ,ξ N 1 "&+#3 ( Ψ, Ξ) = N M ( Ψ, ξ )!%'%$%!%&! '%#'=# < q F q %&1!%%#!F6%#! * '$F#=%* '%#%&&#%'%$%!!*#' ξ K!F#$ ' #' &* #! ' $'' $'%# =# F!!!F$'&I" %&!%#5&!1$'&$%1 +!'%## D" * '$' #=#, 3 KΨM I. 3%Y 3 KΨM I'!!%/1 *+! #$&1$'&%+1 '%# y %& I Ψ Ψ! 1$'& *' %&! '%# Ψ " %&!# %#! *%! K Kβ33II3 ξi # ==$'& #'&#1!%*#' 2!% &*%M$1!%*#''==$'& &'%&! *%2## =='! '% 3 1!& 5& ' %#$! E )" =# '#! $%*!6' $!$&!3 #%& #F!5&%# $''!# '%# & *%! F&M $'' '$'%# ' F!!& *! E $!! ==$'& =&' # " *%! ' ''5&F$'!%> JK Kβ33II3 ξi K Kβ3)3II3 ξ I + K )I + εkσ #' + σ K Kβ3)3II3 ξii = ) 20

21 ($%+&#$%( '!!%/1 *+! #$3' %$ > (, 3 KΨM I!#, π +!# 1 + K. I1 K. I %Y.'1%#'!F #$* #!'! 1 #$* #!%## >. K I I =. K Kβ3)I3 ξi, JK Kβ33II3 ξi K Kβ3I3 ξi 1 K II 1 = Ω + σ + σ β ξ #' K K 3)3II3 I J = ) = ) 1 '%#!!%/1 *+! #$ %' &6 *' %&! '%# $%#&#'!%E!F6%#! * '$F#=%* '%#!*#' #+!%$> K. 31 I 2 K. 31 I ( KΨ3 ξi, 2 K. 31 I ) K. 31 I %Y K.1I)K.1I ' 2K.1I %#' +!%$* '$! # #'!F #$. '! 1 #$1%+1 '%#> ( ( ( ( K. 31 I ), = + β β β β 1$' = (3 3 *Kβ I 1 1 ) K. 31 I = 1 1 λ λ ( ( ( ) K. 31 I = 1 1 λ β ( ( ( ) 1$' = (3 3 *Kλ I 1$ m = 1,, dim( β ) ' = (3 3 *Kλ I #!' 1 &6 $' $**#'3! +!%$ 2 K. 31 I! * '$F#=%* '%# ' &% #&!3 "! # #$! 1 #$ %+1 '%# #! *' *%2##F' #$%*'"''*'% #! &'! '!DE" F6%#! * '$ $%*!' KD JI '!& $%*!6 & ='!F#'%&$'%# 1$%#&*%!" $%* %#$&6*'%#F 1! &$&#==#$ *%' #' #!F1!& '%#&66*!K'%&''#'3,))7I" F6%#! * '$ F#=%* '%# ' '#& E *%!'# #' $%*'!F#=!&#$$%1 +!&! * $%$#'5&'F&#1 +!'#' /%$$ %# &$%&==#'%' '*#'K'%&''#'3,))7I" #$*O*' 1!3!%#' &%%&#!# '%#'23$F'E&#!# '%#&*%! &'%& 21

22 ($%+&#$%( 1!&#1&!!=='! '%"&$&# *!% '%##F '*%#' 1$$'' # %$35&%##&!' '*! E$!!1!%$**#'* %& &#'* $!$&!!&!1 & =' *&! '%# %#'!%" # =='3 #! $ F&# #!2%##3!%##$ 5&#1&%#'#$%##&'&#'* '%#*5& + 2###&'%#$ O'==$'&"#1!& '%# ( ( Ψ ξ) ) %% *&! '%#%#'!%". 3I 33I3 '%#$ ''*'% %6* '%#!# &*%!'*! E$!!$' #! '$!K.%#'^ #3(--:M.%#'^ #3(---I%&!$!$&!&+!%$=='=6 K K. 31 II #!$ F'& * $%$#'5&#$%/%1" '##$$==#'1!%*#'*%#'!F#'O'!F&'! '%#! * '$ F#=%* '%# %&!F1!& '%# '!F%'* '%# %'%$%! %& *%! E %#&#5&".-7-7 $,""$*2%$='"%4$'$%( F6%#! * '$F#=%* '%# #!*%!#%#!# E==' *6'#%#$&%'%$%!!1*#'*!*#'&1$'& *' %&! '%#" *#* '%#1 #$1#'E* 6*! * '$F#=%* '%# %' & %'%$%! %&! '%# '#$' $%## L'! 1!& *'3 $ 5&' %6!&5&!+&'!F6#$1 B&'*#'O'F'*! *' %&! '%#"#*$%#'E6!%'!'* '%# *'%+'#&!% F'& #'& &! *O* %&'" # 2!% &&# 1!& & 1$'& %&! '%# E '*" %& $ 1!& 3%# $$ E*#*! 1 #$ F'* '%# # $$ #' &# %'%$%! %&!5&!!F6%#! * '$ '!!& Z #["F'$5&'!!! #=$ '%#!%$!KJ#%3(-:(M4&'#3(--9I"!F '%#$Z* 6* [!F6%#! * '$F#=%* '%#%&&# 1!&%## *'%&! '%#" #*%#!#F6'! '%#F%&! * '$3 %& $! $' F%'*!' + & =%#$'%# $! %#' ' 1!%" '#&! '% #! F%'* '%# %'%$%! # %# #%#!# $! 5& K%%13(-9,M ' %#13(--,I %&!*%!#%#!# E ==' *6'3 ==#' $' %#' %#+!"!& $! 5& %#'! $' /%'*!'35&$%#'E* 6*!'*# #'! * '$F#=%* '%#M! $'/%'*!'5&*'*#*! %**1 #$ 2*'%'5&K! ' $!F#1! * '$IM! /%'*!' 5& $%#&' E*#*! %** $ $%==$#' 1 '%# '* '%# '! $' /%'*!' 5& 1#' E* 6*! 22

