Optimization on Huygens

Size: px
Start display at page:

Download "Optimization on Huygens"

Transcription

1 Optimization on Huygens Wim Rijks

2 Contents Introductory Remarks Support team Optimization strategy Amdahls law Compiler options An example

3 Optimization Introductory Remarks Modern day supercomputers are still expensive; use them efficiently: Design for parallelism Optimize sequential execution with characteristics of modern cpus in mind. Optimize for configuration of system you run on. Old code: consider rewriting it from scratch, concentrate on hotspots Invest a little time cleaning up the code, Consider if your programming effort is worth the gain (manpower is expensive too). Don t hesitate to ask assistance from SARA

4 Optimization SARA Support team Marcin Zielinski John Donners Walter Lioen Jeroen Engelberts Wim Rijks Willem Vermin

5 Optimization Support Submit proposal for parallelization to NCF Submit preparatory access proposal to PRACE. Visit PRACE workshop or summer school

6 Optimization Profile your code As a first step: profile your code!! Very rough: $ time./executable More refined: bracket blocks of code by timing routine: (MPI_Wtime(), date_and_time(),cpu_time()) Use gprof: Compile with flags: -pg g Execute your executable: $./executable Generate profile: $ gprof./executable gmon.out

7 Optimization GPROF profiling report Each sample counts as 0.01 seconds. % cumulative self self total time seconds seconds calls s/call s/call name multigridpoissonsolver_nmod_pois main multigridpoissonsolver_nmod_inipoi _init multigridpoissonsolver_nmod_inicoe rhotempmultifgm sgsvre cflxv vflxw _start cflxu

8 Parallel optimization Strategy Choose parallelization paradigm OpenMP: MPI: Hybrid (MPI + OpenMP) Other. xlf_r qsmp=omp -qnosave mpfort (don t have to specify MPI library explicitly) Keep realistic expectations Remember Amdahl s law: The speedup of a program using multiple processors in parallel computing is limited by the time needed for the sequential fraction of the program

9 Parallel optimization Amdahl s law 1 S = (1-P) + P/Sp S = speedup P = fraction parallel Sp = speedup parallel fraction 10% 90 % 1 task 45% 10% 2 tasks 22,5% 10% 4 tasks

10 Sequential optimization strategy (1) Check literature for most efficient algorithm. Check if algorithm already is implemented: use existing applications or libraries!!!! Choose a Language Don t use interpreted code (python, perl,.) Traditional: c, C++, Fortran + MPI or OpenMP New developments: UPC, CAF,. Choose a compiler, preferably vendor supplied compiler. On Huygens: IBM s xl compiler suite.

11 Sequential optimization strategy (2) Write clean, not to complex code: Let the compiler do as much work as possible But still keep in mind, while designing your code: Modern CPU s prefer operations on large arrays Locality and reuse of memory Profile your code and find the hotspots. Try out compiler options for optimization During development and debugging: use conservative optimization flags. Use more aggressive optimization. Can alter the logic of the code: keep checking consistency of results Reassess critical pieces of code

12 Sequential optimization Use libraries For Blas, lapack, FFT routine use vendor libraries like ESSL (IBM) or MKL (Intel) Check out other numerical libraries (NAG, IMSL, ScaLapack, FFTW,PETSc, MUMPS) Have a look on the internet for a list of libraries and their contents (table of Support routines, Direct solvers, Sparse direct solvers, Preconditioners, Sparse iterative solvers, Sparse eigenvalue solvers)

13 Sequential optimization Use libraries

14 Sequential optimization Characteristics of Modern CPUs Pipelined floating point processor Very efficient when performing same operation on large arrays After certain startup time they can produce a result each clock cycle Two or more levels of cache memory Accessing vectors in memory with stride 1 is very important Try to reuse data that is already in cache

15 Sequential optimization Compiler options Invocation: xlc,xlc_r, xlc, xlc_r, xlf, xlf_r, xlf90, xlf90_r, mpcc, mpcc, mpfort Parallelization: OpenMP flags: -qsmp=omp -qnosave Optimization: -O[n] qstrict qhot qarch=<proc> - qtune=<proc> -qcache=<proc> -ipa qessl For proc choose auto or pwr6

16 Machine optimization Check SMT (simultaneous Multi Threading). Gromacs is optimal using 62 tasks per node Use processor affinity Check huge pages

17 Sequential optimization Example: matrix multiply Demonstrate: Choice of compiler Choice of compiler options Effect of stride > 1 Using Library implementation Using fortran intrinsic function Replacing intrinsics with ESSL Influence of simple optimization

18 Sequential optimization Example: Matrix multiply! Matrix multiply C = A * B c = 0.d0 call cpu_time(t1) do i=1,ndim do j=1,ndim do k=1,ndim c(i,j) = c(i,j) + a(i,k)*b(k,j) enddo enddo enddo call cpu_time(t2) gflops = 2.d0*ndim*ndim*ndim/(giga*(t2-t1)) print *,c(1,1),c(ndim,ndim) write(6,'("loop order: i,j,k CPU time: ",1pd14.7," GFLOPS: ",f10.3)') t2-t1, gflops

