Matrices in Computer Graphics
|
|
|
- Rafe Fletcher
- 9 years ago
- Views:
Transcription
1 Marce n Compuer Graphc Tng Yp Mah 8A //
2 Tng Yp Mah 8A Abrac In h paper, we cu an eplore he bac mar operaon uch a ranlaon, roaon, calng an we wll en he cuon wh parallel an perpecve vew. Thee concep commonl appear n veo game graphc. Inroucon The ue of marce n compuer graphc weprea. Man nure le archecure, caroon, auomove ha were formerl one b han rawng now are one rounel wh he a of compuer graphc. Veo gamng nur, mabe he earle nur o rel heavl on compuer graphc, now repreenng renere polgon n - Dmenon. In veo gamng nur, marce are maor mahemac ool o conruc an manpulae a realc anmaon of a polgonal fgure. Eample of mar operaon nclue ranlaon, roaon, an calng. Oher mar ranformaon concep le fel of vew, renerng, color ranformaon an proecon. Uneranng of marce a bac nece o program D veo game. Graphc Screenho aen from Operaon Flahpon Polgon fgure le hee ue man fla or conc urface o repreen a realc human oler. The la coornae a calar erm. Homogeneou Coornae Tranformaon Pon,, n R can be enfe a a homogeneou vecor,,, h,,, wh h h h h on he plane n R 4. If we conver a D pon o a 4D vecor, we can repreen a ranformaon o h pon wh a 4 4 mar.
3 Tng Yp Mah 8A Tranformaon of Pon In general, ranformaon of pon can be repreene b h equaon: Tranforme Pon Tranformaon Mar Orgnal Pon In a more eplc cae, a plane panne b wo vecor can be repreene b h equaon: f c e b a Mar on Tranforma f e, c b a pan Mar on Tranforma Plane Orgnal Mar on Tranforma Plane Tranforme Repreenaon of a plane ug marce EXAMPLE Pon,, 6 n R a Vecor,, 6, or 4,,, n R 4 NOTE I poble o appl ranformaon o D pon whou converng hem o 4D vecor. The raeoff ha ranformaon can be one wh a gle mar mulplcaon afer he converon of pon o vecor. More on h afer Tranlaon. an are calar c b a f e c b a f e
4 Tng Yp Mah 8A 4 Tranlaon A ranlaon bacall mean ang a vecor o a pon, mang a pon ranform o a new pon. Th operaon can be mplfe a a ranlaon n homogeneou coornae,,, o,,,. Th ranformaon can be compue ug a gle mar mulplcaon. Tranlaon Mar for Homogeneou Coornae n R 4 gven b h mar:,, T Gven an pon,, n R, he followng wll gve he ranlae pon. For a phere o move o a new poon, we can hn of h a all he pon on he phere move o he ranlae phere b ang he blue vecor o each pon.
5 Tng Yp Mah 8A Graphc Screenho aen from Operaon Flahpon In veo game, obec le arplane ha oen change hape namcall rg bo ue Tranlaon o move acro he. All he pon ha mae up he plane have o be ranlae b he ame vecor or he mage of he plane wll appear o be reche. NOTE If we have more han one pon, we woul have o appl h aon o ever pon. & a a Wh homogeneou coornae, we can ue a gle mar mulplcaon. A we can ee, lnear em eaer o olve wh homogenenou coornae ranformaon.
6 Tng Yp Mah 8A 6 Scalng Scalng of an menon requre one of he agonal value of he ranformaon mar o equal o a value oher han one. Th operaon can be vewe a a calng n homogeneou coornae,,, o,,,. Value for,, greaer han one wll enlarge he obec, value beween ero an one wll hrn he obec, an negave value wll roae he obec an change he e of he obec. Scalng Mar for Homogeneou Coornae n R 4 gven b h mar:,, S Gven an pon,, n R, he followng wll gve he cale pon. If we wan o cale he heaheron proporonall, we appl he ame calng mar o each pon ha mae up he heaheron.
7 Tng Yp Mah 8A Roaon Roaon are efne wh repec o an a. In menon, he a of roaon nee o be pecfe. A roaon abou he a repreene b h mar: R R A roaon abou he a repreene b h mar: A roaon abou he a repreene b h mar: R R R R D roaon can be vewe a replacng an wh wo ae.
