User-credibility Based Service Reputation Management for Service Selection

Similar documents
American Journal of Business Education September 2009 Volume 2, Number 6

Generalized Difference Sequence Space On Seminormed Space By Orlicz Function

The Increasing Participation of China in the World Soybean Market and Its Impact on Price Linkages in Futures Markets

55. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium

Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument

EXAMPLE EXAMPLE EXAMPLE EXAMPLE 4 UNIVERSAL TRADITIONAL APPROACH EXAMPLE 5 FLEXIBLE PRODUCT... 26

Fuzzy Forecasting Applications on Supply Chains

Determinants of Foreign Direct Investment in Malaysia: What Matters Most?

Fuzzy Task Assignment Model of Web Services Supplier

Trust Evaluation and Dynamic Routing Decision Based on Fuzzy Theory for MANETs

Exam FM/2 Interest Theory Formulas

Markit iboxx USD Liquid Leveraged Loan Index

Object Tracking Based on Online Classification Boosted by Discriminative Features

How Much Can Taxes Help Selfish Routing?

CHAPTER 22 ASSET BASED FINANCING: LEASE, HIRE PURCHASE AND PROJECT FINANCING

Mobile Data Mining for Intelligent Healthcare Support


A MATHEMATICAL MODEL OF THE HUMAN THERMAL SYSTEM

Mobile Data Mining for Intelligent Healthcare Support

Proving the Computer Science Theory P = NP? With the General Term of the Riemann Zeta Function

Fr ag m e n tac i ó n y c o m p l e j i da d: a n á l i s i s d e l c a m b i o

Lecture 13 Time Series: Stationarity, AR(p) & MA(q)

Financial Time Series Forecasting with Grouped Predictors using Hierarchical Clustering and Support Vector Regression

7.2 Analysis of Three Dimensional Stress and Strain

Decision Science Letters

PROBABILITY AND STATISTICS FOR ENGINEERS

Time Series Momentum Trading Strategy and Autocorrelation Amplification

A New Hybrid Network Traffic Prediction Method

A Study of Unrelated Parallel-Machine Scheduling with Deteriorating Maintenance Activities to Minimize the Total Completion Time

Evaluation and Modeling of the Digestion and Absorption of Novel Manufacturing Technology in Food Enterprises

CERTIFICATE IV IN ELECTRICAL ENGINEERING

Lecture 7. Norms and Condition Numbers

Matrices in Computer Graphics

Conversion of Non-Linear Strength Envelopes into Generalized Hoek-Brown Envelopes

Overview of Spellings on

PROBE VEHICLE TRACK-MATCHING ALGORITHM BASED ON SPATIAL SEMANTIC FEATURES

PORTFOLIO CHOICE WITH HEAVY TAILED DISTRIBUTIONS 1. Svetlozar Rachev 2 Isabella Huber 3 Sergio Ortobelli 4

FINANCIAL MATHEMATICS 12 MARCH 2014

Numerical Methods with MS Excel

Credit Risk Evaluation of Online Supply Chain Finance Based on Third-party B2B E-commerce Platform: an Exploratory Research Based on China s Practice

CONVERGENCE AND SPATIAL PATTERNS IN LABOR PRODUCTIVITY: NONPARAMETRIC ESTIMATIONS FOR TURKEY 1

10.5 Future Value and Present Value of a General Annuity Due

Standardized Formula Sheet: Formulas Standard Normal Distribution Table Summary of Financial Ratios

Put the human back in Human Resources.

FORECASTING MODEL FOR AUTOMOBILE SALES IN THAILAND

Learning with Unlabeled Data for Text Categorization Using Bootstrapping and Feature Projection Techniques

13. a. If the one-year discount factor is.905, what is the one-year interest rate?

Green Master based on MapReduce Cluster

Vladimir PAPI], Jovan POPOVI] 1. INTRODUCTION

Relationship between stock index and increments of stock market trading accounts

Analysis of Coalition Formation and Cooperation Strategies in Mobile Ad hoc Networks

Automated Alignment and Extraction of Bilingual Ontology for Cross-Language Domain-Specific Applications

A Fair Non-repudiation Protocol without TTP on Conic Curve over Ring

Angles formed by 2 Lines being cut by a Transversal

Numerical Comparisons of Quality Control Charts for Variables

The Design of a Forecasting Support Models on Demand of Durian for Domestic Markets and Export Markets by Time Series and ANNs.