19 Sequential optimization Example: loop order + compiler options gfortran Xlf90_r Xlf90_r Xlf90_r Xlf90_r Xlf90_r Xlf90_r Xlf90_r -m64 O3 -O2 -qstrict -O3 -qstrict -O3 -qhot -O3 -qhot - ffree-format qstrict -O3 -qhot - qtune=auto - qarch=auto - qcache=auto -O4 qstrict -qessl -O3 -qhot qstrict - qtune=auto - qarch=auto - qcache=auto k,j,i 15,4 15,9 9,16 7,53 6,48 7,51 6,74 6,62 j,k,i 15,2 13,2 11,4 7,53 6,47 7,52 6,77 6,61 i,j,k 53,8 62,0 53,1 7,52 8,71 7,53 6,76 8,25 j,i,k 42,0 50,2 36,6 7,53 6,48 7,52 6,73 6,59 i,k,j 82,2 68,4 69,3 7,53 6,51 7,52 6,76 6,68 k,i,j 81,6 68,2 65,8 7,52 6,47 7,52 6,72 6,66

20 Optimization strategy Example: using libraries -O3 -qhot -qstrict -O3 -qhot -qstrict -O3 -qhot -qstrict -O3 -qhot -qstrict - qessl BLAS ATLAS ESSL ESSL j,k,i 6,13 6,25 6,41 6,48 dgemm 9,93 7,53 1,16 1,15 dgemul n.a. n.a. 1,16 1,16 matmul 4,31 4,69 4,72 1,18

21 call cpu_time(t1) do i=1,ndim do j=1,ndim Optimization strategy Example: Matrix multiply a_trans(j,i) = a(i,j) enddo enddo do i=1,ndim do j=1,ndim do k=1,ndim c(i,j) = c(i,j) + a(i,k)*b(k,j) c(i,j) = c(i,j) + a_trans(k,i)*b(k,j) enddo enddo enddo call cpu_time(t2)

22 Optimization An example: matrix multiply Compiled with xlf_r O2 qstrict Original code: 60,2 secs With a_trans :13,5 secs Compiled with xlf_r O4 qstrict Original code: 6,76 secs With a_trans: 3,63 secs

23 Questions

Mathematical Libraries on JUQUEEN. JSC Training Course

Mathematical Libraries on JUQUEEN. JSC Training Course Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries on JUQUEEN JSC Training Course May 10, 2012 Outline General Informations Sequential Libraries, planned Parallel Libraries and Application Systems:

More information

Mathematical Libraries and Application Software on JUROPA and JUQUEEN

Mathematical Libraries and Application Software on JUROPA and JUQUEEN Mitglied der Helmholtz-Gemeinschaft Mathematical Libraries and Application Software on JUROPA and JUQUEEN JSC Training Course May 2014 I.Gutheil Outline General Informations Sequential Libraries Parallel

More information

2: Computer Performance

2: Computer Performance 2: Computer Performance http://people.sc.fsu.edu/ jburkardt/presentations/ fdi 2008 lecture2.pdf... John Information Technology Department Virginia Tech... FDI Summer Track V: Parallel Programming 10-12

More information

HPC Wales Skills Academy Course Catalogue 2015

HPC Wales Skills Academy Course Catalogue 2015 HPC Wales Skills Academy Course Catalogue 2015 Overview The HPC Wales Skills Academy provides a variety of courses and workshops aimed at building skills in High Performance Computing (HPC). Our courses

More information

Performance analysis of parallel applications on modern multithreaded processor architectures

Performance analysis of parallel applications on modern multithreaded processor architectures Available online at www.prace-ri.eu Partnership for Advanced Computing in Europe Performance analysis of parallel applications on modern multithreaded processor architectures Maciej Cytowski* a, Maciej

More information

Multicore Parallel Computing with OpenMP

Multicore Parallel Computing with OpenMP Multicore Parallel Computing with OpenMP Tan Chee Chiang (SVU/Academic Computing, Computer Centre) 1. OpenMP Programming The death of OpenMP was anticipated when cluster systems rapidly replaced large

More information

Cluster performance, how to get the most out of Abel. Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013

Cluster performance, how to get the most out of Abel. Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013 Cluster performance, how to get the most out of Abel Ole W. Saastad, Dr.Scient USIT / UAV / FI April 18 th 2013 Introduction Architecture x86-64 and NVIDIA Compilers MPI Interconnect Storage Batch queue

More information

Parallel and Distributed Computing Programming Assignment 1

Parallel and Distributed Computing Programming Assignment 1 Parallel and Distributed Computing Programming Assignment 1 Due Monday, February 7 For programming assignment 1, you should write two C programs. One should provide an estimate of the performance of ping-pong

More information

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp

MPI and Hybrid Programming Models. William Gropp www.cs.illinois.edu/~wgropp MPI and Hybrid Programming Models William Gropp www.cs.illinois.edu/~wgropp 2 What is a Hybrid Model? Combination of several parallel programming models in the same program May be mixed in the same source