23 ($%+&#$%(!& '' 1!& %! * '$ F#=%* '%# "!& &'! # * $%$#'5& ' $!& /%'*!'3 5& *' *#*!F#1 & '*# #'! * '$ F#=%* '%# %&! '%#" # '5&3! $!$&! $ $' # #$' F#1%#* '$!! &5&*#*!F#1 & '*# #'! * '$ F#=%* '%#1#'E* 6*!'*# #'! * '$"!%'* F%'* '%# %#' #$ " #%*+&6!%'* %#' ' 1!%3 $%#& #' %' E!F%'* '%# F&# %'%$%! ' #'3 %' E!F%'* '%# F&# %'%$%!'' ''5&K%&$%#'#&I" %** $' $**#'3 &# %'%$%! Ξ %& &# '& %&! '%# # * $%$#'5& &' F$ %&! =%* Ξ = { } ξ,, 1 ξn %Y$ 5& ξi $%%# &6 %'%$%!!1*#'==$'&&!&B'3 i = 1,, N "! *O*=P%#3#%& 1%# *%#'5&F!&'F6*%&! =%* Q%& Nq &B' 2 #'!*O*%'%$%! { ξ, 1 N ; 1 ξ, ; ;, 2 N2 ξ Q N Q } Ξ =!*#' > [ ] [ ] &' # ''+&E$ 5&%&&#% '%##! m &B' mq 2 #'!*O*%'%$%! ξq''!5& {[ ξ, 1 m1 ] ; [ ξ, 2 m2] ; ; ξ, Q mq} " #!!% F&# %'%$%! #'" # Q i= 1 m q N q q = 3$%%# #'E! %%'%# N = 1" Ξ &'%#$F$%&! =%* Ξ = '=# #&#%'%$%!' ''5&"#&''#$ %'%$%!' ''5&E* 5&!$%#5&$%*#')'('1= #''%&B%& Q i= 1 m = 1" %'%$%! ' *#'! +! &5&#%&#F 1%# &##%*+ mq q #'"! =&'!% *# E&# %'%$%! #' # %$ #'! %%'%# E!F#' &&!!&%$" F&#%'%$%!' ''5& &%'%$%!#'##&# 'F==$ $'&%'%$%!5&'##!''=+!" N #!%'* 'E$'' %$'!F!%'*&%%1/^ 2##K%%13(-9,M ^2##3(-9,I31!%#'!*#' #&#$%#'6'%##%#!# $! 5&& '#& &6 *%! #%#!# E ==' *6' #' '!" K(--9I"! *'! $%#'&$'%#%'%$%!$%#'#&/%'* &6"'!%'*$%#11&#%'%$%!/ %'*!5&!5&%'!%'%$%!#'!"!&'$# #'O'!%#%& ''#! $%#1#$ $!&'!!F#*+!%'%$%!!*#' %+! &$%&' '%#" %'%# ζ 3!!' $ %'%$%!!*#' 5& &1#' O' $%*% F&##%*+!1*#' ==#'!%#!$%#' #'/=#" F!%'*&%%1/^2##'' '="%'3 Ξk!%'%$%!%+'#&E!F' '%#B"! * F 'E!F' '%#BKE$%#'&!%'%$%! Ξk + 1'!5& Ξ = ( 1 α ) Ξ + α ξ 1$ α k + 1 k + 1 k + 1 k k

24 ($%+&#$%( * $%*#')'(' ξ # ζ 3&#%'%$%!!*#' E B%&' &%'%$%!3 &5&!&# * α k + 1' ''+&#' #'&#= $'%#* ''+& &6 &'%'%$%!!*#' $%*% #' Ξ k " %'%$%!!*#' ξ E = #' #! %'%$%! * $%%# #''$!&%&!5&!! ' #$ d ( Ξk, ξ ) '* 6*!3$5&1#'E$$ ξ * '!5& ξ arg max * d ( k, ξ ) ( ( )) log det M F ( Ψ, Ξk + 1 ) =# α = Ξ " ξ ζ k + 1 αk+ 1= 0 F!%'* & %%1/^ 2## ' + &! '%* F5&1!#$ R= ' ^%!=%C'?K(-8-I5&' +!'!F5&1!#$#'! '%#&1 #'> -!%'%$%! Ξ'/%'*! - max ξ ζ d ( Ξ, ξ ) = P 1$ P!#%*+ *'E'*&*%! - Ξ*#* max ξ ζ d ( Ξ, ξ ) #3! *%#' 5&F&# %'%$%! %'*! %&!F'* '%# *' & %'5&1!#'%&! 1 #$! $'%#" '&$'&' '1!F!%'*'!%! &1 #'> (" %&#%'%$%!' ''5&#'! Ξ0 #%##","!F' B3 1$!%'%$%! Ξk 3'%&1 ξ = arg max ξ ζ d ( Ξk, ξ ) O' max ξ ζ d ( Ξk, ξ ) P + ε 1$ ε 13&#&!'%! #$'*#" * 7" #%#3 $'&!!%'%$%! Ξ k + 1 = ( 1 αk + 1 ) Ξ k + αk + 1ξ 3%Y α k + 1'$%& ] 0,1[ '5& * 6* det ( M F ( Ψ, Ξk + 1 )) 3$5&$%%#E α = P d * d ( Ξk, ξ ) P ( ( Ξk, ξ ) 1) k + 1 * '!%'*%'* #!#%*+<%'%$%!!*#' '!%%'%# &B'#$!& #$ 5&%'%$%!!*#' ξq&%'%$%!%&! '%#%'*! Ξ"$ ='3!*'! '*# '%#F&#%'%$%!%&! '%##!&=# #'&#'&$'&3$F' E&#+%##+! #$#'!#%*+%& Q E#$!&3!#%*+ nq!1*#' %&'#=#!#%*+&B'E#$!& #$ 5&%&" #1 #$3%&!F%'* '%#%'%$%!#'3!%'*$=5&%#'' 1!%3 5& #! $ %'%$%! /%'* &63 %#'!%'* F$ #" & #$' #' 'F&#%'%$%!#'!'!F *!%&$$1*#'#$ # #'&# '*!1*#' &# *!!& '*" 5& &' O'!*' #' 5& #! $ #*#'!&&'*#*&!' #'&#*!!&%!&'%#K%%13(-9,M^ 2##3 (-9,M'$!!3(-9;I"!'# '1%#''%%+ &!*O*#$3$# #' &$&#$!%'*# #''! $%#1#$1!%'%$%!%'*!" " 24

25 ($%+&#$%( '*# '%# %'%$%!%'* &6 #'%& ' ''5& &' = &!F&'! '%# F!%'* # &6" #!%'* % ** '%##%#!# '! 5& + & &# 1!%*#' & $' & * % %& & &6* %3 #!F!%'* & #' ' $!& C'%#3 $'1*#'" F!%'* & *!6 '!*#'&#%!&'%#3##$' #' &$&#$!$&!1&$'" #*%#3'%&$!%'*%#'*'%F%'* '%#!%$!3#*'' #''%&1&#%'*&*5& #!1%# &%#'#'!3$5&&'O'%+!* '5& #!$ *&!'!%'*!%$ &6" #' ' K(--8M(--9I%#'%'* %'%$%! %&! '%#!%# ==#' $%#' #'%&&#*%!E&#$%* '*#'#&'! #'!F!%'*&%%1/^2##%& *#*!$'/%'*!''%#''&!F#=!&#$%'%$%!%&! '%#&! $%# F'* '%#".%# ' ^ # K(---I%#'!*#'%'* %'%$%! #' X$E! * '$F#=%* '%#* &!*#'%&!=='=6'#&'! #'&#!%'* *#* '%#!%+!" F#'O'! * '$ F#=%* '%# %&! '*# '%#%'%$%!%'* &6 '*%#'&6*!*%!!&$%*!6 #&'! #'!F!%'*&*!6'!F!%'*&%%1/^2##K'%&'3,)),M'%&' 3,))9I"&==&!K,))(I%#'&'!!F!%'*&*!6$%&!E&#!%'*#%# ' '= $$! '% %&!F #!2! * $%2# * %&! '%#!F1 + #" #&# &'' 1!35& '!%'*K&#*!63&#!%'*#%# ' '= $$! '% &1 & *!6 ' &# *&! ' ##!#I %#' $%* &!& $ $'E%'*!'*!1*#'%&1%'%$%!&'%==#'*%! * $%$#'5& K&==&!! 3,)),I" =P%#!%+!3*!&#'* $!$&!!& *%' #'3! *&! ' ##!# '!!& ' #! $$ %'%$%!%'* &63 '$&!*#'%&!%'%$%!!&$%*!6"&#+#%"K,))8I%%&##%&1!!%'* + &! $! 5&!%'* F$ # & %%1 ^ 2##" =%* #$ ' $%* & *!63 & *&! ' ##!# # 5&FE&#!%'* ' '= $$! '%3*%#' #' &%'%&%'%$%!$%*!6"!&$**#'3'%&'" K,))9I%#'$%*!%'%$%!%+'#& 1$!F!%'*%%1/^2##3% **# % ** '%# 3 E $&6 %+'#& 1$! *!6 ' *%#'! '##$ & * #%' **#' #!$ %'%$%!$%*!6E%'*" #!'# '1 E!! #=$ '%#!%$! &'/O'!! #=$ '%# %+&'" # =='3 &%%# 5&! 1!& & 1$'& *' %&! '%# %' ==#' $!! &%"! #=$ '%#!%$!&'!%$%#&E&#%'%$%!%&%'*!"F' %&5&%3#%&1 &6$'3'# #'$%*'!F#$''&&! *'&'!3%#'' $%&'*#!%'%$%!%&! '%#%'*!"##' #!$*$' 25