HIDDEN HOPS AWARE LOAD BALANCING BASED ON GREEDY APPROACH

Performance Comparisons of Load Balancing Algorithms for I/O- Intensive Workloads on Clusters

The real value of stock

Classic Problems at a Glance using the TVM Solver

Problem P3.3: The wind power output per unit area swept by the rotor is 2.4 kw/m 2. Convert this quantity to the dimensions of hp/ft 2.

Valuation Methods of a Life Insurance Company

ANOVA Notes Page 1. Analysis of Variance for a One-Way Classification of Data

A Covariance Analysis Model for DDoS Attack Detection*


No Regret Learning in Oligopolies: Cournot vs Bertrand

Professional Liability Insurance Contracts: Claims Made Versus Occurrence Policies

Face Hallucination and Recognition

Improving Survivability through Traffic Engineering in MPLS Networks

A Study of ONLINE LEARNING: Perspectives of Online Learners and Educators

Assigning Tasks in a 24-Hour Software Development Model

Measuring the Quality of Credit Scoring Models

Generalized solutions for the joint replenishment problem with correction factor

About us so far. Reta and Profess ona B2B and Industr a Press, Med a and Vo ce Home Balboni Advertising All Rights Reserved

CHAPTER 4: NET PRESENT VALUE

I n la n d N a v ig a t io n a co n t r ib u t io n t o eco n o m y su st a i n a b i l i t y

Energy Density / Energy Flux / Total Energy in 3D

Derivative Securities: Lecture 7 Further applications of Black-Scholes and Arbitrage Pricing Theory. Sources: J. Hull Avellaneda and Laurence

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

Optimal Packetization Interval for VoIP Applications Over IEEE Networks

Prioritized Heterogeneous Traffic-Oriented Congestion Control Protocol for WSNs

The Euro. Optimal Currency Areas. The Problem. The Euro. The Proposal. The Proposal

APPLICATIONS OF GEOMETRIC

DISTANCE MEASURE FOR ORDINAL DATA *

An SVR-Based Data Farming Technique for Web Application

Lecture 15 Isolated DC-DC converters

In the UC problem, we went a step further in assuming we could even remove a unit at any time if that would lower cost.

Price Volatility, Trading Activity and Market Depth: Evidence from Taiwan and Singapore Taiwan Stock Index Futures Markets

Inventory Management MILP Modeling for Tank Farm Systems

How do bookmakers (or FdJ 1 ) ALWAYS manage to win?

Transcription:

Ieraoa Coferece o Copuer Scece ad Servce Sye (CSSS 4) Uer-credby Baed Servce Repuao Maagee for Servce Seeco Cao Jux, Dog Y, Q Y, u Bo, Dog Fag, Zhou Tao Schoo of Copuer Scece ad Egeerg Key aboraory of Copuer Newor ad Iforao Iegrao of MoE of Cha uder Gra No 93K-9 Souhea Uvery, Nag, 89, Cha {xcao, dogy, qy, bu, fdog, zhouao}@eueduc Abrac I copoe ervce, he aoc ervce repuao becog pora whe ay ar fucoa ervce coud be provded for eecg uder he heerogeeou ad ooe-couped crcuace However, exg repuao eauree ehod pay e aeo o uer credby whch ha a grea fuece o accuracy I h paper, we defe uer credby a he aby of hoe uer o provde raoa feedbac, ad propoe a ove ervce repuao aagee ode baed o ervce vocao forao ad uer feedbac Th ehod co of hree par: acou feedbac dguhg, uer credby evauag ad ervce repuao predcg Fry, a cuerg agorh coceved o fer ou acou feedbac The a feedbac devao baed agorh propoed o evauae he uer credby coderg ervce QoS ary Fay, a agorh o he ba of uer credby ad hoe feedbac apped o predc ervce repuao Expere prove ha our ode ca effecvey deec acou feedbac ad precey eaure ervce repuao wh ow error Keyword-ervce repuao uer credby acou feedbac I INTRODUCTION Wh he deveope of he web ervce echoogy ad ervce-oreed archecure, a very of web ervce offerg he ae fucoae are provded o prove he fexby of ervce vocao o he Iere I copoe ervce, he aoc ervce repuao becog pora whe ay ervce wh ar fuco bu dffere o-fucoa propere coud be provded by dffere provder uder he heerogeeou ad ooe-couped crcuace Repuao of web ervce whch ca be copued accordg o o-fucoa quay of ervce (QoS) ha becoe a wdey acceped ervce erc QoS a e of quay requree, uch a hroughpu, repoe e, reaby, ad avaaby [][] I rece year, repuao-baed ervce eeco echa have receved uch aeo, ad uch reaed reearch ha bee doe May reearcher have uded h probe fro upe perpecve ad propoed dffere echque o ove Bu oe pora dea houd be ore deepy reearched Fry, he exece of acou feedbac pay a bad effec o he accuracy of predcg ervce repuao Macou feedbac deeco echa ha oy receved ed aeo, ad a pora opc For ace, waer ary epoyed o defae a ervce acou bue copeo Secody, becaue of he dffere uer experece, eve he hoe feedbac ay be baed I arge drbued evroe, dffcu for uer wh dffere experece o provde ae feedbac Such a a hoe boog ervce, uer who ue he ervce repeaedy ca provde uch ore raoa feedbac ha hoe who ue for he fr e To addre hee probe, h paper, a uer-credby baed ervce repuao aagee ode preeed wh he foowg corbuo: Macou feedbac dguhg: a cuerg agorh gve o dcover varou exg cuer of feedbac ad fer ou acou feedbac by he average vaue of a cuer Uer credby evauag: he cocep of uer credby roduced ad a feedbac devao baed agorh ao deged o eaure he aby of provdg raoa feedbac 3 A ove ehod of predcg ervce repuao: h ode, dffere wegh are gve o varou uer feedbac predcg ervce repuao er of her credby I addo, he g of ervce aee ad he dfferece bewee deerorao ad provee are ao ae o accou a wo pora eee The re of he paper orgazed a foow Fr, we provde a overvew of reaed wor eco II Seco III brefy pree our ervce repuao aagee ode for ervce eeco Seco IV decrbe he echa of dguhg acou feedbac ad he agorh of evauag uer credby dea The, he ove ehod of predcg ervce repuao how eco V Fay, we dcu varou experea reu eco VI ad cocude he paper eco VII II REATED WORK Much prevou reearch ha bee doe o ervce repuao aagee for ervce eeco Servce repuao ode ca be cafed o hree caegore accordg o her raoae: ode baed o he drec uer experece, ode baed o a Trued Thrd Pary who evauae ervce ruhfuy ad hybrd ode ergg he wo forer oe [3] Ahough uch reearch ha bee doe ay way, o far here o ufor crero of ervce repuao evauao Soe reearcher regard ervce repuao a a quay arbue Zeg e a propoed a web ervce quay ode where repuao codered a oe of fve quay arbue [4] O he oher had, ervce quay arbue ad 4 The auhor - Pubhed by Aa Pre 56