More information

Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC

Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Parallel Computing using MATLAB Distributed Compute Server ZORRO HPC Goals of the session Overview of parallel MATLAB Why parallel MATLAB? Multiprocessing in MATLAB Parallel MATLAB using the Parallel Computing

More information

Trends in High-Performance Computing for Power Grid Applications

Trends in High-Performance Computing for Power Grid Applications Trends in High-Performance Computing for Power Grid Applications Franz Franchetti ECE, Carnegie Mellon University www.spiral.net Co-Founder, SpiralGen www.spiralgen.com This talk presents my personal views

More information

OpenMP & MPI CISC 879. Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware

OpenMP & MPI CISC 879. Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware OpenMP & MPI CISC 879 Tristan Vanderbruggen & John Cavazos Dept of Computer & Information Sciences University of Delaware 1 Lecture Overview Introduction OpenMP MPI Model Language extension: directives-based

More information

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi

Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi Performance Evaluation of NAS Parallel Benchmarks on Intel Xeon Phi ICPP 6 th International Workshop on Parallel Programming Models and Systems Software for High-End Computing October 1, 2013 Lyon, France

More information

Performance of the JMA NWP models on the PC cluster TSUBAME.

Performance of the JMA NWP models on the PC cluster TSUBAME. Performance of the JMA NWP models on the PC cluster TSUBAME. K.Takenouchi 1), S.Yokoi 1), T.Hara 1) *, T.Aoki 2), C.Muroi 1), K.Aranami 1), K.Iwamura 1), Y.Aikawa 1) 1) Japan Meteorological Agency (JMA)

More information

and RISC Optimization Techniques for the Hitachi SR8000 Architecture

and RISC Optimization Techniques for the Hitachi SR8000 Architecture 1 KONWIHR Project: Centre of Excellence for High Performance Computing Pseudo-Vectorization and RISC Optimization Techniques for the Hitachi SR8000 Architecture F. Deserno, G. Hager, F. Brechtefeld, G.

More information

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics

22S:295 Seminar in Applied Statistics High Performance Computing in Statistics 22S:295 Seminar in Applied Statistics High Performance Computing in Statistics Luke Tierney Department of Statistics & Actuarial Science University of Iowa August 30, 2007 Luke Tierney (U. of Iowa) HPC

More information

Matrix Multiplication

Matrix Multiplication Matrix Multiplication CPS343 Parallel and High Performance Computing Spring 2016 CPS343 (Parallel and HPC) Matrix Multiplication Spring 2016 1 / 32 Outline 1 Matrix operations Importance Dense and sparse

More information

Parallel Algorithm for Dense Matrix Multiplication

Parallel Algorithm for Dense Matrix Multiplication Parallel Algorithm for Dense Matrix Multiplication CSE633 Parallel Algorithms Fall 2012 Ortega, Patricia Outline Problem definition Assumptions Implementation Test Results Future work Conclusions Problem

More information

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing

Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Accelerating Simulation & Analysis with Hybrid GPU Parallelization and Cloud Computing Innovation Intelligence Devin Jensen August 2012 Altair Knows HPC Altair is the only company that: makes HPC tools

More information

Quiz for Chapter 1 Computer Abstractions and Technology 3.10

Quiz for Chapter 1 Computer Abstractions and Technology 3.10 Date: 3.10 Not all questions are of equal difficulty. Please review the entire quiz first and then budget your time carefully. Name: Course: Solutions in Red 1. [15 points] Consider two different implementations,

More information

2IP WP8 Materiel Science Activity report March 6, 2013

2IP WP8 Materiel Science Activity report March 6, 2013 2IP WP8 Materiel Science Activity report March 6, 2013 Codes involved in this task ABINIT (M.Torrent) Quantum ESPRESSO (F. Affinito) YAMBO + Octopus (F. Nogueira) SIESTA (G. Huhs) EXCITING/ELK (A. Kozhevnikov)

More information

GPUs for Scientific Computing

GPUs for Scientific Computing GPUs for Scientific Computing p. 1/16 GPUs for Scientific Computing Mike Giles mike.giles@maths.ox.ac.uk Oxford-Man Institute of Quantitative Finance Oxford University Mathematical Institute Oxford e-research

More information

Performance analysis with Periscope

Performance analysis with Periscope Performance analysis with Periscope M. Gerndt, V. Petkov, Y. Oleynik, S. Benedict Technische Universität München September 2010 Outline Motivation Periscope architecture Periscope performance analysis

More information

A Comparison Of Shared Memory Parallel Programming Models. Jace A Mogill David Haglin

A Comparison Of Shared Memory Parallel Programming Models. Jace A Mogill David Haglin A Comparison Of Shared Memory Parallel Programming Models Jace A Mogill David Haglin 1 Parallel Programming Gap Not many innovations... Memory semantics unchanged for over 50 years 2010 Multi-Core x86

