Configuration Example

Similar documents
Configuration Example

Configuration Example

Configuration Example

Configuration Example

Configuration Example

Configuration Example

WatchGuard Certified Training Partner (WCTP) Program

WatchGuard Certified Training Partner (WCTP) Program

WatchGuard Certified Training Partner (WCTP) Program

WATCHGUARD FIREBOX SOHO 6TC AND SOHO 6

IREBOX X. Firebox X Family of Security Products. Comprehensive Unified Threat Management Solutions That Scale With Your Business

DOWNTIME CAN SPELL DISASTER

How do I set up a branch office VPN tunnel with the Management Server?

Fireware How To VPN. Introduction. Is there anything I need to know before I start? Configuring a BOVPN Gateway

Fireware How To Network Configuration

Firebox X550e, Firebox X750e, Firebox X1250e Firebox X5500e, Firebox X6500e, Firebox X8500e, Firebox X8500e-F

Clustering and Queue Replication:

VPN Tracker for Mac OS X

Abstract. Avaya Solution & Interoperability Test Lab

Configuring an IPSec Tunnel between a Firebox & a Check Point FireWall-1

WatchGuard XCSv Setup Guide

Fireware Essentials Exam Study Guide

Appendix A: Configuring Firewalls for a VPN Server Running Windows Server 2003

Fireware How To Logging and Notification

WatchGuard System Manager User Guide. WatchGuard System Manager v8.0

Configuring a WatchGuard SOHO to SOHO IPSec Tunnel

WATCHGUARD FIREBOX VCLASS

Howto: How to configure static port mapping in the corporate router/firewall for Panda GateDefender Integra VPN networks

Configure an IPSec Tunnel between a Firebox Vclass & a Check Point FireWall-1

How To Load balance traffic of Mail server hosted in the Internal network and redirect traffic over preferred Interface

White Paper. SSL vs. IPSec. Streamlining Site-to-Site VPN Deployments

VPN Solution Guide Peplink Balance Series. Peplink Balance. VPN Solution Guide Copyright 2015 Peplink

How do I configure multi-wan in Routing Table mode?

WAN Failover Scenarios Using Digi Wireless WAN Routers

Security+ Guide to Network Security Fundamentals, Fourth Edition. Chapter 6 Network Security

WatchGuard SSL Web UI 3.2 User Guide

High Availability Branch Office VPN

Branch Office VPN Tunnels and Mobile VPN

WatchGuard Technologies, Inc. 505 Fifth Avenue South Suite 500, Seattle, WA

DEFENDING THE REMOTE OFFICE: WHICH VPN TECHNOLOGY IS BEST? AUGUST 2004

Protecting a Corporate Network with ViPNet. Best Practices in Configuring the Appropriate Security Level in Your ViPNet Network

How To Manage Outgoing Traffic On Fireware Xtm

GNAT Box VPN and VPN Client

Edgewater Routers User Guide

Fireware XTM Traffic Management

Route Based Virtual Private Network

Comprehensive security solution provides reliable connectivity and faster VPN throughput with unprecedented visibility from WatchGuard Dimension

Configuring a Check Point FireWall-1 to SOHO IPSec Tunnel

WatchGuard SSL Web UI User Guide

Edgewater Routers User Guide

WatchGuard Training. Introduction to WatchGuard Dimension

High Level Overview of IPSec and MPLS IPVPNs

The Cisco ASA 5500 as a Superior Firewall Solution

Firewall and UTM Solutions Guide

Cisco AnyConnect Secure Mobility Solution Guide

Why Choose Integrated VPN/Firewall Solutions over Stand-alone VPNs

ReadyNAS Remote White Paper. NETGEAR May 2010

How Network Transparency Affects Application Acceleration Deployment

Smart Tips. Enabling WAN Load Balancing. Key Features. Network Diagram. Overview. Featured Products. WAN Failover. Enabling WAN Load Balancing Page 1

VPN Configuration Guide WatchGuard Fireware XTM

MOBILITY & INTERCONNECTIVITY. Features SECURITY OF INFORMATION TECHNOLOGIES

Fireware How To Authentication

Configuration Guide. How to set up the IPSec site-to-site Tunnel between the D-Link DSR Router and the Cisco Firewall. Overview