8 Tng Yp Mah 8A 8 EXAMPLE Th wre polgon cube repreene b a mar ha conan vere pon n ever column. Roae Cube Orgnal Cube If we wan o roae h cube wh repec o he a b π : π π π π
9 Tng Yp Mah 8A Proecon Tranformaon Even hough we programme obec n -Dmenon, we have o acuall vew he obec a -Dmenon on our compuer creen. In anoher wor, we wan o ranform pon n R o pon n R. Parallel Proecon In parallel proecon, we mpl gnore he -coornae. Th operaon can be vewe a a ranformaon n homogeneou coornae,,, o,,,. Parallel Mar for Homogeneou Coornae n R 4 gven b h mar: P Gven an pon,, n R, he followng wll gve he parallel proece pon. Perpecve Proecon Veo game en o ue perpecve proecon over oher proecon o repreen a real worl, where parallelm no preerve. Perpecve Proecon he wa we ee hng,.e. bgger when he obec cloer. hp://mane.mech.vrgna.eu/~engr6/graphc/perpecve.hml
10 Tng Yp Mah 8A Imporan: Tranlae he ee o he Orgn Roaon unl recon of ee owar he negave -a D he ance of he ee o he vew plane he ance of he ee o he obec Noe: no our ee bu he ee of he compuer polgon peron Perpecve Mar for Homogenou Coornae n R 4 gven b h mar: Gven an pon,, n R, he followng wll gve he parallel proece pon. Noe: Th mar ranformaon oe no gve pel coornae on he monor. The ranforme coornae wh repec o he obec coornae. We have o ranlae he obec coornae o pel coornae on he monor. Ee Obec Perpecve Proecon of he cube
11 Tng Yp Mah 8A Graphc Screenho aen from Operaon Flahpon In npng moe, he ee move cloer o he obec. Concluon I choe o o h proec o how m curo n mah an compuer cence. I ha he chance o al abou veo game an mah ha are ofen overlooe a unrelae. A hown n h proec, Lnear Algebra eremel ueful for veo game graphc. Ug marce o manpulae pon a common mahemacal approach n veo game graphc.
12 Tng Yp Mah 8A Reference Dam, Anre. Inroucon o Compuer Graphc hp:// Holchuch, Ncola. Proecon an Perpecve hp:// La, Dav. Lnear Algebra an Applcaon. Secon Eon. Runwal, Rachana. Perpecve Proecon hp://mane.mech.vrgna.eu/~engr6/graphc/perpecve.hml
Projective geometry- 2D. Homogeneous coordinates x1, x2,
Projece geomer- D cknowledgemen Marc Pollefe: for allowng e ue of ecellen lde on opc p://www.c.unc.edu/~marc/mg/ Rcard arle and ndrew Zerman "Mulple Vew Geomer n Compuer Von" omogeneou coordnae omogeneou
Chapter 4 Multiple-Degree-of-Freedom (MDOF) Systems. Packing of an instrument
Chaper 4 Mulple-Degree-of-Freedom (MDOF Sysems Eamples: Pacg of a srume Number of degrees of freedom Number of masses he sysem X Number of possble ypes of moo of each mass Mehods: Newo s Law ad Lagrage
Vector Algebra. Lecture programme. Engineering Maths 1.2
Leue pogmme Engneeng Mh. Veo lge Conen of leue. Genel noduon. Sl nd veo. Cen omponen. Deon one. Geome epeenon. Modulu of veo. Un veo. Pllel veo.. ddon of veo: pllelogm ule; ngle lw; polgon lw; veo lw fo
Transformations. Computer Graphics. Types of Transformations. 2D Scaling from the origin. 2D Translations. 9/22/2011. Geometric Transformation
9// anfomaion. Compue Gaphic Lecue anfomaion Wha i a anfomaion? Wha oe i o? anfom he cooinae / nomal veco of objec Wh ue hem? Moelling -Moving he objec o he eie locaion in he envionmen -Muliple inance
MORE ON TVM, "SIX FUNCTIONS OF A DOLLAR", FINANCIAL MECHANICS. Copyright 2004, S. Malpezzi
MORE ON VM, "SIX FUNCIONS OF A DOLLAR", FINANCIAL MECHANICS Copyrgh 2004, S. Malpezz I wan everyone o be very clear on boh he "rees" (our basc fnancal funcons) and he "fores" (he dea of he cash flow model).