More information

GPU System Architecture. Alan Gray EPCC The University of Edinburgh

GPU System Architecture. Alan Gray EPCC The University of Edinburgh GPU System Architecture EPCC The University of Edinburgh Outline Why do we want/need accelerators such as GPUs? GPU-CPU comparison Architectural reasons for GPU performance advantages GPU accelerated systems

More information

A Crash course to (The) Bighouse

A Crash course to (The) Bighouse A Crash course to (The) Bighouse Brock Palen brockp@umich.edu SVTI Users meeting Sep 20th Outline 1 Resources Configuration Hardware 2 Architecture ccnuma Altix 4700 Brick 3 Software Packaged Software

More information

Parallel Algorithm Engineering

Parallel Algorithm Engineering Parallel Algorithm Engineering Kenneth S. Bøgh PhD Fellow Based on slides by Darius Sidlauskas Outline Background Current multicore architectures UMA vs NUMA The openmp framework Examples Software crisis

More information

A Case Study - Scaling Legacy Code on Next Generation Platforms

A Case Study - Scaling Legacy Code on Next Generation Platforms Available online at www.sciencedirect.com ScienceDirect Procedia Engineering 00 (2015) 000 000 www.elsevier.com/locate/procedia 24th International Meshing Roundtable (IMR24) A Case Study - Scaling Legacy

More information

DARPA, NSF-NGS/ITR,ACR,CPA,

DARPA, NSF-NGS/ITR,ACR,CPA, Spiral Automating Library Development Markus Püschel and the Spiral team (only part shown) With: Srinivas Chellappa Frédéric de Mesmay Franz Franchetti Daniel McFarlin Yevgen Voronenko Electrical and Computer

More information

JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert

JUROPA Linux Cluster An Overview. 19 May 2014 Ulrich Detert Mitglied der Helmholtz-Gemeinschaft JUROPA Linux Cluster An Overview 19 May 2014 Ulrich Detert JuRoPA JuRoPA Jülich Research on Petaflop Architectures Bull, Sun, ParTec, Intel, Mellanox, Novell, FZJ JUROPA

More information

Scientific Computing Programming with Parallel Objects

Scientific Computing Programming with Parallel Objects Scientific Computing Programming with Parallel Objects Esteban Meneses, PhD School of Computing, Costa Rica Institute of Technology Parallel Architectures Galore Personal Computing Embedded Computing Moore

More information

Building an Inexpensive Parallel Computer

Building an Inexpensive Parallel Computer Res. Lett. Inf. Math. Sci., (2000) 1, 113-118 Available online at http://www.massey.ac.nz/~wwiims/rlims/ Building an Inexpensive Parallel Computer Lutz Grosz and Andre Barczak I.I.M.S., Massey University

More information

Evaluation of CUDA Fortran for the CFD code Strukti

Evaluation of CUDA Fortran for the CFD code Strukti Evaluation of CUDA Fortran for the CFD code Strukti Practical term report from Stephan Soller High performance computing center Stuttgart 1 Stuttgart Media University 2 High performance computing center

More information

High Performance Computing Lab Exercises

High Performance Computing Lab Exercises High Performance Computing Lab Exercises (Make sense of the theory!) Rubin H Landau With Sally Haerer and Scott Clark 6 GB/s CPU cache RAM cache Main Store 32 KB 2GB 2MB 32 TB@ 111Mb/s Computational Physics

More information

MAQAO Performance Analysis and Optimization Tool

MAQAO Performance Analysis and Optimization Tool MAQAO Performance Analysis and Optimization Tool Andres S. CHARIF-RUBIAL andres.charif@uvsq.fr Performance Evaluation Team, University of Versailles S-Q-Y http://www.maqao.org VI-HPS 18 th Grenoble 18/22

More information

Performance Results for Two of the NAS Parallel Benchmarks

Performance Results for Two of the NAS Parallel Benchmarks Performance Results for Two of the NAS Parallel Benchmarks David H. Bailey Paul O. Frederickson NAS Applied Research Branch RIACS NASA Ames Research Center NASA Ames Research Center Moffett Field, CA 94035

More information

The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation

The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation The Assessment of Benchmarks Executed on Bare-Metal and Using Para-Virtualisation Mark Baker, Garry Smith and Ahmad Hasaan SSE, University of Reading Paravirtualization A full assessment of paravirtualization

More information

Graphic Processing Units: a possible answer to High Performance Computing?

Graphic Processing Units: a possible answer to High Performance Computing? 4th ABINIT Developer Workshop RESIDENCE L ESCANDILLE AUTRANS HPC & Graphic Processing Units: a possible answer to High Performance Computing? Luigi Genovese ESRF - Grenoble 26 March 2009 http://inac.cea.fr/l_sim/

More information

Multi-Threading Performance on Commodity Multi-Core Processors

Multi-Threading Performance on Commodity Multi-Core Processors Multi-Threading Performance on Commodity Multi-Core Processors Jie Chen and William Watson III Scientific Computing Group Jefferson Lab 12000 Jefferson Ave. Newport News, VA 23606 Organization Introduction