26 ($%+&#$%( + 2#F%'* (--8I"##%*+*%' #'$$'%#'&'!# * $%$#'5&%&! '%#'! 5&!$'3'!F/%'*!'K!'#'3(--8M%'%$$ #3(--9I" $' /%'*!' $%#' E %## &# 1!&! '+&'%# *''E* 6*!F #$&'*# #'! * '$F#=%* '%#& $'' '+&'%#" # 1 #$3! $' *#*!F #$!F#1 & '*# #'! * '$F#=%* '%#3&! '+&'%# *'"# %'%$%!'/%'*!3F!* 6*!F #$&!% '*&'*# #'! * '$ F#=%* '%#&! '+&'%# *'" # #'3!#F6' F6%# #!2'5& $ $' F%'*!' %&! *%! #%#!# E ==' *6'3 $F' %&5&%! '*# '%# F&# %'%$%! %&! '%# %'*! %' = %$ #&*5&" #! $ %'%$%! #'!F%'* '%# $ $' &' = E!F!%'* $' %&!! #=$ '%#!%$! %'%$%! #' # 5& F!%'* F%'* '%#!%+!" #*%# $!%'*5&#'E$ 5&' '%#&#$!$&!1!&*%2##&$' #' '%# '%$ '5&'&1#'%#$F 1'$%N'&6#'*$!$&!"# %6* '%#'2 '%$ '5& *' F%'* $' # #$ ' # %& &' #' $!$&!! 1!& *%2##3'!5&!F!%'*& #''%$ '5&$%*+#E&#!%'*$$" F#'%&$'%#F#'1!!'*K%&=#O''*I #!F' F%'* '%# %'%$%!%&! '%# '%%$%**&#%!&'%#%&$%#'G!!F* '$ +!' '*!1*#' # $!#5&" %'%$%! '!%#%#!& =# '*!1*#'$'3* #'1!!'*3*'' #' #&#*!!&=!6+!' &66*#' '& #!! #=$ '%#!F'&".%#%#'!"K(--<I%#''&!%+!*!F'* '%# *'!%F&#'& * $%$#'5&##$!& #'#'1!! '* #!%'%$%!"!*%#'5&#! '%*#'&#'*!1*#'$' #$#'1!!'*=# & 1 #'3#F#=!& &!$%#F'* '%# *'%&! '%#"# %$$%#'%##!!%&! '*# '%#$#'1!! '*!*#''$'K&==&!!3,))(M#'&==&!!3,))7M#'&==&!!3,))7M ## 3,))9I %& #!2 %&! '%# # * $%$#'5& ' * $%2# *5&" =#O' '* %#' '*# E ' & %'%$%! /%'*! =6 # = #' 1 &#'*!1*#' B&5&JE $ 5&! '*# #'#%*!! * '$F#=%* '%#%'&'8S"# %$#&6' '%% #$*O*$%#'6' *' %#K,))<I"'' %$' &+ &! '*# '%#=#O''* &'%&'*/%'* &6'%&'# 2 #'$%# &# $' # #1 & F==$ $' # $%* %# & %'%$%! /%'*!"!*' $'' 26

27 ($%+&#$%( %$'F%+'#=#O''**O*!%#&& &'%&'*/%'* &6' %#$# ##$%*'! #+!' *'"#1 #$3&# &' %$ K ' #'4% 3,))9I+ &!'%*F5&1!#$%&! /%'*!' ' $'%&!*%!#%#!# E=='*6'3! 5&!!*'F%+'#&#%'%$%! 1$ #'1!!'*!&==$ $'%&'## #'#$%*'! #+!' *'" #'1!! '*%+'#&#F%#'! *O*!%#&& &'%& %#'%'* &6 #' &6" # #'3 $ 1!%*#' ' &!*#'!$ +! &6 %'%$%! $%#'#& & ='!F&'! '%# & '%* F5&1!#$"!& $**#'3 &#+#% ' %# K,))-I %#' %%&#6'#%#&' 1! *' %#K,))<I%&!%'%$%!%&! '%# '26 $''%&'#'# #'$%*'! #+!' *' #! '*# '%# #'1!!'*%'* &63$%**! ' K,))9I".-7-9 %2#"* =# =$!'!F&'! '%# $'' %$ %&!F1!& '%# '!F%'* '%# %'%$%!%&! '%#3!&&%&'!#=%* '5&%#'* #'# #'%#+!"#,))(3 '%&''!"K,))(I=&#'! *5&E%%&#*!*#' '%#!F6%#! * '$ F#=%* '%# #&# =%#$'%# #! /!& '&# # '! +! %& %&! '%# #=%* '%# '6" $ '%#3 $'' =%#$'%# *'' ' &!*#'&#1!& '%#'&#$%* %# %'%$%!%&! '%#"#&'3# &'! #'!F!%'* & *!63 &# &' =%#$'%# 3 *!*#' #!& # 5&F# %&!F%'* '%# %'%$%! %&! '%# ' 1!% K'%&' ' #'3,))7I" &6 =%#$'%#%#' '* E %'%# '&'*#' &! '!F&#' 97: KCCC"=*"+%' '"=I"!! %#' ' &'! * $%*'$#!F#&' * $&'5& ' &*!& $ *5& # #$ ' E!F' #" # #'3! *' %&!F#=!&#$ $%1 +!%&! *%! '%# F&# 1 +!' #'/%$$ %## %#' #$%*' #$=%#$'%#"!&3'+ &&# %6* '%#!F6%#! * '$J#=%* '%#%#''%%'1!&&!*#'%& *%!%&! '%#E%#&#5&" &31!%$!*!*#' #!*O*+&'%#''%%K% %3 ^ #I '%#' F!!& ' $%*!% F&# #' '%#%! & %&! '%# % $ %& # &% K#' 3,))9I"!%$! %#' 1!% ==#' 5& $$ ' %#''%& *!*#' # '! +"! %%#' ==#' $' '!%'* F%'* '%#3 '%&' # &'! #' &# %6* '%# & *%! %&! 1!%*#'! * '$F#=%* '%#" 27