Linear Extension Cube Attack on Stream Ciphers Abstract: Keywords: 1. Introduction
Lnear Exenson Cube Aack on Sream Cphers Lren Dng Yongjuan Wang Zhufeng L (Language Engneerng Deparmen, Luo yang Unversy for Foregn Language, Luo yang cy, He nan Provnce, 47003, P. R. Chna) Absrac: Basng
Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field
ecure 4 nducon evew nducors Self-nducon crcus nergy sored n a Magnec Feld 1 evew nducon end nergy Transfers mf Bv Mechancal energy ransform n elecrc and hen n hermal energy P Fv B v evew eformulaon of
Circle Geometry (Part 3)
Eam aer 3 ircle Geomery (ar 3) emen andard:.4.(c) yclic uadrilaeral La week we covered u otheorem 3, he idea of a convere and we alied our heory o ome roblem called IE. Okay, o now ono he ne chunk of heory
cooking trajectory boiling water B (t) microwave 0 2 4 6 8 101214161820 time t (mins)
Alligaor egg wih calculus We have a large alligaor egg jus ou of he fridge (1 ) which we need o hea o 9. Now here are wo accepable mehods for heaing alligaor eggs, one is o immerse hem in boiling waer
2D TRANSFORMATIONS (Contd.)
AML7 CAD LECURE 5 D RANSFORMAIONS Con. Sequene of operons, Mr ulplon, onenon, onon of operons pes of rnsforon Affne Mp: A p φ h ps E 3 no self s lle n ffne Mp f leves renr onons nvrn. 3 If β j j,, j E
Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II
Lecure 4 Curves and Surfaces II Splne A long flexble srps of meal used by drafspersons o lay ou he surfaces of arplanes, cars and shps Ducks weghs aached o he splnes were used o pull he splne n dfferen
HFCC Math Lab Intermediate Algebra - 13 SOLVING RATE-TIME-DISTANCE PROBLEMS
HFCC Mah Lab Inemeiae Algeba - 3 SOLVING RATE-TIME-DISTANCE PROBLEMS The vaiables involve in a moion poblem ae isance (), ae (), an ime (). These vaiables ae elae by he equaion, which can be solve fo any
A multi-item production lot size inventory model with cycle dependent parameters
INERNAIONA JOURNA OF MAHEMAICA MODE AND MEHOD IN APPIED CIENCE A mul-em producon lo ze nvenory model wh cycle dependen parameer Zad. Balkh, Abdelazz Foul Abrac-In h paper, a mul-em producon nvenory model
Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.
Appendi A: Area worked-ou s o Odd-Numbered Eercises Do no read hese worked-ou s before aemping o do he eercises ourself. Oherwise ou ma mimic he echniques shown here wihou undersanding he ideas. Bes wa
Inventory Management MILP Modeling for Tank Farm Systems
2 h European Sympoum on Compuer Aded Proce Engneerng ESCAPE2 S. Perucc and G. Buzz Ferrar (Edor) 2 Elever B.V. All rgh reerved. Invenory Managemen MILP Modelng for Tank Farm Syem Suana Relva a Ana Paula
How To Calculate Backup From A Backup From An Oal To A Daa
6 IJCSNS Inernaonal Journal of Compuer Scence and Nework Secury, VOL.4 No.7, July 04 Mahemacal Model of Daa Backup and Recovery Karel Burda The Faculy of Elecrcal Engneerng and Communcaon Brno Unversy
How Much Can Taxes Help Selfish Routing?
How Much Can Taxe Help Selfih Rouing? Tim Roughgarden (Cornell) Join wih Richard Cole (NYU) and Yevgeniy Dodi (NYU) Selfih Rouing a direced graph G = (V,E) a ource and a deinaion one uni of raffic from
Selected Financial Formulae. Basic Time Value Formulae PV A FV A. FV Ad
Basc Tme Value e Fuure Value of a Sngle Sum PV( + Presen Value of a Sngle Sum PV ------------------ ( + Solve for for a Sngle Sum ln ------ PV -------------------- ln( + Solve for for a Sngle Sum ------
HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD
Journal of Appled Mahemacs and Compuaonal Mechancs 3, (), 45-5 HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD Sansław Kukla, Urszula Sedlecka Insue of Mahemacs,
21 Vectors: The Cross Product & Torque
21 Vectors: The Cross Product & Torque Do not use our left hand when applng ether the rght-hand rule for the cross product of two vectors dscussed n ths chapter or the rght-hand rule for somethng curl
An approach for designing a surface pencil through a given geodesic curve
An approach for deigning a urface pencil hrough a given geodeic curve Gülnur SAFFAK ATALAY, Fama GÜLER, Ergin BAYRAM *, Emin KASAP Ondokuz Mayı Univeriy, Faculy of Ar and Science, Mahemaic Deparmen [email protected],