More information

OpenACC Programming and Best Practices Guide

OpenACC Programming and Best Practices Guide OpenACC Programming and Best Practices Guide June 2015 2015 openacc-standard.org. All Rights Reserved. Contents 1 Introduction 3 Writing Portable Code........................................... 3 What

More information

Mitglied der Helmholtz-Gemeinschaft JUQUEEN. Best Practices. Florian Janetzko / Wolfgang Frings. 2. Februar 2014

Mitglied der Helmholtz-Gemeinschaft JUQUEEN. Best Practices. Florian Janetzko / Wolfgang Frings. 2. Februar 2014 Mitglied der Helmholtz-Gemeinschaft JUQUEEN Best Practices 2. Februar 2014 Florian Janetzko / Wolfgang Frings Outline Production Environment Module Environment Job Execution Basic Porting Compilers and

More information

INTEL PARALLEL STUDIO XE EVALUATION GUIDE

INTEL PARALLEL STUDIO XE EVALUATION GUIDE Introduction This guide will illustrate how you use Intel Parallel Studio XE to find the hotspots (areas that are taking a lot of time) in your application and then recompiling those parts to improve overall

More information

Basic Concepts in Parallelization

Basic Concepts in Parallelization 1 Basic Concepts in Parallelization Ruud van der Pas Senior Staff Engineer Oracle Solaris Studio Oracle Menlo Park, CA, USA IWOMP 2010 CCS, University of Tsukuba Tsukuba, Japan June 14-16, 2010 2 Outline

More information

Chapter 2 Parallel Architecture, Software And Performance

Chapter 2 Parallel Architecture, Software And Performance Chapter 2 Parallel Architecture, Software And Performance UCSB CS140, T. Yang, 2014 Modified from texbook slides Roadmap Parallel hardware Parallel software Input and output Performance Parallel program

More information

THE NAS KERNEL BENCHMARK PROGRAM

THE NAS KERNEL BENCHMARK PROGRAM THE NAS KERNEL BENCHMARK PROGRAM David H. Bailey and John T. Barton Numerical Aerodynamic Simulations Systems Division NASA Ames Research Center June 13, 1986 SUMMARY A benchmark test program that measures

More information

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui

Hardware-Aware Analysis and. Presentation Date: Sep 15 th 2009 Chrissie C. Cui Hardware-Aware Analysis and Optimization of Stable Fluids Presentation Date: Sep 15 th 2009 Chrissie C. Cui Outline Introduction Highlights Flop and Bandwidth Analysis Mehrstellen Schemes Advection Caching

More information

Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp

Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Designing and Building Applications for Extreme Scale Systems CS598 William Gropp www.cs.illinois.edu/~wgropp Welcome! Who am I? William (Bill) Gropp Professor of Computer Science One of the Creators of

More information

How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) (

How To Build A Supermicro Computer With A 32 Core Power Core (Powerpc) And A 32-Core (Powerpc) (Powerpowerpter) (I386) (Amd) (Microcore) (Supermicro) ( TECHNICAL GUIDELINES FOR APPLICANTS TO PRACE 7 th CALL (Tier-0) Contributing sites and the corresponding computer systems for this call are: GCS@Jülich, Germany IBM Blue Gene/Q GENCI@CEA, France Bull Bullx

More information

An Introduction to Parallel Computing/ Programming

An Introduction to Parallel Computing/ Programming An Introduction to Parallel Computing/ Programming Vicky Papadopoulou Lesta Astrophysics and High Performance Computing Research Group (http://ahpc.euc.ac.cy) Dep. of Computer Science and Engineering European

More information

#pragma omp critical x = x + 1; !$OMP CRITICAL X = X + 1!$OMP END CRITICAL. (Very inefficiant) example using critical instead of reduction:

#pragma omp critical x = x + 1; !$OMP CRITICAL X = X + 1!$OMP END CRITICAL. (Very inefficiant) example using critical instead of reduction: omp critical The code inside a CRITICAL region is executed by only one thread at a time. The order is not specified. This means that if a thread is currently executing inside a CRITICAL region and another

More information

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp

Petascale Software Challenges. William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges William Gropp www.cs.illinois.edu/~wgropp Petascale Software Challenges Why should you care? What are they? Which are different from non-petascale? What has changed since

More information

Performance and Scalability of the NAS Parallel Benchmarks in Java

Performance and Scalability of the NAS Parallel Benchmarks in Java Performance and Scalability of the NAS Parallel Benchmarks in Java Michael A. Frumkin, Matthew Schultz, Haoqiang Jin, and Jerry Yan NASA Advanced Supercomputing (NAS) Division NASA Ames Research Center,

More information

Introduction to application performance analysis

Introduction to application performance analysis Introduction to application performance analysis Performance engineering We want to get the most science and engineering through a supercomputing system as possible. The more efficient codes are, the more

More information

What is Multi Core Architecture?