28 ($%+&#$%( # #'3 &$&#$!%$!#F#$%%!F#*+!==#'1!%*#' #'$/&"#=='3!#*''#' ##$%*'%+! *' 5& #'= #'!F#=!&#$ $%1 +! &! %# &*%! # 5&F&# %+! 1 +!' #'/%$$ %#".-9 0 #!$'%#$#'3#%& 1%#$'!*%!#%#!# E=='*6' %& *%! *!3 '! 5&F&# *%! * $%$#'5&" # #'3! 6' *%!!& $%*!6 = #' #'1#!&& %# +%!%5&" %& ' #! $%#'6'&&! #!2%&! '%#3$F'!$!J'* '%#$%#B%#' *' %&! '%# * $%$#'5&/ * $%2# *5&3 %Y! *%! '%# * $%2# *5& '&!! '%# #'! $%#$#' '%#! * '5& F&# *$ *#' '!F==' * $%!%5&#&!' #'"# &'$%#'6''! 2# *5&&3*%!%#'' %%%&! *%! '%#$%#B%#'! $ 1!'&' &6; #!3%&!5&!! %# F$1#' $%**! %!&'%# *%! %& =%* F5& '%# ==#'!!K&B3,))9M,))9M& #'^&3,)):I" *%! '%# * $%$#'5& ' &!&#!&&'!%&! #''%1 &6$' #!F#=$'%#E3#=='3 $*$ *#'&1#'F$ #'1#'&!!*#'' #=%*3#*' +%!' $'=M #$ $ 3!F'& $%#B%#'! * $%$#'5& F&# %&' ' %# *' +%!' $%#&' E!F&'! '%#*%!E%#*&!'!"F&'! '%#*%!%&! '%#E%# *&!'!'!&#=%* '1 %'E %$ &6%#KD # 3,))7M,))7I"! *''#' # # $%*' *&!' #*#' #!F'* '%# *'! 1 +!' & &6 %# E! =% ' & F1'! 5&'%# %'%$%!&'3'#'%&!F'&$%#$#' '%##' $!!&! *' +%!'" %&!F1!& '%# '!F%'* '%# %'%$%! #!*%!#%#!# E ==' *6'E%#*&!'!3!F6%#! * '$F#=%* '%# '%%# &'! 3,))<M&#+#%3,))9M,)):I" #$' 1 &63!!&' '%#&1!%*#' %#' %% # &'! #' %' &# *%! * $%$#'5&/ * $%2# *5& %& &# *%! $%#B%#' * $%$#'5& F&# #' ' %# *' +%!'" # #'3! '##$$''6%#! * '$F#=%* '%##F B* '1!&"O* 3! *O* %6* '%# 5&!*%! E %#&#5& ' %%3! $!$&! '!& $%*!6 %&! *%! E %# *&!'!"!&3 %&!F'* '%# *&!' # 28

29 ($%+&#$%( *'%&*%!E%#*&!'!3' 1 &6*&! '%#*%#'#'5& *%#' + F'* '%#!& *%' #' 5& 3 5& ' %#$!& ' #!F'* '%# $%#B%#' *'"!! #' '*%# %+!* $%#1#$ ' F'* '%#1 #$#'/'#'KD#3,))7M,))7I"#&'%#$* #!F&'! '%#!!# '%# & *% %&! $!$&!! * '$ F#=%* '%# %&*%!E%#*&!'!''##'".-< 1 * %+B$'= $'' ' ' ' F1!&! '##$!F6%#! * '$ F#=%* '%# %& *%! E %# *&!'! # &'! #' &# %6* '%# & * %M ' %% &# #%&1!! 6'#%# & %%1/^ 2## #$!& #'=%#$'%#$%N''!!&'$1!%*#'%&&#*%!E%#*&!'! K 'I" #&'3#%& 1%#1%&!&*!*#'$#%&1 &1!%*#' #&#6'#%#! =%#$'%# 3 $%# $ E!F1!& '%# '!F%'* '%# %'%$%! #!*%! #%#!# E =='*6' *%! E&# %#&#5&M#%& 1%#!*#' 1%&!& *!*#' #! 1!%*#'! * '$ F#=%* '%# %& *%! %&! '%#!& $%*!63 #$!& #' *' 5& #'= #'!F#=!&#$ $%1 +! &! *' # 5& =='! '% *%! #' 1 +!' #'/%$$ %#K 'I" #=#3! # %+B$'= * ' $%#$#!F!$ '%# $ 1!%*#' *'%%!%5& %& *%! E %# *&!'! E! * $%$#'5& #''%1 &6M!& '$&!*#'3 #%& #%& %** #' E!F #!2 $%#B%#' * $%$#'5& $%#$#' '%# &6 #!%& #&$!%5& ' $!!!& $'=#' $!!&! *' +%!' $'=K 'I" 29

SOFTWARE FOR OPTIMAL DESIGN IN POPULATION PKPD: A COMPARISON

SOFTWARE FOR OPTIMAL DESIGN IN POPULATION PKPD: A COMPARISON SOFTWARE FOR OPTIMAL DESIGN IN POPULATION PKPD: A COMPARISON France Mentré 1, Stephen Duffull 2, Ivelina Gueorguieva 3, Andy Hooker 4, Sergei Leonov 5, Kayode Ogungbenro 6, Sylvie Retout 1 1. INSERM U738,

More information

The SAEM algorithm for group comparison tests in longitudinal. data analysis based on non-linear mixed-effects model

The SAEM algorithm for group comparison tests in longitudinal. data analysis based on non-linear mixed-effects model STATISTICS IN MEDICINE Statist. Med. 2; :1 6 [Version: 22/9/18 v1.11] The SAEM algorithm for group comparison tests in longitudinal data analysis based on non-linear mixed-effects model Adeline Samson

More information

POPULATION PHARMACOKINETIC MODELS: PARAMETRIC AND NONPARAMETRIC APPROACHES

POPULATION PHARMACOKINETIC MODELS: PARAMETRIC AND NONPARAMETRIC APPROACHES POPULATION PHARMACOKINETIC MODELS: PARAMETRIC AND NONPARAMETRIC APPROACHES R Jelliffe 1, A Schumitzky 1, M Van Guilder 1, X Wang 1, and R. Leary 2 1 Laboratory of Applied Pharmacokinetics, USC School of

More information

STATISTICA Formula Guide: Logistic Regression. Table of Contents

STATISTICA Formula Guide: Logistic Regression. Table of Contents : Table of Contents... 1 Overview of Model... 1 Dispersion... 2 Parameterization... 3 Sigma-Restricted Model... 3 Overparameterized Model... 4 Reference Coding... 4 Model Summary (Summary Tab)... 5 Summary

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 6 Three Approaches to Classification Construct

More information

D-optimal plans in observational studies

D-optimal plans in observational studies D-optimal plans in observational studies Constanze Pumplün Stefan Rüping Katharina Morik Claus Weihs October 11, 2005 Abstract This paper investigates the use of Design of Experiments in observational