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR
EXAMPLE PROBLEMS SOLVED USING THE SHARP EL-733A CALCULATOR 8S CHAPTER 8 EXAMPLES EXAMPLE 8.4A THE INVESTMENT NEEDED TO REACH A PARTICULAR FUTURE VALUE What amount must you nvest now at 4% compoune monthly
RESOLUTION OF THE LINEAR FRACTIONAL GOAL PROGRAMMING PROBLEM
Revsa Elecrónca de Comuncacones y Trabajos de ASEPUMA. Rec@ Volumen Págnas 7 a 40. RESOLUTION OF THE LINEAR FRACTIONAL GOAL PROGRAMMING PROBLEM RAFAEL CABALLERO [email protected] Unversdad de Málaga
Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL
Excerpt from the Proceeding of the COMSO Conference 0 India Two Dimenional FEM Simulation of Ultraonic Wave Propagation in Iotropic Solid Media uing COMSO Bikah Ghoe *, Krihnan Balaubramaniam *, C V Krihnamurthy
4. International Parity Conditions
4. Inernaional ariy ondiions 4.1 urchasing ower ariy he urchasing ower ariy ( heory is one of he early heories of exchange rae deerminaion. his heory is based on he concep ha he demand for a counry's currency
International Journal of Mathematical Archive-7(5), 2016, 193-198 Available online through www.ijma.info ISSN 2229 5046
Inernaonal Journal of Mahemacal rchve-75), 06, 9-98 valable onlne hrough wwwjmanfo ISSN 9 506 NOTE ON FUZZY WEKLY OMPLETELY PRIME - IDELS IN TERNRY SEMIGROUPS U NGI REDDY *, Dr G SHOBHLTH Research scholar,
SOLID MECHANICS TUTORIAL GEAR SYSTEMS. This work covers elements of the syllabus for the Edexcel module 21722P HNC/D Mechanical Principles OUTCOME 3.
SOLI MEHNIS TUTORIL GER SYSTEMS This work covers elemens of he syllabus for he Edexcel module 21722P HN/ Mechanical Principles OUTOME 3. On compleion of his shor uorial you should be able o do he following.
Duration and Convexity ( ) 20 = Bond B has a maturity of 5 years and also has a required rate of return of 10%. Its price is $613.
Graduae School of Business Adminisraion Universiy of Virginia UVA-F-38 Duraion and Convexiy he price of a bond is a funcion of he promised paymens and he marke required rae of reurn. Since he promised
Signal Rectification
9/3/25 Signal Recificaion.doc / Signal Recificaion n imporan applicaion of juncion diodes is signal recificaion. here are wo ypes of signal recifiers, half-wae and fullwae. Le s firs consider he ideal
MULTI-WORKDAY ERGONOMIC WORKFORCE SCHEDULING WITH DAYS OFF
Proceedngs of he 4h Inernaonal Conference on Engneerng, Projec, and Producon Managemen (EPPM 203) MULTI-WORKDAY ERGONOMIC WORKFORCE SCHEDULING WITH DAYS OFF Tar Raanamanee and Suebsak Nanhavanj School
1 HALF-LIFE EQUATIONS
R.L. Hanna Page HALF-LIFE EQUATIONS The basic equaion ; he saring poin ; : wrien for ime: x / where fracion of original maerial and / number of half-lives, and / log / o calculae he age (# ears): age (half-life)
2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics
.4 Nework flow Problem involving he diribuion of a given produc (e.g., waer, ga, daa, ) from a e of producion locaion o a e of uer o a o opimize a given objecive funcion (e.g., amoun of produc, co,...).
CHARGE AND DISCHARGE OF A CAPACITOR
REFERENCES RC Circuis: Elecrical Insrumens: Mos Inroducory Physics exs (e.g. A. Halliday and Resnick, Physics ; M. Sernheim and J. Kane, General Physics.) This Laboraory Manual: Commonly Used Insrumens:
Template-Based Reconstruction of Surface Mesh Animation from Point Cloud Animation
Temlae-Based Reconsrucon of Surface Mesh Anmaon from Pon Cloud Anmaon Sang Il Park and Seong-Jae Lm In hs aer, we resen a mehod for reconsrucng a surface mesh anmaon sequence from on cloud anmaon daa.
Gestures for pointing devices in screen-based environments. Florian Weil, www.derhess.de
Gesures for ponng devces n screen-based envronmens Floran Wel, www.derhess.de December 4, 2010 Absrac Ths paper analyses gesure desgn for ponng devces n screen-based envronmens. By explorng desgn paerns
4 Convolution. Recommended Problems. x2[n] 1 2[n]
4 Convoluion Recommended Problems P4.1 This problem is a simple example of he use of superposiion. Suppose ha a discree-ime linear sysem has oupus y[n] for he given inpus x[n] as shown in Figure P4.1-1.
