PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks



Similar documents
Lecture 13 Linear quadratic Lyapunov theory

Linear-Quadratic Optimal Controller 10.3 Optimal Linear Control Systems

Formulations of Model Predictive Control. Dipartimento di Elettronica e Informazione

Example 4.1 (nonlinear pendulum dynamics with friction) Figure 4.1: Pendulum. asin. k, a, and b. We study stability of the origin x

(Quasi-)Newton methods

Dynamic Modeling, Predictive Control and Performance Monitoring

4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department sss40@eng.cam.ac.

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 10

Sistemas com saturação no controle

C21 Model Predictive Control

LPV model identification for power management of Web service systems Mara Tanelli, Danilo Ardagna, Marco Lovera

INPUT-TO-STATE STABILITY FOR DISCRETE-TIME NONLINEAR SYSTEMS

We shall turn our attention to solving linear systems of equations. Ax = b

Motion Control of 3 Degree-of-Freedom Direct-Drive Robot. Rutchanee Gullayanon

Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms

Real-Time Systems Versus Cyber-Physical Systems: Where is the Difference?

Adaptive Control Using Combined Online and Background Learning Neural Network

ECE 516: System Control Engineering

Modeling, Analysis, and Control of Dynamic Systems

2.3 Convex Constrained Optimization Problems

19 LINEAR QUADRATIC REGULATOR

Mathematics Course 111: Algebra I Part IV: Vector Spaces

Lecture 7: Finding Lyapunov Functions 1

Mathematics (MAT) MAT 061 Basic Euclidean Geometry 3 Hours. MAT 051 Pre-Algebra 4 Hours

Design-Simulation-Optimization Package for a Generic 6-DOF Manipulator with a Spherical Wrist

MOBILE ROBOT TRACKING OF PRE-PLANNED PATHS. Department of Computer Science, York University, Heslington, York, Y010 5DD, UK

Computer programming course in the Department of Physics, University of Calcutta

Network Traffic Modelling

Enhancing the SNR of the Fiber Optic Rotation Sensor using the LMS Algorithm

The p-norm generalization of the LMS algorithm for adaptive filtering

BookTOC.txt. 1. Functions, Graphs, and Models. Algebra Toolbox. Sets. The Real Numbers. Inequalities and Intervals on the Real Number Line

NEW YORK STATE TEACHER CERTIFICATION EXAMINATIONS

OpenFOAM Optimization Tools

Automatic Stress and Load Testing for Embedded Systems

Big Data - Lecture 1 Optimization reminders

Airport Planning and Design. Excel Solver

Lecture 5: Variants of the LMS algorithm

Høgskolen i Narvik Sivilingeniørutdanningen STE6237 ELEMENTMETODER. Oppgaver

1 Norms and Vector Spaces

TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA

Biological Neurons and Neural Networks, Artificial Neurons

CS3220 Lecture Notes: QR factorization and orthogonal transformations

How To Understand And Solve Algebraic Equations

Nonlinear Model Predictive Control: From Theory to Application

Dimension Theory for Ordinary Differential Equations

A New Nature-inspired Algorithm for Load Balancing

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics / 30

Lecture 2 Linear functions and examples

Analysis of Algorithms I: Binary Search Trees

Thnkwell s Homeschool Precalculus Course Lesson Plan: 36 weeks

Recurrent Neural Networks

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

3.2 Sources, Sinks, Saddles, and Spirals

Nonlinear Programming Methods.S2 Quadratic Programming

Dynamical Systems Analysis II: Evaluating Stability, Eigenvalues

DCMS DC MOTOR SYSTEM User Manual

Java Modules for Time Series Analysis

17. Inner product spaces Definition Let V be a real vector space. An inner product on V is a function

Algebra Unpacked Content For the new Common Core standards that will be effective in all North Carolina schools in the school year.