More information

Linear Classification. Volker Tresp Summer 2015

Linear Classification. Volker Tresp Summer 2015 Linear Classification Volker Tresp Summer 2015 1 Classification Classification is the central task of pattern recognition Sensors supply information about an object: to which class do the object belong

More information

Statistical Machine Learning

Statistical Machine Learning Statistical Machine Learning UoC Stats 37700, Winter quarter Lecture 4: classical linear and quadratic discriminants. 1 / 25 Linear separation For two classes in R d : simple idea: separate the classes

More information

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus

Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Auxiliary Variables in Mixture Modeling: 3-Step Approaches Using Mplus Tihomir Asparouhov and Bengt Muthén Mplus Web Notes: No. 15 Version 8, August 5, 2014 1 Abstract This paper discusses alternatives

More information

Multivariate Normal Distribution

Multivariate Normal Distribution Multivariate Normal Distribution Lecture 4 July 21, 2011 Advanced Multivariate Statistical Methods ICPSR Summer Session #2 Lecture #4-7/21/2011 Slide 1 of 41 Last Time Matrices and vectors Eigenvalues

More information

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics.

Service courses for graduate students in degree programs other than the MS or PhD programs in Biostatistics. Course Catalog In order to be assured that all prerequisites are met, students must acquire a permission number from the education coordinator prior to enrolling in any Biostatistics course. Courses are

More information

GLM, insurance pricing & big data: paying attention to convergence issues.

GLM, insurance pricing & big data: paying attention to convergence issues. GLM, insurance pricing & big data: paying attention to convergence issues. Michaël NOACK - michael.noack@addactis.com Senior consultant & Manager of ADDACTIS Pricing Copyright 2014 ADDACTIS Worldwide.

More information

Least Squares Estimation

Least Squares Estimation Least Squares Estimation SARA A VAN DE GEER Volume 2, pp 1041 1045 in Encyclopedia of Statistics in Behavioral Science ISBN-13: 978-0-470-86080-9 ISBN-10: 0-470-86080-4 Editors Brian S Everitt & David

More information

Statistics in Retail Finance. Chapter 6: Behavioural models

Statistics in Retail Finance. Chapter 6: Behavioural models Statistics in Retail Finance 1 Overview > So far we have focussed mainly on application scorecards. In this chapter we shall look at behavioural models. We shall cover the following topics:- Behavioural

More information

Factor analysis. Angela Montanari

Factor analysis. Angela Montanari Factor analysis Angela Montanari 1 Introduction Factor analysis is a statistical model that allows to explain the correlations between a large number of observed correlated variables through a small number

More information

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model

Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model Overview of Violations of the Basic Assumptions in the Classical Normal Linear Regression Model 1 September 004 A. Introduction and assumptions The classical normal linear regression model can be written

More information

Probabilistic user behavior models in online stores for recommender systems

Probabilistic user behavior models in online stores for recommender systems Probabilistic user behavior models in online stores for recommender systems Tomoharu Iwata Abstract Recommender systems are widely used in online stores because they are expected to improve both user

More information

Bootstrapping Big Data

Bootstrapping Big Data Bootstrapping Big Data Ariel Kleiner Ameet Talwalkar Purnamrita Sarkar Michael I. Jordan Computer Science Division University of California, Berkeley {akleiner, ameet, psarkar, jordan}@eecs.berkeley.edu

More information

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure

Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Exact Inference for Gaussian Process Regression in case of Big Data with the Cartesian Product Structure Belyaev Mikhail 1,2,3, Burnaev Evgeny 1,2,3, Kapushev Yermek 1,2 1 Institute for Information Transmission

More information

Lecture 3: Linear methods for classification

Lecture 3: Linear methods for classification Lecture 3: Linear methods for classification Rafael A. Irizarry and Hector Corrada Bravo February, 2010 Today we describe four specific algorithms useful for classification problems: linear regression,

More information

Problem of Missing Data

Problem of Missing Data VASA Mission of VA Statisticians Association (VASA) Promote & disseminate statistical methodological research relevant to VA studies; Facilitate communication & collaboration among VA-affiliated statisticians;

More information

Department of Economics

Department of Economics Department of Economics On Testing for Diagonality of Large Dimensional Covariance Matrices George Kapetanios Working Paper No. 526 October 2004 ISSN 1473-0278 On Testing for Diagonality of Large Dimensional

More information

Introduction to mixed model and missing data issues in longitudinal studies

Introduction to mixed model and missing data issues in longitudinal studies Introduction to mixed model and missing data issues in longitudinal studies Hélène Jacqmin-Gadda INSERM, U897, Bordeaux, France Inserm workshop, St Raphael Outline of the talk I Introduction Mixed models

More information

Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection

Adequacy of Biomath. Models. Empirical Modeling Tools. Bayesian Modeling. Model Uncertainty / Selection Directions in Statistical Methodology for Multivariable Predictive Modeling Frank E Harrell Jr University of Virginia Seattle WA 19May98 Overview of Modeling Process Model selection Regression shape Diagnostics

More information

Xavière Panhard and France Mentré. INSERM U738 - CHU Bichat Claude Bernard. Xavière Panhard - INSERM U738-16/06/05 p. 1

Xavière Panhard and France Mentré. INSERM U738 - CHU Bichat Claude Bernard. Xavière Panhard - INSERM U738-16/06/05 p. 1 Non-linear mixed-effects models for tests of interaction or of lack of interaction in cross-over and parallel pharmacokinetic studies: application to the test of interaction between protease inhibitors

More information

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne

Applied Statistics. J. Blanchet and J. Wadsworth. Institute of Mathematics, Analysis, and Applications EPF Lausanne Applied Statistics J. Blanchet and J. Wadsworth Institute of Mathematics, Analysis, and Applications EPF Lausanne An MSc Course for Applied Mathematicians, Fall 2012 Outline 1 Model Comparison 2 Model

More information

Notes for STA 437/1005 Methods for Multivariate Data

Notes for STA 437/1005 Methods for Multivariate Data Notes for STA 437/1005 Methods for Multivariate Data Radford M. Neal, 26 November 2010 Random Vectors Notation: Let X be a random vector with p elements, so that X = [X 1,..., X p ], where denotes transpose.

More information

Fitting Subject-specific Curves to Grouped Longitudinal Data

Fitting Subject-specific Curves to Grouped Longitudinal Data Fitting Subject-specific Curves to Grouped Longitudinal Data Djeundje, Viani Heriot-Watt University, Department of Actuarial Mathematics & Statistics Edinburgh, EH14 4AS, UK E-mail: vad5@hw.ac.uk Currie,

More information

Introduction to General and Generalized Linear Models

Introduction to General and Generalized Linear Models Introduction to General and Generalized Linear Models General Linear Models - part I Henrik Madsen Poul Thyregod Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

More information

An extension of the factoring likelihood approach for non-monotone missing data

An extension of the factoring likelihood approach for non-monotone missing data An extension of the factoring likelihood approach for non-monotone missing data Jae Kwang Kim Dong Wan Shin January 14, 2010 ABSTRACT We address the problem of parameter estimation in multivariate distributions

More information

Algebra 1 Course Information

Algebra 1 Course Information Course Information Course Description: Students will study patterns, relations, and functions, and focus on the use of mathematical models to understand and analyze quantitative relationships. Through

More information

Statistics Graduate Courses

Statistics Graduate Courses Statistics Graduate Courses STAT 7002--Topics in Statistics-Biological/Physical/Mathematics (cr.arr.).organized study of selected topics. Subjects and earnable credit may vary from semester to semester.