VMware vcloud Networking and Security Overview

Deploying Firewalls Throughout Your Organization

UTM-Enabled Network Protection

Using IPsec VPN to provide communication between offices

Virtualized Network Services SDN solution for enterprises

EXINDA NETWORKS. Deployment Topologies

THE NEXT LEVEL OF SECURE CHANNEL PARTNERSHIP

ProxySG TechBrief Implementing a Reverse Proxy

Maintaining Strong Security and PCI DSS Compliance in a Distributed Retail Environment

Your Security Partner of Choice

FEATURE OVERVIEW. FGX Series firewall. Last updated February 2012

White Paper. Complementing or Migrating MPLS Networks

Digi Connect WAN Application Helper NAT, GRE, ESP and TCP/UPD Forwarding and IP Filtering

Komplettschutz für den Mittelstand

Securing Networks with Cisco Routers and Switches 1.0 (SECURE)

Fortigate Features & Demo

SonicWALL Advantages Over WatchGuard

Chapter 1 The Principles of Auditing 1

Configuring Windows 2000/XP IPsec for Site-to-Site VPN

CompTIA Exam N CompTIA Network+ certification Version: 5.1 [ Total Questions: 1146 ]

NETWORK SECURITY 101 The Value of a Protected Network

Leading Telecom Provider Ensures Customers Have Proper Network Protection with WatchGuard

Basic ViPNet VPN Deployment Schemes. Supplement to ViPNet Documentation

FortiGate High Availability Overview Technical Note

Configure ISDN Backup and VPN Connection

Cyberoam Perspective BFSI Security Guidelines. Overview

Configuration Guide. How to set up the IPSec site-to-site Tunnel between the D-Link DSR Router and the Sonicwall Firewall.

REMOTE ACCESS VPN NETWORK DIAGRAM

A host-based firewall can be used in addition to a network-based firewall to provide multiple layers of protection.

Cisco Dynamic Multipoint VPN: Simple and Secure Branch-to-Branch Communications

WatchGuard Technologies WatchGuard Technologies

Connecting to the FILTER Virtual Private Network (VPN)

Cisco Small Business ISA500 Series Integrated Security Appliances

Firewalls and VPNs. Principles of Information Security, 5th Edition 1

AlienVault Unified Security Management (USM) 4.x-5.x. Deployment Planning Guide

Remote Access VPN Solutions

WatchGuard SSL 2.0 New Features

Transcription:

Configuration Example Centralized Branch Office VPN Architecture (Hub & Spoke) Example configuration files created with WSM v11.10.1 Revised 7/24/2015 Use Case In this configuration example, an organization has multiple sites of different sizes and wants the networks at each site to interconnect. The organization wants visibility and control of their data at a central location. They could also want a central reliable location for their resources, or could have business processes that require a centralized architecture. This configuration example is provided as a guide. Additional configuration settings could be necessary, or more appropriate, for your network environment. Solution Overview In a centralized VPN configuration, also referred to as hub and spoke, all VPN tunnels converge at one location. This can be used to achieve global data visibility and control at a central location. This solution can help maintain resource availability because all shared resources can be placed in a well maintained, reliable location. This configuration relies heavily upon the central location, because the central location is a possible single point of failure for VPN tunnels. If the organization adds more remote locations, it could be necessary to expand the capacity of the central location. If network resources are primarily dispersed among the remote sites, a decentralized architecture could be a better solution.