A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ
Phyic 100 Homewor 5 Chapter 6 Contact Force Introduced ) When two object lide againt one another, the magnitude of the frictional force i alway equal to μ B) When two object are in contact with no relative
6. Friction, Experiment and Theory
6. Friction, Experiment and Theory The lab thi wee invetigate the rictional orce and the phyical interpretation o the coeicient o riction. We will mae ue o the concept o the orce o gravity, the normal
A Hybrid AANN-KPCA Approach to Sensor Data Validation
Proceedngs of he 7h WSEAS Inernaonal Conference on Appled Informacs and Communcaons, Ahens, Greece, Augus 4-6, 7 85 A Hybrd AANN-KPCA Approach o Sensor Daa Valdaon REZA SHARIFI, REZA LANGARI Deparmen of
Finite Difference Method Applied for the Beams on Elastic Foundation Theory. Metoda konečných diferencí použitá pro nosníky na pružném podkladu teorie
Fne Dfference Meho Apple for he Beams on Elasc Founaon Theory Meoa onečných ferencí použá pro nosníy na pružném polau eore Mare IKODÝM, Karel FYDÝŠEK Absrac: Ths paper s focuse on he heory of beams on
Decomposition of Energy Consumption and Energy Intensity in Indian Manufacturing Industries
WP-2007-020 Decomposion of Energy Consumpion and Energy Inensy in Indian Manufacuring Indusries Binay Kumar Ray and B.Sudhakara Reddy Indira Gandhi Insue of Developmen Research, Mumbai December 2007 Decomposion
Time Series. A thesis. Submitted to the. Edith Cowan University. Perth, Western Australia. David Sheung Chi Fung. In Fulfillment of the Requirements
Mehods for he Esmaon of Mssng Values n Tme Seres A hess Submed o he Faculy of Communcaons, ealh and Scence Edh Cowan Unversy Perh, Wesern Ausrala By Davd Sheung Ch Fung In Fulfllmen of he Requremens For
Answer, Key Homework 2 David McIntyre 45123 Mar 25, 2004 1
Answer, Key Homework 2 Daid McInyre 4123 Mar 2, 2004 1 This prin-ou should hae 1 quesions. Muliple-choice quesions may coninue on he ne column or page find all choices before making your selecion. The
A robust optimisation approach to project scheduling and resource allocation. Elodie Adida* and Pradnya Joshi
In. J. Servces Operaons and Informacs, Vol. 4, No. 2, 2009 169 A robus opmsaon approach o projec schedulng and resource allocaon Elode Adda* and Pradnya Josh Deparmen of Mechancal and Indusral Engneerng,
Index Mathematics Methodology
Index Mahemacs Mehodology S&P Dow Jones Indces: Index Mehodology Ocober 2015 Table of Conens Inroducon 4 Dfferen Varees of Indces 4 The Index Dvsor 5 Capalzaon Weghed Indces 6 Defnon 6 Adjusmens o Share
Pedro M. Castro Iiro Harjunkoski Ignacio E. Grossmann. Lisbon, Portugal Ladenburg, Germany Pittsburgh, USA
Pedro M. Casro Iro Harjunkosk Ignaco E. Grossmann Lsbon Porugal Ladenburg Germany Psburgh USA 1 Process operaons are ofen subjec o energy consrans Heang and coolng ules elecrcal power Avalably Prce Challengng
Mortality Variance of the Present Value (PV) of Future Annuity Payments
Morali Variance of he Presen Value (PV) of Fuure Annui Pamens Frank Y. Kang, Ph.D. Research Anals a Frank Russell Compan Absrac The variance of he presen value of fuure annui pamens plas an imporan role
A Comparative Study of Linear and Nonlinear Models for Aggregate Retail Sales Forecasting
A Comparaive Sudy of Linear and Nonlinear Model for Aggregae Reail Sale Forecaing G. Peer Zhang Deparmen of Managemen Georgia Sae Univeriy Alana GA 30066 (404) 651-4065 Abrac: The purpoe of hi paper i
C Fast-Dealing Property Trading Game C
AGES 8+ C Fas-Dealing Propery Trading Game C Y Collecor s Ediion Original MONOPOLY Game Rules plus Special Rules for his Ediion. CONTENTS Game board, 6 Collecible okens, 28 Tile Deed cards, 16 Wha he Deuce?