More information

1. χ 2 minimization 2. Fits in case of of systematic errors

1. χ 2 minimization 2. Fits in case of of systematic errors Data fitting Volker Blobel University of Hamburg March 2005 1. χ 2 minimization 2. Fits in case of of systematic errors Keys during display: enter = next page; = next page; = previous page; home = first

More information

(Quasi-)Newton methods

(Quasi-)Newton methods (Quasi-)Newton methods 1 Introduction 1.1 Newton method Newton method is a method to find the zeros of a differentiable non-linear function g, x such that g(x) = 0, where g : R n R n. Given a starting

More information

5. Multiple regression

5. Multiple regression 5. Multiple regression QBUS6840 Predictive Analytics https://www.otexts.org/fpp/5 QBUS6840 Predictive Analytics 5. Multiple regression 2/39 Outline Introduction to multiple linear regression Some useful

More information

Multivariate Statistical Inference and Applications

Multivariate Statistical Inference and Applications Multivariate Statistical Inference and Applications ALVIN C. RENCHER Department of Statistics Brigham Young University A Wiley-Interscience Publication JOHN WILEY & SONS, INC. New York Chichester Weinheim

More information

Logistic Regression (1/24/13)

Logistic Regression (1/24/13) STA63/CBB540: Statistical methods in computational biology Logistic Regression (/24/3) Lecturer: Barbara Engelhardt Scribe: Dinesh Manandhar Introduction Logistic regression is model for regression used

More information

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: PRELIS User s Guide

Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng. LISREL for Windows: PRELIS User s Guide Stephen du Toit Mathilda du Toit Gerhard Mels Yan Cheng LISREL for Windows: PRELIS User s Guide Table of contents INTRODUCTION... 1 GRAPHICAL USER INTERFACE... 2 The Data menu... 2 The Define Variables

More information

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( )

NCSS Statistical Software Principal Components Regression. In ordinary least squares, the regression coefficients are estimated using the formula ( ) Chapter 340 Principal Components Regression Introduction is a technique for analyzing multiple regression data that suffer from multicollinearity. When multicollinearity occurs, least squares estimates

More information

SAS Software to Fit the Generalized Linear Model

SAS Software to Fit the Generalized Linear Model SAS Software to Fit the Generalized Linear Model Gordon Johnston, SAS Institute Inc., Cary, NC Abstract In recent years, the class of generalized linear models has gained popularity as a statistical modeling

More information

Joint models for classification and comparison of mortality in different countries.

Joint models for classification and comparison of mortality in different countries. Joint models for classification and comparison of mortality in different countries. Viani D. Biatat 1 and Iain D. Currie 1 1 Department of Actuarial Mathematics and Statistics, and the Maxwell Institute

More information

Statistics and Pharmacokinetics in Clinical Pharmacology Studies

Statistics and Pharmacokinetics in Clinical Pharmacology Studies Paper ST03 Statistics and Pharmacokinetics in Clinical Pharmacology Studies ABSTRACT Amy Newlands, GlaxoSmithKline, Greenford UK The aim of this presentation is to show how we use statistics and pharmacokinetics

More information

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu

Learning Gaussian process models from big data. Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Learning Gaussian process models from big data Alan Qi Purdue University Joint work with Z. Xu, F. Yan, B. Dai, and Y. Zhu Machine learning seminar at University of Cambridge, July 4 2012 Data A lot of

More information

QUALITY ENGINEERING PROGRAM

QUALITY ENGINEERING PROGRAM QUALITY ENGINEERING PROGRAM Production engineering deals with the practical engineering problems that occur in manufacturing planning, manufacturing processes and in the integration of the facilities and

More information

Handling attrition and non-response in longitudinal data

Handling attrition and non-response in longitudinal data Longitudinal and Life Course Studies 2009 Volume 1 Issue 1 Pp 63-72 Handling attrition and non-response in longitudinal data Harvey Goldstein University of Bristol Correspondence. Professor H. Goldstein

More information

Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models

Overview. Longitudinal Data Variation and Correlation Different Approaches. Linear Mixed Models Generalized Linear Mixed Models Overview 1 Introduction Longitudinal Data Variation and Correlation Different Approaches 2 Mixed Models Linear Mixed Models Generalized Linear Mixed Models 3 Marginal Models Linear Models Generalized Linear

More information

Reject Inference in Credit Scoring. Jie-Men Mok

Reject Inference in Credit Scoring. Jie-Men Mok Reject Inference in Credit Scoring Jie-Men Mok BMI paper January 2009 ii Preface In the Master programme of Business Mathematics and Informatics (BMI), it is required to perform research on a business

More information

The CUSUM algorithm a small review. Pierre Granjon

The CUSUM algorithm a small review. Pierre Granjon The CUSUM algorithm a small review Pierre Granjon June, 1 Contents 1 The CUSUM algorithm 1.1 Algorithm............................... 1.1.1 The problem......................... 1.1. The different steps......................

More information

Partial Least Squares (PLS) Regression.

Partial Least Squares (PLS) Regression. Partial Least Squares (PLS) Regression. Hervé Abdi 1 The University of Texas at Dallas Introduction Pls regression is a recent technique that generalizes and combines features from principal component

More information

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not.

Example: Credit card default, we may be more interested in predicting the probabilty of a default than classifying individuals as default or not. Statistical Learning: Chapter 4 Classification 4.1 Introduction Supervised learning with a categorical (Qualitative) response Notation: - Feature vector X, - qualitative response Y, taking values in C

More information

On the mathematical theory of splitting and Russian roulette

On the mathematical theory of splitting and Russian roulette On the mathematical theory of splitting and Russian roulette techniques St.Petersburg State University, Russia 1. Introduction Splitting is an universal and potentially very powerful technique for increasing

More information

Overview of Math Standards

Overview of Math Standards Algebra 2 Welcome to math curriculum design maps for Manhattan- Ogden USD 383, striving to produce learners who are: Effective Communicators who clearly express ideas and effectively communicate with diverse

More information

i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by

i=1 In practice, the natural logarithm of the likelihood function, called the log-likelihood function and denoted by Statistics 580 Maximum Likelihood Estimation Introduction Let y (y 1, y 2,..., y n be a vector of iid, random variables from one of a family of distributions on R n and indexed by a p-dimensional parameter

More information

Introducing the Multilevel Model for Change

Introducing the Multilevel Model for Change Department of Psychology and Human Development Vanderbilt University GCM, 2010 1 Multilevel Modeling - A Brief Introduction 2 3 4 5 Introduction In this lecture, we introduce the multilevel model for change.