Centralized Branch Office VPN Architecture (Hub & Spoke) How It Works The Firebox at the central location acts as the primary gateway for VPN tunnels from remote network sites. The central location receives all data transferred between sites. If the central location receives traffic that is not intended for a resource at the central location, the device at the central location redirects the traffic to the tunnel for the correct destination. This is known as tunnel switching. 2 WatchGuard Fireware

Requirements Requirements A reliable central location The central location processes the aggregate of all VPN connections. All VPN traffic depends on the availability of this site. Sufficient bandwidth Switched tunnels require bandwidth at the source, destination, and the central location. As shown in the previous diagram, the Small Office that receives traffic from HQ uses the upstream bandwidth at HQ, the upstream and downstream bandwidth at Colocation, and the downstream bandwidth at Small Office. Due to encryption and encapsulation overhead, VPN bandwidth is measured at less than line speed. A Firebox appropriate for each location Firebox capabilities vary by model. For VPN configurations, you must consider the VPN throughput and tunnel capacity of each model. Network environment, configuration options, and other factors can also help you determine the most appropriate model for each site. VPN throughput is the amount of data passed over the VPN per second. The central location processes switched traffic twice. VPN tunnel count is determined by the number of connected networks (as configured in tunnel routes). For offices, this is generally the number of local networks multiplied by the number of remote networks. For the central location, this is the sum total of the tunnel count at all other locations. For more information about the VPN throughput and branch office VPN tunnel capacity available for each Firebox model, refer to the product datasheets: http://www.watchguard.com/wgrd-resource-center/product-resources. Configuration Example 3

Configuration Example Configuration Example To illustrate this use case we present an example of an organization that has four locations: a colocation facility (Colo), a corporate office (Corp), a distribution center (Dist), and a small office (RMT). You can also scale up this solution to support additional offices, distribution centers, and small offices. Topology The IP addresses for the sites in this configuration: Colo Corp Dist RMT External interface IP address 192.0.2.8/24 198.51.100.8/24 203.0.113.9/24 DHCP Default gateway IP address 192.0.2.1 198.51.100.1 203.0.113.1 DHCP Private network allocated to site 172.16.0.0/16 10.8.0.0/16 10.9.0.0/16 10.192.1.0/24 Un-routed network allocated to site N/A N/A 192.168.9.0/24 192.168.192.0/24 4 WatchGuard Fireware

Configuration Explained Example Configuration Files For your reference, we have included example configuration files with this document. To examine the details of the example configuration files, you can open them with Policy Manager. There are four example configuration files, one for each location in the example. Configuration Filename Centralized-Colo.xml Centralized-Corp.xml Centralized-Dist.xml Centralized-RMT.xml Description Central location for the VPNs, the colocation facility A corporate office A distribution center A small office Configuration Explained Branch Office VPN Gateways The example configuration files contain branch office gateways defined for VPN connections between the Colocation Firebox and Firebox devices at the other sites. To see the branch office VPN gateways: 1. Open the Firebox configuration in Policy Manager. 2. Select VPN > Branch Office Gateways. The Colo configuration has three gateways, one for each other site. At each of the other sites, the configuration has only one gateway to the Colo site. Configuration Example 5

Configuration Explained Branch Office VPN Tunnels The example configuration files also contain branch office tunnels defined to route traffic between the networks at each site. To see the branch office VPN tunnels: 1. Open the Firebox configuration in Policy Manager. 2. Select VPN > Branch Office Tunnels. Here you can see the colocation (Colo) configuration has nine tunnels, while the small office (RMT) has three. The small office must have tunnels defined only for routes from its local networks to remote networks, but the colocation site must have tunnels defined for all interconnected networks. In the example configuration files, each tunnel is named to represent the local and remote networks it manages. The identifier in parentheses is the gateway used by the tunnel. The tunnel routes have been defined with the subnets allocated to each site, instead of the individual networks defined for the site. In this configuration, the small office (RMT) only requires three tunnel routes, as opposed to six tunnel routes to reach the trusted and optional networks at each of the other sites. Any new networks in this allocation that are established at each site are routed over the existing branch office VPN. For more granular control of VPN tunnels, you can define each individual network at a cost of additional tunnel routes and administration time. 6 WatchGuard Fireware

Configuration Explained For example, the tunnel routes Colo-to-RMT and RMT-to-Colo use the subnet IP address 172.16.0.0/16 as the address of the Colo network. This enables these tunnels to handle all traffic between the small office (RMT) network and the Colo trusted (172.16.1.0) and optional (172.16.2.0) networks. When you look at the tunnel routes, remember that the local-remote pairs are defined relative to the two endpoint networks for the tunnel traffic. In some cases, the local address in a VPN tunnel route is the address of a network at another connected site. For example, in the Colo configuration, the Corp-to-RMT tunnel route uses the network IP address of the trusted network at Corp as local, even though it is not physically located at the Colo site. The subsequent diagram represents all of the local and remote IP addresses of the tunnel routes configured between each location. Configuration Example 7