Fgure The repuao aagee ode ervce repuao are reaed eparaey oher reearch wor [5, 6] Coer W e a pree a ru-baed repuao aagee fraewor whch e dffere ervce repuao fuco for dffere ervce Tha ae fexbe ad effecve o yheze feedbac o a d of ervce ru fro ay dffere ee [7] A fraewor for repuao-aware ervce eeco ad rag auoae he produco of feedbac o prove ye effcecy [8] A ew QoS-baed eac web ervce eeco ad rag ouo propoed by Vu H e a a a deecg ad hadg fae rag [9] Maxe E M e a foray defe ervce quay arbue by ooogy, ad propoe a fraewor for dyac web ervce eeco baed o a hree-ayer ooogy rucure [,, ] Geeray, ae quay arbue ay have dffere porace for dffere web ervce uer eaurg ervce afaco [6, 3] However, hee ouo do o ae o accou uer credby whch very pora o aure he accuracy of predcg ervce repuao I addo, he ervce repuao ha he creea feaure, ad he fucuao decay wh e The o regarded a he agg facor he copug ode [5] Maha S e a roduce a aeuao fuco ha refec he weaeg he repuao vaue over e [4] Bu hee ode do o pay eough aeo o he g of ervce aee ad he dfferece bewee deerorao ad provee III A SERVICE REPUTATION MANAGEMENT MODE The ervce repuao aagee ode baed o uer drec experece, ad he a dea updag repuao of a ervce accordg o uer feedbac coeced by ervce repuao aagee (SRM) Servce repuao a couou varabe baed o e, ad eceary ad reaoabe for u o adop e dcree ehod whch brg coveece o pfy copuao copexy I h paper, e ere dvded equay o ae o, ad deoe he h e o ad a he ed of he h o To urae our dea beer, e u gve he foowg fudaea defo fry: Defo Servce Repuao Servce repuao a copreheve aee of a web ervce fro he ye, proporoa o ervce quay e repree ervce repuao of ervce a e Defo Uer Credby Uer credby a obecve evauao of he aby o provde raoa feedbac, ad oy hoe uer codered e Cr( u, ) repree credby of uer u for ervce a e Defo 3 Uer Feedbac Uer feedbac a ubecve rag of a web ervce fro a uer, ad expree he eve of afaco afer vog he web ervce Here, f ea he feedbac o u fro u he o Defo 4 Sar Uer Sar uer are hoe who voe ae ervce ad eoy ar quae Servce repuao, uer credby ad uer feedbac are a deca ragg fro o, where aged o he be oe ad aged o he wor oe Fgure gve he repuao aagee ode, whch ay co of wo par: Servce Repuao Maagee (SRM) ad Servce Seeco Modue (SSM) Fry, a ervce uer ed SSM a reque, cudg he fucoa requree ad a repuao hrehod Secody, SSM eec obecve ervce e eeg uer fucoa requree Thrdy, he repuao cacuaed by SRM for each ervce he e Fay, he ervce are eeced by SSM, whch have a hgher repuao ha he hrehod fro uer requree ad are reured o uer The o pora par of he ode he deg of he SRM odue, whoe perforace deere he accuracy of he ye I SRM, a cuerg agorh coceved o fer ou acou feedbac, ad ar uer are dcovered by cacuag he coe vaue of he age bewee wo QoS vecor fro he ae ervce, ad a feedbac devao baed agorh apped o ge uer credby Afer ha, ervce repuao updaed o he ba of uer credby ad hoe feedbac I he ode, quay arbue are ued o eaure he ary bewee uer We decrbe he ervce quay oored by u wh a vecor Q ( Q,, Q,, Q, ) There are wo d of quay arbue Soe arbue are proporoa o quay, ad ha ea he hgher he R 563