More information

Poisson Models for Count Data

Poisson Models for Count Data Chapter 4 Poisson Models for Count Data In this chapter we study log-linear models for count data under the assumption of a Poisson error structure. These models have many applications, not only to the

More information

BayesX - Software for Bayesian Inference in Structured Additive Regression

BayesX - Software for Bayesian Inference in Structured Additive Regression BayesX - Software for Bayesian Inference in Structured Additive Regression Thomas Kneib Faculty of Mathematics and Economics, University of Ulm Department of Statistics, Ludwig-Maximilians-University Munich

More information

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression

Logistic Regression. Jia Li. Department of Statistics The Pennsylvania State University. Logistic Regression Logistic Regression Department of Statistics The Pennsylvania State University Email: jiali@stat.psu.edu Logistic Regression Preserve linear classification boundaries. By the Bayes rule: Ĝ(x) = arg max

More information

A linear algebraic method for pricing temporary life annuities

A linear algebraic method for pricing temporary life annuities A linear algebraic method for pricing temporary life annuities P. Date (joint work with R. Mamon, L. Jalen and I.C. Wang) Department of Mathematical Sciences, Brunel University, London Outline Introduction

More information

A Basic Introduction to Missing Data

A Basic Introduction to Missing Data John Fox Sociology 740 Winter 2014 Outline Why Missing Data Arise Why Missing Data Arise Global or unit non-response. In a survey, certain respondents may be unreachable or may refuse to participate. Item

More information

Linear Mixed-Effects Modeling in SPSS: An Introduction to the MIXED Procedure

Linear Mixed-Effects Modeling in SPSS: An Introduction to the MIXED Procedure Technical report Linear Mixed-Effects Modeling in SPSS: An Introduction to the MIXED Procedure Table of contents Introduction................................................................ 1 Data preparation

More information

Inequality, Mobility and Income Distribution Comparisons

Inequality, Mobility and Income Distribution Comparisons Fiscal Studies (1997) vol. 18, no. 3, pp. 93 30 Inequality, Mobility and Income Distribution Comparisons JOHN CREEDY * Abstract his paper examines the relationship between the cross-sectional and lifetime

More information

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13

Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Missing Data: Part 1 What to Do? Carol B. Thompson Johns Hopkins Biostatistics Center SON Brown Bag 3/20/13 Overview Missingness and impact on statistical analysis Missing data assumptions/mechanisms Conventional

More information

MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group

MISSING DATA TECHNIQUES WITH SAS. IDRE Statistical Consulting Group MISSING DATA TECHNIQUES WITH SAS IDRE Statistical Consulting Group ROAD MAP FOR TODAY To discuss: 1. Commonly used techniques for handling missing data, focusing on multiple imputation 2. Issues that could

More information

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions.

This unit will lay the groundwork for later units where the students will extend this knowledge to quadratic and exponential functions. Algebra I Overview View unit yearlong overview here Many of the concepts presented in Algebra I are progressions of concepts that were introduced in grades 6 through 8. The content presented in this course

More information

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology

FE670 Algorithmic Trading Strategies. Stevens Institute of Technology FE670 Algorithmic Trading Strategies Lecture 6. Portfolio Optimization: Basic Theory and Practice Steve Yang Stevens Institute of Technology 10/03/2013 Outline 1 Mean-Variance Analysis: Overview 2 Classical

More information

Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry

Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry Simultaneous or Sequential? Search Strategies in the U.S. Auto Insurance Industry Current version: April 2014 Elisabeth Honka Pradeep Chintagunta Abstract We show that the search method consumers use when

More information

15.062 Data Mining: Algorithms and Applications Matrix Math Review

15.062 Data Mining: Algorithms and Applications Matrix Math Review .6 Data Mining: Algorithms and Applications Matrix Math Review The purpose of this document is to give a brief review of selected linear algebra concepts that will be useful for the course and to develop

More information

Multivariate Analysis of Variance (MANOVA): I. Theory

Multivariate Analysis of Variance (MANOVA): I. Theory Gregory Carey, 1998 MANOVA: I - 1 Multivariate Analysis of Variance (MANOVA): I. Theory Introduction The purpose of a t test is to assess the likelihood that the means for two groups are sampled from the

More information

From the help desk: Bootstrapped standard errors

From the help desk: Bootstrapped standard errors The Stata Journal (2003) 3, Number 1, pp. 71 80 From the help desk: Bootstrapped standard errors Weihua Guan Stata Corporation Abstract. Bootstrapping is a nonparametric approach for evaluating the distribution

More information

Teaching Multivariate Analysis to Business-Major Students

Teaching Multivariate Analysis to Business-Major Students Teaching Multivariate Analysis to Business-Major Students Wing-Keung Wong and Teck-Wong Soon - Kent Ridge, Singapore 1. Introduction During the last two or three decades, multivariate statistical analysis

More information

A Composite Likelihood Approach to Analysis of Survey Data with Sampling Weights Incorporated under Two-Level Models

A Composite Likelihood Approach to Analysis of Survey Data with Sampling Weights Incorporated under Two-Level Models A Composite Likelihood Approach to Analysis of Survey Data with Sampling Weights Incorporated under Two-Level Models Grace Y. Yi 13, JNK Rao 2 and Haocheng Li 1 1. University of Waterloo, Waterloo, Canada

More information

Factorial experimental designs and generalized linear models

Factorial experimental designs and generalized linear models Statistics & Operations Research Transactions SORT 29 (2) July-December 2005, 249-268 ISSN: 1696-2281 www.idescat.net/sort Statistics & Operations Research c Institut d Estadística de Transactions Catalunya

More information

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok

THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE. Alexander Barvinok THE NUMBER OF GRAPHS AND A RANDOM GRAPH WITH A GIVEN DEGREE SEQUENCE Alexer Barvinok Papers are available at http://www.math.lsa.umich.edu/ barvinok/papers.html This is a joint work with J.A. Hartigan

More information

Gamma Distribution Fitting

Gamma Distribution Fitting Chapter 552 Gamma Distribution Fitting Introduction This module fits the gamma probability distributions to a complete or censored set of individual or grouped data values. It outputs various statistics

More information

Time Series Analysis III

Time Series Analysis III Lecture 12: Time Series Analysis III MIT 18.S096 Dr. Kempthorne Fall 2013 MIT 18.S096 Time Series Analysis III 1 Outline Time Series Analysis III 1 Time Series Analysis III MIT 18.S096 Time Series Analysis

More information

A New Quantitative Behavioral Model for Financial Prediction

A New Quantitative Behavioral Model for Financial Prediction 2011 3rd International Conference on Information and Financial Engineering IPEDR vol.12 (2011) (2011) IACSIT Press, Singapore A New Quantitative Behavioral Model for Financial Prediction Thimmaraya Ramesh

More information

Statistical Analysis with Missing Data

Statistical Analysis with Missing Data Statistical Analysis with Missing Data Second Edition RODERICK J. A. LITTLE DONALD B. RUBIN WILEY- INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface PARTI OVERVIEW AND BASIC APPROACHES

More information

Analyzing Structural Equation Models With Missing Data

Analyzing Structural Equation Models With Missing Data Analyzing Structural Equation Models With Missing Data Craig Enders* Arizona State University cenders@asu.edu based on Enders, C. K. (006). Analyzing structural equation models with missing data. In G.