Configuration Explained 8 WatchGuard Fireware

Tunnel Switching in Action Tunnel Switching in Action Now we can use the example configuration to follow the path a packet takes when a user at one location establishes a connection to a resource at a different location over switched tunnels. A user at the small office (10.192.0.100) tries to connect to a resource at the corporate office (10.8.240.80). The packet first reaches the RMT Firebox. The RMT Firebox determines that the destination of the packet is available through the RMT-to- Corp tunnel to the Colo gateway. The RMT Firebox sends this packet through the RMT-to-Corp (Colo) tunnel. Configuration Example 9

Tunnel Switching in Action The Colo Firebox receives this traffic identified as part of the Corp-to-RMT (RMT) tunnel in its local configuration. The local network IP address in this tunnel route in the Colo configuration file is local to the Corp site, not the Colo site. The RMT Firebox determines that the destination of the decrypted packet is available through the RMT-to-Corp (Corp) tunnel to the Corp gateway. 10 WatchGuard Fireware

Tunnel Switching in Action The Colo Firebox switches the traffic from the Corp-to-RMT (RMT) tunnel to the RMT-to-Corp (Corp) tunnel. The Corp Firebox receives this traffic identified as part of the Corp-to-RMT (Colo) tunnel, and delivers the decrypted packet to its destination, a server on the corporate office local network. Configuration Example 11

Conclusion Conclusion This configuration example demonstrates how to configure tunnel switching in a hub and spoke network topology to route VPN traffic between sites that are not directly connected to each other. This type of configuration is most appropriate for an organization that has multiple sites, and that has most of the shared network resources at a central location. The configuration described here can scale up to support additional remote sites. This configuration example also shows how to use subnet IP addresses in the tunnel route configuration to reduce the number of tunnels you must configure to connect private networks at each site. For more information about how to configure branch office VPN settings, see the Fireware Help. 12 WatchGuard Fireware

About this Configuration Example About this Configuration Example This configuration example is provided as a guide. Additional configuration settings could be necessary, or more appropriate, for your network environment. For complete product documentation, see the Fireware Help on the WatchGuard website at: http://www.watchguard.com/help/documentation/. Information in this document is subject to change without notice. Companies, names, and data used in examples herein are fictitious unless otherwise noted. No part of this guide may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, without the express written permission of WatchGuard Technologies, Inc. Copyright, Trademark, and Patent Information Copyright 1998-2015 WatchGuard Technologies, Inc. All rights reserved. All trademarks or trade names mentioned herein, if any, are the property of their respective owners. Complete copyright, trademark, patent, and licensing information can be found in the Copyright and Licensing Guide, available online at: http://www.watchguard.com/help/documentation/. About WatchGuard WatchGuard offers affordable, all-in-one network and content security solutions that provide defense-in-depth and help meet regulatory compliance requirements. The WatchGuard Firebox line combines firewall, VPN, GAV, IPS, spam blocking and URL filtering to protect your network from spam, viruses, malware, and intrusions. The XCS line offers email and web content security combined with data loss prevention. WatchGuard extensible solutions scale to offer right-sized security ranging from small businesses to enterprises with 10,000+ employees. WatchGuard builds simple, reliable, and robust security appliances featuring fast implementation and comprehensive management and reporting tools. Enterprises throughout the world rely on our signature red boxes to maximize security without sacrificing efficiency and productivity. For more information, please call 206.613.6600 or visit www.watchguard.com. Address 505 Fifth Avenue South Suite 500 Seattle, WA 98104 Support www.watchguard.com/support U.S. and Canada +877.232.3531 All Other Countries +1.206.521.3575 Sales U.S. and Canada +1.800.734.9905 All Other Countries +1.206.613.0895 Configuration Example 13

About this Configuration Example Configuration Example 14