IMPROVEMENT OF DIGITAL IMAGE RESOLUTION BY OVERSAMPLING

STABILITY GUARANTEED ACTIVE FAULT TOLERANT CONTROL OF NETWORKED CONTROL SYSTEMS. Shanbin Li, Dominique Sauter, Christophe Aubrun, Joseph Yamé

New Higher-Proposed Order-Combined Approach. Block 1. Lines 1.1 App. Vectors 1.4 EF. Quadratics 1.1 RC. Polynomials 1.1 RC

LOOP TRANSFER RECOVERY FOR SAMPLED-DATA SYSTEMS 1

Chapter 3 Nonlinear Model Predictive Control

Neuro-Dynamic Programming An Overview

Conic optimization: examples and software

Dynamic Neural Networks for Actuator Fault Diagnosis: Application to the DAMADICS Benchmark Problem

Tutorial on Using Excel Solver to Analyze Spin-Lattice Relaxation Time Data

Models of Cortical Maps II

Optimization of warehousing and transportation costs, in a multiproduct multi-level supply chain system, under a stochastic demand

PID Control. Chapter 10

1 Introduction to Matrices

An Introduction to Applied Mathematics: An Iterative Process

Algebraic Concepts Algebraic Concepts Writing

Convex Programming Tools for Disjunctive Programs

Matlab and Simulink. Matlab and Simulink for Control

Understanding and Applying Kalman Filtering

Metrics on SO(3) and Inverse Kinematics

Modeling and Performance Evaluation of Computer Systems Security Operation 1

Modeling and Simulation of a Three Degree of Freedom Longitudinal Aero plane System. Figure 1: Boeing 777 and example of a two engine business jet

6. Cholesky factorization

Optimal Design of α-β-(γ) Filters

Applied Linear Algebra I Review page 1

Math 312 Homework 1 Solutions

AN INTRODUCTION TO NUMERICAL METHODS AND ANALYSIS

3. Interpolation. Closing the Gaps of Discretization... Beyond Polynomials

MATH. ALGEBRA I HONORS 9 th Grade ALGEBRA I HONORS

Non Linear Control of a Distributed Solar Field

Transcription:

PID Controller Design for Nonlinear Systems Using Discrete-Time Local Model Networks 4. Workshop für Modellbasierte Kalibriermethoden Nikolaus Euler-Rolle, Christoph Hametner, Stefan Jakubek Christian Mayr (AVL List GmbH) 08.11.2013 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 1/26

Feedback Control of Nonlinear Systems Motivation Implementation of Two-Degrees-of-Freedom control using local model networks Feedforward part improves the dynamic performance - Reference tracking - Deadtime - Input saturation Controller design on (semi)-physical process models instead of testbed runs Opportunity of inexpensive feasibility studies and rapid prototyping w u* w* PID u Plant y 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 2/26

Feedback Control of Nonlinear Systems Motivation Implementation of Two-Degrees-of-Freedom control using local model networks Feedforward part improves the dynamic performance - Reference tracking - Deadtime - Input saturation Controller design on (semi)-physical process models instead of testbed runs Opportunity of inexpensive feasibility studies and rapid prototyping Approach Globally nonlinear process model (based on input/output measurements) Design of nonlinear PID controllers with guaranteed global stability Fully automated generation of a dynamic feedforward control 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 2/26

Controller Design Workflow DoE Signals Maps [n, q, u] Testbed y Identification LMN SS-Model Local PIDs Parameter Simulation Controller Maps Stability Optimisation Performance DoE 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 3/26

Controller Design Workflow DoE Signals Dynamic FF-Control Maps [n, q, u] Testbed y Identification LMN SS-Model Local PIDs Parameter Simulation Controller Maps Stability Optimisation Performance DoE 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 3/26

2 PID Controller Design 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 4/26

Local Model Network Overview Injection Mass, mg/stroke 30 25 20 15 10 5 local global 1000 1500 2000 2500 Engine Speed, rpm Local Model Network Globally nonlinear dynamical system represented by local linear models Found by system identification Local stability proof & controller design using linear methods Global approach necessary (due to transition, model interpolation...) o for nonlinear systems o based on Lyapunov stability theory 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 5/26

Typical PID Controller Structure Example: Engine Control Unit n q n q Map w - y e P-Part I-Part anti windup DT1-Part Feedback- Feedforward- Control u fb u ff max min u n q Map 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 6/26

Feedback Controlled Local Model Network Concept One local controller (LC) per local model (LM) Scheduling of parameters according to the validity functions of local models (Parallel Distributed Compensator) K PID(Φ) = Φ ik (i) PID Formal split into inputs used for control u and disturbances z Nonlinear process is approximated by a local model network Trade-Off: model fit simple controller design Closed-loop state-space representation necessary (to prove Lyapunov stability) 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 7/26