6-4 : Learn to find the area and circumference of circles. Area and Circumference of Circles (including word problems)
Circles 6-4 : Learn to fin the area an circumference of circles. Area an Circumference of Circles (incluing wor problems) 8-3 Learn to fin the Circumference of a circle. 8-6 Learn to fin the area of circles.
WHAT ARE OPTION CONTRACTS?
WHAT ARE OTION CONTRACTS? By rof. Ashok anekar An oion conrac is a derivaive which gives he righ o he holder of he conrac o do 'Somehing' bu wihou he obligaion o do ha 'Somehing'. The 'Somehing' can be
Capacity Planning. Operations Planning
Operaons Plannng Capacy Plannng Sales and Operaons Plannng Forecasng Capacy plannng Invenory opmzaon How much capacy assgned o each producon un? Realsc capacy esmaes Sraegc level Moderaely long me horzon
Lecture 11 Inductance and Capacitance
Lecure Inducance and apacance ELETRIAL ENGINEERING: PRINIPLES AND APPLIATIONS, Fourh Edon, by Allan R. Hambley, 8 Pearson Educaon, Inc. Goals. Fnd he curren olage for a capacance or nducance gen he olage
Chapter 13. Network Flow III Applications. 13.1 Edge disjoint paths. 13.1.1 Edge-disjoint paths in a directed graphs
Chaper 13 Nework Flow III Applicaion CS 573: Algorihm, Fall 014 Ocober 9, 014 13.1 Edge dijoin pah 13.1.1 Edge-dijoin pah in a direced graph 13.1.1.1 Edge dijoin pah queiong: graph (dir/undir)., : verice.
Mathematics in Pharmacokinetics What and Why (A second attempt to make it clearer)
Mahemaics in Pharmacokineics Wha and Why (A second aemp o make i clearer) We have used equaions for concenraion () as a funcion of ime (). We will coninue o use hese equaions since he plasma concenraions
9. Capacitor and Resistor Circuits
ElecronicsLab9.nb 1 9. Capacior and Resisor Circuis Inroducion hus far we have consider resisors in various combinaions wih a power supply or baery which provide a consan volage source or direc curren
American Journal of Business Education September 2009 Volume 2, Number 6
Amerca Joural of Bue Educao Sepember 9 Volume, umber 6 Tme Value Of Moe Ad I Applcao I Corporae Face: A Techcal oe O L Relaohp Bewee Formula Je-Ho Che, Alba Sae Uver, USA ABSTRACT Tme Value of Moe (TVM
TECNICHE DI DIAGNOSI AUTOMATICA DEI GUASTI. Silvio Simani [email protected]. References
TECNICHE DI DIAGNOSI AUTOMATICA DEI GUASTI Re Neural per l Idenfcazone d Ssem non Lnear e Paern Recognon slvo.sman@unfe. References Texbook suggesed: Neural Neworks for Idenfcaon, Predcon, and Conrol,
v = x t = x 2 x 1 t 2 t 1 The average speed of the particle is absolute value of the average velocity and is given Distance travelled t
Chapter 2 Motion in One Dimenion 2.1 The Important Stuff 2.1.1 Poition, Time and Diplacement We begin our tudy of motion by conidering object which are very mall in comparion to the ize of their movement
Return Calculation of U.S. Treasury Constant Maturity Indices
Reurn Calculaion of US Treasur Consan Mauri Indices Morningsar Mehodolog Paper Sepeber 30 008 008 Morningsar Inc All righs reserved The inforaion in his docuen is he proper of Morningsar Inc Reproducion
Insurance. By Mark Dorfman, Alexander Kling, and Jochen Russ. Abstract
he Impac Of Deflaon On Insurance Companes Offerng Parcpang fe Insurance y Mar Dorfman, lexander Klng, and Jochen Russ bsrac We presen a smple model n whch he mpac of a deflaonary economy on lfe nsurers
Fortified financial forecasting models: non-linear searching approaches
0 Inernaional Conference on Economic and inance Reearch IPEDR vol.4 (0 (0 IACSIT Pre, Singapore orified financial forecaing model: non-linear earching approache Mohammad R. Hamidizadeh, Ph.D. Profeor,
Basic Principle of Buck-Boost
Bac Prncple of Buck-Boot he buck-boot a popular non-olated nvertng power tage topology, ometme called a tep-up/down power tage. Power upply degner chooe the buck-boot power tage becaue the requred output
Valuing Long-Lived Assets
Valuing Long-Lived Asses Olive Tabalski, 008-09-0 This chape explains how you can calculae he pesen value of cash flow. Some vey useful shocu mehods will be shown. These shocus povide a good oppouniy fo