What is Multi Core Architecture? What is Multi Core Architecture? When a processor has more than one core to execute all the necessary functions of a computer, it s processor is known to be a multi core architecture. In other words, a

More information

How To Write Fast Numerical Code: A Small Introduction

How To Write Fast Numerical Code: A Small Introduction How To Write Fast Numerical Code: A Small Introduction Srinivas Chellappa, Franz Franchetti, and Markus Püschel Electrical and Computer Engineering Carnegie Mellon University {schellap, franzf, pueschel}@ece.cmu.edu

More information

Kashif Iqbal - PhD Kashif.iqbal@ichec.ie

Kashif Iqbal - PhD Kashif.iqbal@ichec.ie HPC/HTC vs. Cloud Benchmarking An empirical evalua.on of the performance and cost implica.ons Kashif Iqbal - PhD Kashif.iqbal@ichec.ie ICHEC, NUI Galway, Ireland With acknowledgment to Michele MicheloDo

More information

High Performance Computing. Course Notes 2007-2008. HPC Fundamentals

High Performance Computing. Course Notes 2007-2008. HPC Fundamentals High Performance Computing Course Notes 2007-2008 2008 HPC Fundamentals Introduction What is High Performance Computing (HPC)? Difficult to define - it s a moving target. Later 1980s, a supercomputer performs

More information

OpenMP and Performance

OpenMP and Performance Dirk Schmidl IT Center, RWTH Aachen University Member of the HPC Group schmidl@itc.rwth-aachen.de IT Center der RWTH Aachen University Tuning Cycle Performance Tuning aims to improve the runtime of an

More information

High Performance Computing in CST STUDIO SUITE

High Performance Computing in CST STUDIO SUITE High Performance Computing in CST STUDIO SUITE Felix Wolfheimer GPU Computing Performance Speedup 18 16 14 12 10 8 6 4 2 0 Promo offer for EUC participants: 25% discount for K40 cards Speedup of Solver

More information

Software Development around a Millisecond

Software Development around a Millisecond Introduction Software Development around a Millisecond Geoffrey Fox In this column we consider software development methodologies with some emphasis on those relevant for large scale scientific computing.

More information

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it

Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Overview on Modern Accelerators and Programming Paradigms Ivan Giro7o igiro7o@ictp.it Informa(on & Communica(on Technology Sec(on (ICTS) Interna(onal Centre for Theore(cal Physics (ICTP) Mul(ple Socket

More information

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers

Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Unleashing the Performance Potential of GPUs for Atmospheric Dynamic Solvers Haohuan Fu haohuan@tsinghua.edu.cn High Performance Geo-Computing (HPGC) Group Center for Earth System Science Tsinghua University

More information

A Lab Course on Computer Architecture

A Lab Course on Computer Architecture A Lab Course on Computer Architecture Pedro López José Duato Depto. de Informática de Sistemas y Computadores Facultad de Informática Universidad Politécnica de Valencia Camino de Vera s/n, 46071 - Valencia,

More information

Getting OpenMP Up To Speed

Getting OpenMP Up To Speed 1 Getting OpenMP Up To Speed Ruud van der Pas Senior Staff Engineer Oracle Solaris Studio Oracle Menlo Park, CA, USA IWOMP 2010 CCS, University of Tsukuba Tsukuba, Japan June 14-16, 2010 2 Outline The

More information

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING

COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING COMPUTER ORGANIZATION ARCHITECTURES FOR EMBEDDED COMPUTING 2013/2014 1 st Semester Sample Exam January 2014 Duration: 2h00 - No extra material allowed. This includes notes, scratch paper, calculator, etc.

More information

Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster

Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster Comparing the OpenMP, MPI, and Hybrid Programming Paradigm on an SMP Cluster Gabriele Jost and Haoqiang Jin NAS Division, NASA Ames Research Center, Moffett Field, CA 94035-1000 {gjost,hjin}@nas.nasa.gov

More information

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage

Parallel Computing. Benson Muite. benson.muite@ut.ee http://math.ut.ee/ benson. https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage Parallel Computing Benson Muite benson.muite@ut.ee http://math.ut.ee/ benson https://courses.cs.ut.ee/2014/paralleel/fall/main/homepage 3 November 2014 Hadoop, Review Hadoop Hadoop History Hadoop Framework

More information

BLM 413E - Parallel Programming Lecture 3

BLM 413E - Parallel Programming Lecture 3 BLM 413E - Parallel Programming Lecture 3 FSMVU Bilgisayar Mühendisliği Öğr. Gör. Musa AYDIN 14.10.2015 2015-2016 M.A. 1 Parallel Programming Models Parallel Programming Models Overview There are several

More information

Introduction to Cloud Computing

Introduction to Cloud Computing Introduction to Cloud Computing Parallel Processing I 15 319, spring 2010 7 th Lecture, Feb 2 nd Majd F. Sakr Lecture Motivation Concurrency and why? Different flavors of parallel computing Get the basic

More information

Advanced Computational Software

Advanced Computational Software Advanced Computational Software Scientific Libraries: Part 2 Blue Waters Undergraduate Petascale Education Program May 29 June 10 2011 Outline Quick review Fancy Linear Algebra libraries - ScaLAPACK -PETSc