Closed-Loop State-Space Representation Including Error Signal Adaptation K PID (Φ,e) System w(k) Pre-Filter v(k) - f(φ) B(Φ) x(k +1) q 1 I c T ŷ(k) z(k) Input Scheduler ẑ(k) E(Φ) A(Φ) x(k) w e(φ,e) B(Φ) Figure: Local model network with PID controller in state-space representation State Equation x(k +1) =[A(Φ) B(Φ)K PID (Φ,e)]x(k)+B(Φ)G(Φ,e)w(k)+E(Φ)ẑ(k) +f(φ)+b(φ)w e(φ,e) ŷ(k) =c T x(k) 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 8/26

Overview of the Design Procedure Controller Design Basic calibration (linear design methods per local model) Generation of a suitable performance sequence (DoE) - Operating range (e.g.: 1000 4000 rpm, 0 70 mg/stroke) - Holding time - Gradients (e.g.: engine speed) - Filtering Nonlinear, multi-objective optimisation of controller parameters considering - Performance - Stability Multi-objective optimisation of the parameters of the error signal adaptation (optional) 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 9/26

Multi-Objective Genetic Algorithm Objective Function min f m(x opt) subject to g j (x opt) 0 h k (x opt) = 0 x (lb) i x i x (ub) i GA Population Individuals 1 n f S Stability (by Lyapunov s direct method) f P Performance (by a closed-loop simulation) Genome Fitness Genome Fitness f P Stability Performance Stability Performance 0 Paretofrontier f S 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 10/26

Fitness Function: Stability Lyapunov s Direct Method for Discrete-Time Systems Stability of Dynamic Systems A positive definite, scalar Lyapunov function V (k) = V (x(k)) with state vector x(k) proves global asymptotic stability if: o V(x(k) = 0) = 0 o V(k) > 0 for x(k) 0 o V(k) as x(k) o V(k + 1) < V(k) k N + or global exponential stability if: o V(k + 1) α 2 V (k) k N + with decay rate 0 < α < 1 Results in Linear Matrix Inequalities (LMIs), which are solved by optimisation Sufficient but not necessary condition Common Quadratic Lyapunov Function V(k) = x T (k)px(k) LMI Problem P 0 { inf 0 < α < 1 : } Λ T ij PΛ ij +X ij α 2 P 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 11/26

Fitness Function: Performance Requirements Assessment of the closed-loop performance for a given set of parameters Representative synthetic reference is generated by DoE Desired trajectory is PT1-filtered Fitness Function Closed-loop simulation of the reference cycle for each genome Sum of squared errors f P = k (ŷ(k) y dmd(k)) 2 2 1.5 1 0.5 0 0 5 10 15 Time 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 12/26

Pareto-Optimal Solutions 4 x 107 3.5 3 2.5 A Performance fp 2 1.5 Stability 1 B 0.995 1 1.005 1.01 1.015 1.02 1.025 1.03 f S 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 13/26

3 Feedforward Control 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 14/26

Feedforward Control State of the Art: Static Model Inversion Steady state input is found by static model inversion u(φ) = [c T (I A(Φ)) 1 B(Φ)] 1 (w(φ) c T (I A(Φ)) 1 (E(Φ)ẑ(Φ) + f(φ))) Stored in a map Dynamic Feedforward Control w u* w* PID u Plant y Dynamic feedforward control improves the closed-loop performance. 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 15/26

Dynamic Feedforward Control Generation using Local Model Networks Benefits Automatic generation of a dynamic feedforward control law for nonlinear dynamic systems Exploits the generic model structure of local model networks Model complexity may be arbitrarily high Applicable online for any reference trajectory without pre-planning Properties Based on an open-loop state-space model Realised by a feedback linearizing input transformation Restricted to globally minimum-phase local model networks 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 16/26

Feedback Linearization Undamped Nonlinear Oscillation Consider an undamped oscillator with a nonlinear spring force characteristic f(y), which is to be stabilized using constant c and input u ÿ +f(y) = cu Figure: Air suspension Exact Linearization For this second order system, the state variables are chosen as y = x 1 ẏ = ẋ 1 = x 2 ÿ = ẍ 1 = ẋ 2 = cu f(y) 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 17/26