More information

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014

Probabilistic Models for Big Data. Alex Davies and Roger Frigola University of Cambridge 13th February 2014 Probabilistic Models for Big Data Alex Davies and Roger Frigola University of Cambridge 13th February 2014 The State of Big Data Why probabilistic models for Big Data? 1. If you don t have to worry about

More information

Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group

Introduction to Multilevel Modeling Using HLM 6. By ATS Statistical Consulting Group Introduction to Multilevel Modeling Using HLM 6 By ATS Statistical Consulting Group Multilevel data structure Students nested within schools Children nested within families Respondents nested within interviewers

More information

Nonparametric adaptive age replacement with a one-cycle criterion

Nonparametric adaptive age replacement with a one-cycle criterion Nonparametric adaptive age replacement with a one-cycle criterion P. Coolen-Schrijner, F.P.A. Coolen Department of Mathematical Sciences University of Durham, Durham, DH1 3LE, UK e-mail: Pauline.Schrijner@durham.ac.uk

More information

A Bayesian hierarchical surrogate outcome model for multiple sclerosis

A Bayesian hierarchical surrogate outcome model for multiple sclerosis A Bayesian hierarchical surrogate outcome model for multiple sclerosis 3 rd Annual ASA New Jersey Chapter / Bayer Statistics Workshop David Ohlssen (Novartis), Luca Pozzi and Heinz Schmidli (Novartis)

More information

1 Teaching notes on GMM 1.

1 Teaching notes on GMM 1. Bent E. Sørensen January 23, 2007 1 Teaching notes on GMM 1. Generalized Method of Moment (GMM) estimation is one of two developments in econometrics in the 80ies that revolutionized empirical work in

More information

Statistical Models in R

Statistical Models in R Statistical Models in R Some Examples Steven Buechler Department of Mathematics 276B Hurley Hall; 1-6233 Fall, 2007 Outline Statistical Models Structure of models in R Model Assessment (Part IA) Anova

More information

FIXED EFFECTS AND RELATED ESTIMATORS FOR CORRELATED RANDOM COEFFICIENT AND TREATMENT EFFECT PANEL DATA MODELS

FIXED EFFECTS AND RELATED ESTIMATORS FOR CORRELATED RANDOM COEFFICIENT AND TREATMENT EFFECT PANEL DATA MODELS FIXED EFFECTS AND RELATED ESTIMATORS FOR CORRELATED RANDOM COEFFICIENT AND TREATMENT EFFECT PANEL DATA MODELS Jeffrey M. Wooldridge Department of Economics Michigan State University East Lansing, MI 48824-1038

More information

Lecture 13: Martingales

Lecture 13: Martingales Lecture 13: Martingales 1. Definition of a Martingale 1.1 Filtrations 1.2 Definition of a martingale and its basic properties 1.3 Sums of independent random variables and related models 1.4 Products of

More information

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York

CCNY. BME I5100: Biomedical Signal Processing. Linear Discrimination. Lucas C. Parra Biomedical Engineering Department City College of New York BME I5100: Biomedical Signal Processing Linear Discrimination Lucas C. Parra Biomedical Engineering Department CCNY 1 Schedule Week 1: Introduction Linear, stationary, normal - the stuff biology is not

More information

Predict the Popularity of YouTube Videos Using Early View Data

Predict the Popularity of YouTube Videos Using Early View Data 000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part X Factor analysis Whenwehavedatax (i) R n thatcomesfromamixtureofseveral Gaussians, the EM algorithm can be applied to fit a mixture model. In this setting, we usually

More information

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy

The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy BMI Paper The Effects of Start Prices on the Performance of the Certainty Equivalent Pricing Policy Faculty of Sciences VU University Amsterdam De Boelelaan 1081 1081 HV Amsterdam Netherlands Author: R.D.R.

More information

Revenue Management with Correlated Demand Forecasting

Revenue Management with Correlated Demand Forecasting Revenue Management with Correlated Demand Forecasting Catalina Stefanescu Victor DeMiguel Kristin Fridgeirsdottir Stefanos Zenios 1 Introduction Many airlines are struggling to survive in today's economy.

More information

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as

LOGISTIC REGRESSION. Nitin R Patel. where the dependent variable, y, is binary (for convenience we often code these values as LOGISTIC REGRESSION Nitin R Patel Logistic regression extends the ideas of multiple linear regression to the situation where the dependent variable, y, is binary (for convenience we often code these values

More information

Non Linear Dependence Structures: a Copula Opinion Approach in Portfolio Optimization

Non Linear Dependence Structures: a Copula Opinion Approach in Portfolio Optimization Non Linear Dependence Structures: a Copula Opinion Approach in Portfolio Optimization Jean- Damien Villiers ESSEC Business School Master of Sciences in Management Grande Ecole September 2013 1 Non Linear

More information

The Method of Least Squares

The Method of Least Squares Hervé Abdi 1 1 Introduction The least square methods (LSM) is probably the most popular technique in statistics. This is due to several factors. First, most common estimators can be casted within this

More information

Kristine L. Bell and Harry L. Van Trees. Center of Excellence in C 3 I George Mason University Fairfax, VA 22030-4444, USA kbell@gmu.edu, hlv@gmu.

Kristine L. Bell and Harry L. Van Trees. Center of Excellence in C 3 I George Mason University Fairfax, VA 22030-4444, USA kbell@gmu.edu, hlv@gmu. POSERIOR CRAMÉR-RAO BOUND FOR RACKING ARGE BEARING Kristine L. Bell and Harry L. Van rees Center of Excellence in C 3 I George Mason University Fairfax, VA 22030-4444, USA bell@gmu.edu, hlv@gmu.edu ABSRAC

More information

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut.

Machine Learning and Data Analysis overview. Department of Cybernetics, Czech Technical University in Prague. http://ida.felk.cvut. Machine Learning and Data Analysis overview Jiří Kléma Department of Cybernetics, Czech Technical University in Prague http://ida.felk.cvut.cz psyllabus Lecture Lecturer Content 1. J. Kléma Introduction,

More information

Introduction to Error Analysis

Introduction to Error Analysis UNIVERSITÄT BASEL DEPARTEMENT CHEMIE Introduction to Error Analysis Physikalisch Chemisches Praktikum Dr. Nico Bruns, Dr. Katarzyna Kita, Dr. Corinne Vebert 2012 1. Why is error analysis important? First

More information

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation

SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation SYSM 6304: Risk and Decision Analysis Lecture 3 Monte Carlo Simulation M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas Email: M.Vidyasagar@utdallas.edu September 19, 2015 Outline

More information

The Role of Statistical Principles in Quantitative Biomedical Modeling

The Role of Statistical Principles in Quantitative Biomedical Modeling The Role of Statistical Principles in Quantitative Biomedical Modeling Atlantic Coast Conference on Mathematics in the Life and Biological Sciences Marie Davidian Department of Statistics North Carolina

More information

Deterministic and Stochastic Modeling of Insulin Sensitivity

Deterministic and Stochastic Modeling of Insulin Sensitivity Deterministic and Stochastic Modeling of Insulin Sensitivity Master s Thesis in Engineering Mathematics and Computational Science ELÍN ÖSP VILHJÁLMSDÓTTIR Department of Mathematical Science Chalmers University

More information