vaue, he hgher he quay Soe arbue are oppoe, ad ha ea he hgher he vaue, he ower he quay Here, q deoe he e of he forer arbue, ad q deoe he aer Thu, f a quay arbue a eber of q, we oraze Q, a forua () Oherwe, we oraze a forua () e q ( q,, q,, q, ) repree he orazed QoS vecor Q, Q, q, () ax Q Q q, where Q,,, ax Q, Q, ax Q Q,, he u vaue ad ax Q, he axu vaue of he correpodg arbue Bede, f ax Q, Q,, we e q, o IV USER CREDIBIITY EVAUATING A Macou Feedbac Dguhg I he heerogeeou ad ooe-couped crcuace, o ervce-oreed copug ye are o arge ad ope ha couer ca arbrary evauae ervce, uch a ebay ad Aazo So here a a of acou feedbac whch pay a bad effec o he eauree of ervce repuao I curre reearch, here are wo ypca d of acou feedbac: ) Macou Hgh Feedbac: feedbac are far hgher ha he acua perforace of a ervce ) Macou ow Feedbac: feedbac are far ower ha he acua perforace of a ervce I a o, for he ae ervce, hoe uer w provde feedbac ar o he acua perforace, bu he uao dffere of acou uer We ao dvde acou uer o wo group: ) Geera Macou Uer: uer provdg rado feedbac o ervce dvduay ) Couve Macou Uer: a group of uer provdg acou hgh or ow feedbac o ervce coey Therefore, we appy daa-g echque h uao o dcover acou feedbac Fry, agorh coceved o dcover varou exg cuer of feedbac o ervce he o Te copexy of h agorh wor cae zeof ( feedbac) O( ), where zeof ( feedbac ) deoe d he uber of feedbac coeced curre o, ad d a dace hrehod The dace bewee a feedbac ad a cuer defed a he dfferece bewee he feedbac ad he average vaue of feedbac he cuer e repree he average vaue of feedbac he cuer Afer dcoverg cuer of feedbac, we h copare wh he repuao of ervce () a e R a fuco of uer feedbac, ad he copug ehod w be roduced eco V Gve a expc offe, we have reao o beeve ha a feedbac cuer Z are acou f o wh [ R, R ] If R, hee feedbac are codered a acou hgh feedbac, ad f R, hey are codered a acou ow feedbac The acou feedbac ca be fered ou, ad uer who provde he are acou Agorh : Cuer of Feedbac Dcovery Agorh, CFDA Ipu: a e of feedbac F f u, d Oupu: cuer of feedbac Z Z, Z, Z3, ae a cuer Z F, [] Z Z for = o zeof ( F ) do /* zeof ( F ) deoe he uber of eee F */ 3 for = o zeof ( Z ) do /* zeof ( Z ) deoe he uber of eee Z */ 4 f d( F[ ], Z[ ]) < d he /* d( F[ ], Z[ ]) deoe he dace bewee F [] ad Z[ ]*/ 5 cafy F [] a a eber of cuer Z[ ] 6 brea 7 ee f == zeof ( Z ) he 8 defe a ew cuer Z[ ] a a ew eber of Z 9 cafy F [] a a eber of cuer Z[ ] brea ed f ++ 3 ed for 4 ++ 5 ed for Z Z, Z, Z, 6 reur 3 B Copug Uer Credby Eve hoe uer cao aure he raoay of her feedbac Dffere uer feedbac have dffere wegh predcg ervce repuao er of her credby I h paper, uer credby cafed o wo cae: oca uer credby ad goba uer credby The foowg are her defo Defo 5 oca Uer Credby oca uer credby ea he aby o provde raoa feedbac o a pecfc ervce e Cr( u, ) repree he oca credby of u for a e Defo 6 Goba Uer Credby goba uer credby ea he aby o provde raoa feedbac o ay web ervce e Cr( u ) gfy he goba credby of u a e Iuvey, oca uer credby a fuco of he dfferece bewee he uer feedbac ad he acua ervce repuao Bu he acua ervce repuao dffcu o acqure So, we oba uer credby by G 564

copug he devao of h feedbac fro oher ar uer Here, he ary of wo uer who eoy fro he ae ervce eaured by he ary of wo orazed QoS vecor The foowg forua ued o acheve a e of uer who are ar o u ( u) { u co( q, q), } (3) where a pecfc hrehod, ad he rage of vaue o Afer obag ar uer, SRM copue he oca credby e Cr( u, ) repree he oca credby of u for he o cacuaed a forua (4), ad ca be ( f ) u f u Cr( u, ) (4) where he uber of uer ar o u, ad u a eber of ( u ) Forua (4) u coder feedbac a o, ad uer credby a couou varabe baed o e So we ca oba he oca credby a oe po accordg o Cr( u, ) a prevou perod The foowg forua ued o oba Cr( u, ), whch ea he vaue a e (5) Cr( u, ) ( Cr( u, ) Cr( u, ) ) Cr( u, ) where he a oca uer credby, a eger, a pac facor whch decde how Cr( u, ) affec overa oca uer credby Fay, f Cr( u, ), we e o If Cr( u, ), we e o I forua (5), a pora facor ad he defo of houd ae o accou wo apec: he g of uer credby evauao ad he dfferece bewee deerorao ad provee So we e repree Cr( u, ) Cr( u, ), ad defe ( e ) a b F F a b a: where F a fuco of e, F a fuco of fucuao, a, b ad are paraeer A for he defo of goba uer credby, we ca acheve baed o he wegh u of he oca credby for every ervce, whch how forua (7) Cr( u) G Cr( u, ) (7) where he wegh of ad decded by he dea forao of he pecfc ervce A a, oca uer credby ad goba uer credby are ued o acheve uer credby, whch uraed a foow: Cr( u, ) Cr( u, ) ( ) Cr( u ) (8) G (6) where he wegh of oca uer credby The ore feedbac o ervce fro uer u receved before e, he hgher he wegh of oca uer credby So we defe a: N N N (9) N N N where N he uber of feedbac o fro u receved by SRM o far, N a hrehod whch ca be obaed accordg o Cheroff Boudare Theore [5] Gve cofdece ad accepabe cacuao error, N ca be cacuaed by ug N () Whe he vaue of coer o, he vaue of N arger The procedure of evauag uer credby uarzed o agorh Te copexy of h agorh wor cae Ou ( ( ) ), where u() he uber of a web ervce Agorh : Uer Credby Evauao Agorh, UCEA Ipu: fu, { q }, (, ) Cr u, Cr( u ) G ad oher paraeer Oupu: Cr( u, ), Cr( u, ), Cr( u ) dcover a e of uer ar o u accordg o forua (3) for = o u() do /* u() deoe he uber of a web ervce*/ ( f ) u f u 3 Cr( u, ) 4 Cr( u, ) Cr( u, ) 5 f he 6 ( e ) a b 7 ee he 8 a b 9 ed f Cr( u, ) Cr( u, ) (, ) (, ) (, ) (, ) f Cr u he Cr u 3 ee f Cr u he 4 Cr u 5 ed f 6 ed for 7 Cr( u) G Cr( u, ) 8 f N N he G 565