More information

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi

Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Assessing the Performance of OpenMP Programs on the Intel Xeon Phi Dirk Schmidl, Tim Cramer, Sandra Wienke, Christian Terboven, and Matthias S. Müller schmidl@rz.rwth-aachen.de Rechen- und Kommunikationszentrum

More information

GPGPU accelerated Computational Fluid Dynamics

GPGPU accelerated Computational Fluid Dynamics t e c h n i s c h e u n i v e r s i t ä t b r a u n s c h w e i g Carl-Friedrich Gauß Faculty GPGPU accelerated Computational Fluid Dynamics 5th GACM Colloquium on Computational Mechanics Hamburg Institute

More information

1 Bull, 2011 Bull Extreme Computing

1 Bull, 2011 Bull Extreme Computing 1 Bull, 2011 Bull Extreme Computing Table of Contents HPC Overview. Cluster Overview. FLOPS. 2 Bull, 2011 Bull Extreme Computing HPC Overview Ares, Gerardo, HPC Team HPC concepts HPC: High Performance

More information

Computational Platforms for VASP

Computational Platforms for VASP Computational Platforms for VASP Robert LORENZ Institut für Materialphysik and Center for Computational Material Science Universität Wien, Strudlhofgasse 4, A-1090 Wien, Austria b-initio ienna ackage imulation

More information

Dynamic Load Balancing in CP2K

Dynamic Load Balancing in CP2K Dynamic Load Balancing in CP2K Pradeep Shivadasan August 19, 2014 MSc in High Performance Computing The University of Edinburgh Year of Presentation: 2014 Abstract CP2K is a widely used atomistic simulation

More information

David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems

David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems David Rioja Redondo Telecommunication Engineer Englobe Technologies and Systems About me David Rioja Redondo Telecommunication Engineer - Universidad de Alcalá >2 years building and managing clusters UPM

More information

Parallel Computing for Data Science

Parallel Computing for Data Science Parallel Computing for Data Science With Examples in R, C++ and CUDA Norman Matloff University of California, Davis USA (g) CRC Press Taylor & Francis Group Boca Raton London New York CRC Press is an imprint

More information

Introduction to Linux and Cluster Basics for the CCR General Computing Cluster

Introduction to Linux and Cluster Basics for the CCR General Computing Cluster Introduction to Linux and Cluster Basics for the CCR General Computing Cluster Cynthia Cornelius Center for Computational Research University at Buffalo, SUNY 701 Ellicott St Buffalo, NY 14203 Phone: 716-881-8959

More information

OpenACC 2.0 and the PGI Accelerator Compilers

OpenACC 2.0 and the PGI Accelerator Compilers OpenACC 2.0 and the PGI Accelerator Compilers Michael Wolfe The Portland Group michael.wolfe@pgroup.com This presentation discusses the additions made to the OpenACC API in Version 2.0. I will also present

More information

Parallel Programming Survey

Parallel Programming Survey Christian Terboven 02.09.2014 / Aachen, Germany Stand: 26.08.2014 Version 2.3 IT Center der RWTH Aachen University Agenda Overview: Processor Microarchitecture Shared-Memory

More information

Some Myths in High Performance Computing. William D. Gropp www.mcs.anl.gov/~gropp Mathematics and Computer Science Argonne National Laboratory

Some Myths in High Performance Computing. William D. Gropp www.mcs.anl.gov/~gropp Mathematics and Computer Science Argonne National Laboratory Some Myths in High Performance Computing William D. Gropp www.mcs.anl.gov/~gropp Mathematics and Computer Science Argonne National Laboratory Some Popular Myths Parallel Programming is Hard Harder than

More information

Hardware performance monitoring. Zoltán Majó

Hardware performance monitoring. Zoltán Majó Hardware performance monitoring Zoltán Majó 1 Question Did you take any of these lectures: Computer Architecture and System Programming How to Write Fast Numerical Code Design of Parallel and High Performance

More information

Optimizing matrix multiplication Amitabha Banerjee abanerjee@ucdavis.edu

Optimizing matrix multiplication Amitabha Banerjee abanerjee@ucdavis.edu Optimizing matrix multiplication Amitabha Banerjee abanerjee@ucdavis.edu Present compilers are incapable of fully harnessing the processor architecture complexity. There is a wide gap between the available

More information

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster

A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster Acta Technica Jaurinensis Vol. 3. No. 1. 010 A Simultaneous Solution for General Linear Equations on a Ring or Hierarchical Cluster G. Molnárka, N. Varjasi Széchenyi István University Győr, Hungary, H-906

More information

Parallelism and Cloud Computing

Parallelism and Cloud Computing Parallelism and Cloud Computing Kai Shen Parallel Computing Parallel computing: Process sub tasks simultaneously so that work can be completed faster. For instances: divide the work of matrix multiplication

More information

Parallel Programming for Multi-Core, Distributed Systems, and GPUs Exercises

Parallel Programming for Multi-Core, Distributed Systems, and GPUs Exercises Parallel Programming for Multi-Core, Distributed Systems, and GPUs Exercises Pierre-Yves Taunay Research Computing and Cyberinfrastructure 224A Computer Building The Pennsylvania State University University