Inductance and Transient Circuits
Chaper H Inducance and Transien Circuis Blinn College - Physics 2426 - Terry Honan As a consequence of Faraday's law a changing curren hrough one coil induces an EMF in anoher coil; his is known as muual
Fluid Pressure and Fluid Force
0_0707.q //0 : PM Page 07 SECTION 7.7 Section 7.7 Flui Pressure an Flui Force 07 Flui Pressure an Flui Force Fin flui pressure an flui force. Flui Pressure an Flui Force Swimmers know that the eeper an
HUT, TUT, LUT, OU, ÅAU / Engineering departments Entrance examination in mathematics May 25, 2004
HUT, TUT, LUT, OU, ÅAU / Engineeing depamens Enane examinaion in mahemais May 5, 4 Insuions. Reseve a sepaae page fo eah poblem. Give you soluions in a lea fom inluding inemediae seps. Wie a lean opy of
Advances in Military Technology Vol. 10, No. 1, June 2015
AM Avance n Mltary echnology Vol., No., June 5 Mechancal an Computatonal Degn for Control of a -PUS Parallel Robot-bae Laer Cuttng Machne R. Zavala-Yoé *, R. Ramírez-Menoza an J. Ruz-García ecnológco e
Optical Illusion. Sara Bolouki, Roger Grosse, Honglak Lee, Andrew Ng
Optical Illuion Sara Bolouki, Roger Groe, Honglak Lee, Andrew Ng. Introduction The goal of thi proect i to explain ome of the illuory phenomena uing pare coding and whitening model. Intead of the pare
17 Laplace transform. Solving linear ODE with piecewise continuous right hand sides
7 Laplace ransform. Solving linear ODE wih piecewise coninuous righ hand sides In his lecure I will show how o apply he Laplace ransform o he ODE Ly = f wih piecewise coninuous f. Definiion. A funcion
arxiv:1407.5820v1 [cs.sy] 22 Jul 2014
Approxmae Regularzaon Pah for Nuclear Norm Based H Model Reducon Nclas Blomberg, Crsan R. Rojas, and Bo Wahlberg arxv:47.58v [cs.sy] Jul 4 Absrac Ths paper concerns model reducon of dynamcal sysems usng
Individual Health Insurance April 30, 2008 Pages 167-170
Individual Healh Insurance April 30, 2008 Pages 167-170 We have received feedback ha his secion of he e is confusing because some of he defined noaion is inconsisen wih comparable life insurance reserve
- Models: - Classical: : Mastermodel (clay( Curves. - Example: - Independent variable t
Compue Gaphcs Geomec Moelg Iouco - Geomec Moelg (GM) sce e of 96 - Compue asssace fo - Desg: CAD - Maufacug: : CAM - Moels: - Classcal: : Masemoel (cla( cla, poopes,, Mock-up) - GM: mahemacal escpo fo
A Re-examination of the Joint Mortality Functions
Norh merican cuarial Journal Volume 6, Number 1, p.166-170 (2002) Re-eaminaion of he Join Morali Funcions bsrac. Heekung Youn, rkad Shemakin, Edwin Herman Universi of S. Thomas, Sain Paul, MN, US Morali
Newton s Laws of Motion
Newon s Laws of Moion MS4414 Theoreical Mechanics Firs Law velociy. In he absence of exernal forces, a body moves in a sraigh line wih consan F = 0 = v = cons. Khan Academy Newon I. Second Law body. The
The Roos of Lisp paul graham Draf, January 18, 2002. In 1960, John McCarhy published a remarkable paper in which he did for programming somehing like wha Euclid did for geomery. 1 He showed how, given
Differential Equations and Linear Superposition
Differenial Equaions and Linear Superposiion Basic Idea: Provide soluion in closed form Like Inegraion, no general soluions in closed form Order of equaion: highes derivaive in equaion e.g. dy d dy 2 y
STUDENT AFFAIRS TECHNOLOGY... WEBSTANDARDS
STUDNT AFFAIRS TCHNOLOGY WBSTANDARDS W BD V L OPM NTPROC SS F ORNW WBSI TSORMAJ ORADDI TI ONS/ UPDATS R S A R C H ga her ngcon ac s,goal s, pur pose,needs,con en &o her nf o P L A N NI NGreframes cr ea
Vector Autoregressions (VARs): Operational Perspectives
Vecor Auoregressions (VARs): Operaional Perspecives Primary Source: Sock, James H., and Mark W. Wason, Vecor Auoregressions, Journal of Economic Perspecives, Vol. 15 No. 4 (Fall 2001), 101-115. Macroeconomericians
Conceptually calculating what a 110 OTM call option should be worth if the present price of the stock is 100...