9 ee he N N ed f 3 (, ) (, ) Cr u Cr u ( ) Cr( u ) G (, ) Cr u, (, ) Cr u, ( ) Cr u G 4 reur V SERVICE REPUTATION PREDICTING Servce repuao codered a he oy o-fucoa crero for eecg afacory e I order o pfy he ode bu whou og accuracy, f a uer provde ore ha oe feedbac o a ervce he ae e o, oy he ae feedbac ae o accou I h ode, ervce repuao eaured by he weghed average of hoe feedbac, ad he wegh rafored fro uer credby Forua () ued o copue R ha ea he repuao of ervce he o (, ) Cr u u u u Cr( u, ) u R w f, w () where w he wegh of he feedbac o fro u he o e uer credby, ervce repuao ao a couou varabe Thu, overa ervce repuao ca be obaed accordg o prevou perod We R copue ervce repuao a e a foow R R ( R ) R where he a repuao of ervce a pac facor whch decde how R, () affec overa ervce repuao Fay, f R, we e o If R, we e o I forua (), he defo of ar o The defo of houd coder wo apec: he g of ervce aee ad he dfferece bewee deerorao ad provee So we e repree R R, ad defe a: ( ( e )) a b ( F F) ( ) a b F a fuco of e, (3) where F a fuco of fucuao, ea he porace of ( F F) overa ervce repuao, a, b ad are paraeer I addo, he defo of ar o ha of The ore hoe feedbac o receved by SRM he o we defe a:, he hgher he vaue of So N N N (4) N N N where N he uber of hoe feedbac o receved by SRM, N a hrehod whch ca ao be copued accordg o Cheroff Boudare Theore The procedure of predcg ervce repuao uarzed o agorh 3 Te copexy of h agorh wor cae Ouu ( ( )), where u( u ) he uber of a uer Agorh 3: Servce Repuao Predco Agorh, SRPA Ipu: fu, { (, ) Cr u }, R ad oher paraeer Oupu: R Cr( u, ) f u Cr( u, ) R R R 3 f N N he 4 5 ee he 6 N N 7 ed f 8 f he 9 ( ( e )) a b ee he ( ) a b ed f 3 R R 4 reur R VI EXPERIMENTA RESUTS AND DISCUSSIONS To evauae he perforace of our uer-credby baed ervce repuao aagee ode, evera expere are coduced wh WS-DREAM daae provded by Zhag Y, Zheg Z ad yu M R [6] The daae rgecy ad auhory, ad cude 4,53 acua web ervce ad QoS daa oored by 4 uer 64 e o I addo, we aue ha uer ca be cafed o hoe uer, geera acou uer ad couve acou uer Feedbac of he are radoy geeraed baed o foowg dffere raege: ) Feedbac fro hoe uer are ar o he acua ervce repuao ) Feedbac fro geera acou uer are geeraed radoy 566