More information

MPI Hands-On List of the exercises

MPI Hands-On List of the exercises MPI Hands-On List of the exercises 1 MPI Hands-On Exercise 1: MPI Environment.... 2 2 MPI Hands-On Exercise 2: Ping-pong...3 3 MPI Hands-On Exercise 3: Collective communications and reductions... 5 4 MPI

More information

Introduction to GPU hardware and to CUDA

Introduction to GPU hardware and to CUDA Introduction to GPU hardware and to CUDA Philip Blakely Laboratory for Scientific Computing, University of Cambridge Philip Blakely (LSC) GPU introduction 1 / 37 Course outline Introduction to GPU hardware

More information

Multi-core Programming System Overview

Multi-core Programming System Overview Multi-core Programming System Overview Based on slides from Intel Software College and Multi-Core Programming increasing performance through software multi-threading by Shameem Akhter and Jason Roberts,

More information

Interactive comment on A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc by W. He et al.

Interactive comment on A parallelization scheme to simulate reactive transport in the subsurface environment with OGS#IPhreeqc by W. He et al. Geosci. Model Dev. Discuss., 8, C1166 C1176, 2015 www.geosci-model-dev-discuss.net/8/c1166/2015/ Author(s) 2015. This work is distributed under the Creative Commons Attribute 3.0 License. Geoscientific

More information

Tools for Performance Debugging HPC Applications. David Skinner deskinner@lbl.gov

Tools for Performance Debugging HPC Applications. David Skinner deskinner@lbl.gov Tools for Performance Debugging HPC Applications David Skinner deskinner@lbl.gov Tools for Performance Debugging Practice Where to find tools Specifics to NERSC and Hopper Principles Topics in performance

More information

Making the Monte Carlo Approach Even Easier and Faster. By Sergey A. Maidanov and Andrey Naraikin

Making the Monte Carlo Approach Even Easier and Faster. By Sergey A. Maidanov and Andrey Naraikin Making the Monte Carlo Approach Even Easier and Faster By Sergey A. Maidanov and Andrey Naraikin Libraries of random-number generators for general probability distributions can make implementing Monte

More information

BG/Q Performance Tools. Sco$ Parker BG/Q Early Science Workshop: March 19-21, 2012 Argonne Leadership CompuGng Facility

BG/Q Performance Tools. Sco$ Parker BG/Q Early Science Workshop: March 19-21, 2012 Argonne Leadership CompuGng Facility BG/Q Performance Tools Sco$ Parker BG/Q Early Science Workshop: March 19-21, 2012 BG/Q Performance Tool Development In conjuncgon with the Early Science program an Early SoMware efforts was inigated to

More information

Cluster Computing at HRI

Cluster Computing at HRI Cluster Computing at HRI J.S.Bagla Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019. E-mail: jasjeet@mri.ernet.in 1 Introduction and some local history High performance computing

More information

RevoScaleR Speed and Scalability

RevoScaleR Speed and Scalability EXECUTIVE WHITE PAPER RevoScaleR Speed and Scalability By Lee Edlefsen Ph.D., Chief Scientist, Revolution Analytics Abstract RevoScaleR, the Big Data predictive analytics library included with Revolution

More information

AMD WHITE PAPER GETTING STARTED WITH SEQUENCEL. AMD Embedded Solutions 1

AMD WHITE PAPER GETTING STARTED WITH SEQUENCEL. AMD Embedded Solutions 1 AMD WHITE PAPER GETTING STARTED WITH SEQUENCEL AMD Embedded Solutions 1 Optimizing Parallel Processing Performance and Coding Efficiency with AMD APUs and Texas Multicore Technologies SequenceL Auto-parallelizing

More information

Workshare Process of Thread Programming and MPI Model on Multicore Architecture

Workshare Process of Thread Programming and MPI Model on Multicore Architecture Vol., No. 7, 011 Workshare Process of Thread Programming and MPI Model on Multicore Architecture R. Refianti 1, A.B. Mutiara, D.T Hasta 3 Faculty of Computer Science and Information Technology, Gunadarma

More information

Embedded Systems: map to FPGA, GPU, CPU?

Embedded Systems: map to FPGA, GPU, CPU? Embedded Systems: map to FPGA, GPU, CPU? Jos van Eijndhoven jos@vectorfabrics.com Bits&Chips Embedded systems Nov 7, 2013 # of transistors Moore s law versus Amdahl s law Computational Capacity Hardware

More information

High Performance Computing

High Performance Computing High Performance Computing Trey Breckenridge Computing Systems Manager Engineering Research Center Mississippi State University What is High Performance Computing? HPC is ill defined and context dependent.

More information

CUDA programming on NVIDIA GPUs

CUDA programming on NVIDIA GPUs p. 1/21 on NVIDIA GPUs Mike Giles mike.giles@maths.ox.ac.uk Oxford University Mathematical Institute Oxford-Man Institute for Quantitative Finance Oxford eresearch Centre p. 2/21 Overview hardware view

More information