Feedback Linearization Undamped Nonlinear Oscillation Consider an undamped oscillator with a nonlinear spring force characteristic f(y), which is to be stabilized using constant c and input u ÿ +f(y) = cu Figure: Air suspension Exact Linearization For this second order system, the state variables are chosen as y = x 1 ẏ = ẋ 1 = x 2 ÿ = ẍ 1 = ẋ 2 = cu f(y) = v v 1 s 1 s y 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 17/26

Feedforward Control Undamped Nonlinear Oscillation Exact Linearization For a two times differentiable desired trajectory w, the nonlinear feedforward control input u can be found from v! = ẅ = cu f(w) u = ẅ +f(w) c ẅ u = ẅ +f(w) c u 1 s 1 s w C u y 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 18/26

Demonstration Example Automatic Feedforward Control Design Wiener Model G(z) = P(z) U(z) = 0.6z 3 1 1.3z 1 +0.8825z 2 0.1325z 3 y(k) = f(p(k)) = arctan(p(k)) Figure: Wiener Model approximated by an LMN: 1 0.5 6 2 ŷ(k 1) 0 0.5 4 3 1 1 5 3 2 1 0 1 2 3 u(k 3) 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 19/26

Feedforward Controlled Simulation Wiener Model 1 ywiener u w, ŷ 0 1 3 0 3 1 0 1 40 60 80 100 120 140 160 180 200 220 40 60 80 100 120 140 160 180 200 220 40 60 80 100 120 140 160 180 200 220 Samples 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 20/26

Feedforward Controlled Simulation Wiener Model 1.5 1 0.5 ŷ 0 0.5 1 w yffc 1.5 0 50 100 150 200 250 300 350 400 450 500 Samples w u* w* PID u Plant y 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 21/26

Two-Degrees-of-Freedom Control Wiener Model 1.5 1 0.5 ŷ 0 0.5 w 1 yffc y2dof 1.5 0 50 100 150 200 250 300 350 400 450 500 Samples w u* w* PID u Plant y 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 22/26

Two-Degrees-of-Freedom Control Wiener Model 1.5 1 0.5 ŷ 0 0.5 w 1 ypid y2dof 1.5 0 50 100 150 200 250 300 350 400 450 500 Samples w u* w* PID u Plant y 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 23/26

4 Conclusion & Outlook 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 24/26

Conclusion & Outlook Two-Degrees-of-Freedom Control Nonlinear PID controller design using local model networks Multi-objective optimisation of controller parameters considering Stability Performance Automatic feedforward control law generation for minimum-phase local model networks Outlook Application of a Lyapunov function to check internal stability Considering input constraints Assessment of Two-Degrees-of-Freedom control on a physical process 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 25/26

Thank you for your attention! 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 26/26

Fitness Function: Stability Common Quadratic Lyapunov Function for Closed-Loop Systems Exponential stability with decay rate α of the closed-loop feedback system is shown, if symmetric matrices P and X ij exist and the following conditions are fulfilled: P 0 { } inf 0 < α < 1 : Λ T ij PΛij + Xij α2 P X 11 X 12 X 1I X 12 X 22 X 2I X =....... 0 X 1I X 2I X II i I, i j I using Gij + Gji Λ ij =, 2 G ij = A i B ik T PID,j C. 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 27/26

Fitness Function: Stability Common Quadratic Lyapunov Function for Closed-Loop Systems Exponential stability with decay rate α of the closed-loop feedback system is shown, if symmetric matrices P and X ij exist and the following conditions are fulfilled: P 0 { } inf 0 < α < 1 : Λ T ij PΛij + Xij α2 P X 11 X 12 X 1I X 12 X 22 X 2I X =....... 0 X 1I X 2I X II i I, i j I using Gij + Gji Λ ij =, 2 G ij = A i B ik T PID,j C. Simultaneous solving for P and k T PID,j is not possible! f S = α 4. Workshop für Modellbasierte Kalibriermethoden: Euler-Rolle - PID Controller Design for Nonlinear Systems 27/26