Fgure (a) (b) (c) The coparo bewee repoe e ad ervce repuao of he hree ervce: (a) a ypca ervce wh abe daa (b) a ypca ervce wh daa whch ha grea voay evera coecuve o (c) a ypca ervce wh daa whch chagg a he e 3) Feedbac fro a group of couve acou uer are far ower or hgher ha he acua ervce repuao coey The expere copred of wo par: he accuracy of predcg ervce repuao ad he effecvee of dguhg acou feedbac Tabe how he decrpo ad vaue of every paraeer our ode, ad oe paraeer ca chage dffere evroe TABE I THE DESCRIPTION AND VAUE OF EVERY PARAMETER Paraeer Decrpo Vaue σ a hrehod o copue (u) γ he a oca credby vaue 8 a b η a paraeer o copue a paraeer o copue a paraeer o copue 8 5 τ he a repuao vaue 5 a a paraeer o copue b a paraeer o copue η a paraeer o copue 8 5 accepabe cacuao error o copue N cofdece vaue o copue N 9 θ a hrehod o dguh acou feedbac appear a ervce, repuao drop rapdy o ha he ye fer ou h ervce due o he ow repuao So dcae ha our ode ca precey ad ey refec he fucuao of ervce perforace To evauae he accuracy of predcg ervce repuao, we copare our ode ad ode propoed [7] ad [7] (TMS ad CUSUM) Mea aboue perceage error he evauao crero h cearo Foowg he defo of : Defo 7 Mea Aboue Perceage Error (MAPE) MAPE defed a: R F MAPE % (5) F where he uber of a web ervce, he dea average repuao of a ervce equag o 5 The acua repuao of every ervce ca be ued o cacuae he error precey, bu pobe o acqure So he dfferece bewee he dea average repuao ad predced repuao ued o evauae he accuracy of dffere ehod, ad he dea average repuao e o a dde vaue [7] F d a dace hrehod ued he agorh A The Accuracy of Predcg Servce Repuao Afer aayzg he daa of quay arbue of every ervce he daae, ervce ca be cafed o hree caegore er of daa aby: ervce wh abe daa ervce wh daa whch ha grea voay evera coecuve o ervce wh daa whch chagg a he e To evauae he reaoabee of our ode, we oberve wheher ervce repuao ca fahfuy refec he perforace Three ypca ervce are repecvey choe fro above hree caegore The coparo bewee repoe e ad ervce repuao of he hree ervce every o ade h expere Fgure how he coecy of he fucuao of repod e ad ervce repuao I he hree caegore, ervce repuao away chage wh repod e Whe quay perforace boeec Fgure 3 Evauag he accuracy of hree ehod O he ba of ervce whoe QoS daa ha grea voay evera coecuve o, we copue MAPE of he hree ehod: Our ehod, CUSUM ad TMS The reu of h expere how Fgure 3 Obvouy, MAPE copued wh our ehod are ower ha oher, o he accuracy of our ehod hgher However, whe quay perforace chage qucy ad uddey, MAPE creae qucy So he probe a ue our fuure wor O he whoe, our ehod of predcg ervce repuao beer ha oher approache 567

B The Effecvee of Dguhg Macou Feedbac I h expere, we aue hree dffere drbuo of geera acou uer ad couve acou uer a foowg: he perceage of forer 3% ad he perceage of aer %, he perceage of forer % ad he perceage of aer %, he perceage of forer % ad he perceage of aer 3% A he ae e, he a credby of he e o 8 o ha acou uer ca oy be deeced by he echa of dguhg acou feedbac We oe dow he quay of geera acou uer ad couve acou uer deeced by he ye every o he hree cae The reu how Fgure 4 Fgure 4 Reu of dguhg acou feedbac A we ca ee Fgure 4, reave o he ae perceage of couve acou uer, geera acou uer are dcovered ore qucy For exape, geera acou uer ha accou for 3 perce of he oa oy eed 4 o o be deeced, bu couve acou uer eed o The reao ha he radoe ad he dvduay are he wo bac feaure of geera acou uer, o he dfferece bewee her feedbac ad he acua repuao vaue reavey obvou Bu he feedbac behavor of couve acou uer are reavey hard o be deeced, ad he reu how he effcecy of our ehod hgher VII CONCUSION I h paper, we propoe a uer-credby baed repuao aagee ode for ervce eeco The cuerg agorh fr coceved o fer ou acou feedbac The, he cocep of uer credby roduced, ad a feedbac devao baed agorh propoed o evauae uer credby coderg ervce QoS ary Fay, a ervce repuao predco agorh o he ba of uer credby ad hoe feedbac apped he ode The accuracy ad effcecy evauaed ad vadaed by uao expere However, here are oe ue we have o ae o accou our ode The echa of dguhg couve acou feedbac eed o be beer proved ACKNOWEDGMENT Th wor uppored by Naoa Naura Scece Foudao of Cha uder Gra 6753, 676, 6758, 6357 ad 99, Naoa Bac Reearch Progra of Cha uder Gra NoCB384, Naoa Key Techoogy R&D Progra uder Gra NoBAI88B3, PhD Progra Foudao of Mry of Educao of Cha uder Gra No8863, Naura Scece Foudao of Jagu Provce uder Gra NoBK83, Naoa Scece ad Techoogy Maor Proec of Cha uder Gra No9ZX 34-4-4, Progra of Jagu Provce Key aboraory of Newor ad Iforao Secury uder Gra NoBM3 REFERENCE [] Ra S A ode for web ervce dcovery wh QoS[J] ACM Sgeco exchage, 3, 4(): - [] ee K, Jeo J, ee W, e a Qo for web ervce: Requree ad pobe approache[j] W3C Worg Group Noe, 3, 5: -9 [3] Drago N A urvey o ru-baed web ervce provo approache[c]//depedaby (DEPEND), Thrd Ieraoa Coferece o IEEE, : 83-9 [4] Zeg, Beaaah B, Dua M, e a Quay-drve web ervce copoo[j] 3 [5] Xu Z, Mar P, Powey W, e a Repuao-ehaced qo-baed web ervce dcovery[c]//web Servce, 7 ICWS 7 IEEE Ieraoa Coferece o IEEE, 7: 49-56 [6] Yau S S, Y Y Qo-baed ervce rag ad eeco for ervce-baed ye[c]//servce Copug (SCC), IEEE Ieraoa Coferece o IEEE, : 56-63 [7] Coer W, Iyegar A, Mae T, e a A ru aagee fraewor for ervce-oreed evroe[c]//proceedg of he 8h eraoa coferece o Word wde web ACM, 9: 89-9 [8] a N, Bouaba R Aeg ofware ervce quay ad ruworhe a eeco e[j] Sofware Egeerg, IEEE Traaco o,, 36(4): 559-574 [9] Vu H, Hauwrh M, Aberer K QoS-baed ervce eeco ad rag wh ru ad repuao aagee[j] O he Move o Meagfu Iere Sye 5: CoopIS, DOA, ad ODBASE, 5: 466-483 [] Maxe E M, Sgh M P A ooogy for Web ervce rag ad repuao[c]//3rd Worhop o Oooge Age Sye 3: 5 [] Maxe E M, Sgh M P A fraewor ad ooogy for dyac web ervce eeco[j] Iere Copug, IEEE, 4, 8(5): 84-93 [] Maxe E M, Sgh M P Toward auooc web ervce ru ad eeco[c]//proceedg of he d eraoa coferece o Servce oreed copug ACM, 4: - [3] Wag S, Su Q, Zou H, e a Repuao eaure approach of web ervce for ervce eeco[j] Sofware, IET,, 5(5): 466-473 [4] Maha S, A A S, Raa O F, e a Repuao-baed eac ervce dcovery[c]//eabg Techooge: Ifrarucure for Coaborave Eerpre, 4 WET ICE 4 3h IEEE Ieraoa Worhop o IEEE, 4: 97-3 [5] Shaarova E Cheroff heore for evouo fae[j] arxv prepr arxv:76479, 7 [6] Zhag Y, Zheg Z, yu M R WSPred: A Te-Aware Peroazed QoS Predco Fraewor for Web Servce[C]//Sofware Reaby Egeerg (ISSRE), IEEE d Ieraoa Sypou o IEEE, : -9 [7] Wag S, Zheg Z, Su Q, e a Evauag Feedbac Rag for Meaurg Repuao of Web Servce[C]//Servce Copug (SCC), IEEE Ieraoa Coferece o IEEE, : 9-99 568