Normal (Gaussian) Disribuion Probabiliy De ensiy 0.5 0. 0.5 0. 0.05 0. 0.9 0.8 0.7 0.6? 0.5 0.4 0.3 0. 0. 0 3.6 5. 6.8 8.4 0.6 3. 4.8 6.4 8 The Black-Scholes Shl Ml Moel... pricing opions an calculaing
Exam FM/2 Interest Theory Formulas
Exm FM/ Iere Theory Formul by (/roprcy Th collboro of formul for he ere heory eco of he SO Exm FM / S Exm. Th uy hee free o-copyrghe ocume for ue g Exm FM/. The uhor of h uy hee ug ome oo h uque o h o
Chapter 7. Response of First-Order RL and RC Circuits
Chaper 7. esponse of Firs-Order L and C Circuis 7.1. The Naural esponse of an L Circui 7.2. The Naural esponse of an C Circui 7.3. The ep esponse of L and C Circuis 7.4. A General oluion for ep and Naural
A Study of Discovering Customer Value for CRM:Integrating Customer Lifetime Value Analysis and Data Mining Techniques
A Sudy of Dcoverng Cuomer Value for CRM:Inegrang Cuomer Lfeme Value Analy and Daa Mnng echnque Ch-Wen Chen Chyan Yang Chun-Sn Ln Deparmen of Managemen Scence Naonal Chao ung Unvery Inue of Informaon Managemen
Bob York. Simple FET DC Bias Circuits
Bob York Simple FET DC Bia Circuit Loa-Line an Q-point Conier the effect of a rain reitor in the comnon-ource configuration: Smaller + g D out KL: Thi i the equation of a line that can be uperimpoe on
Chapter 8: Regression with Lagged Explanatory Variables
Chaper 8: Regression wih Lagged Explanaory Variables Time series daa: Y for =1,..,T End goal: Regression model relaing a dependen variable o explanaory variables. Wih ime series new issues arise: 1. One
A Background Layer Model for Object Tracking through Occlusion
A Background Layer Model for Obec Trackng hrough Occluson Yue Zhou and Ha Tao Deparmen of Compuer Engneerng Unversy of Calforna, Sana Cruz, CA 95064 {zhou,ao}@soe.ucsc.edu Absrac Moon layer esmaon has
Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur
Module 4 Single-phase A circuis ersion EE T, Kharagpur esson 5 Soluion of urren in A Series and Parallel ircuis ersion EE T, Kharagpur n he las lesson, wo poins were described:. How o solve for he impedance,
Caring for trees and your service
Caring for rees and your service Line clearing helps preven ouages FPL is commied o delivering safe, reliable elecric service o our cusomers. Trees, especially palm rees, can inerfere wih power lines and
Small Menu Costs and Large Business Cycles: An Extension of Mankiw Model *
Small enu Coss an Large Business Ccles: An Exension of ankiw oel * Hirana K Nah Deparmen of Economics an Inl. Business Sam Houson Sae Universi an ober Srecher Deparmen of General Business an Finance Sam
A binary powering Schur algorithm for computing primary matrix roots
Numercal Algorhms manuscr No. (wll be nsered by he edor) A bnary owerng Schur algorhm for comung rmary marx roos Federco Greco Bruno Iannazzo Receved: dae / Acceed: dae Absrac An algorhm for comung rmary
σ m using Equation 8.1 given that σ
8. Etimate the theoretical fracture trength of a brittle material if it i known that fracture occur by the propagation of an elliptically haped urface crack of length 0.8 mm and having a tip radiu of curvature
Chapter 4: Exponential and Logarithmic Functions
Chaper 4: Eponenial and Logarihmic Funcions Secion 4.1 Eponenial Funcions... 15 Secion 4. Graphs of Eponenial Funcions... 3 Secion 4.3 Logarihmic Funcions... 4 Secion 4.4 Logarihmic Properies... 53 Secion
Fourier Series and Fourier Transform
Fourier Series and Fourier ransform Complex exponenials Complex version of Fourier Series ime Shifing, Magniude, Phase Fourier ransform Copyrigh 2007 by M.H. Perro All righs reserved. 6.082 Spring 2007
2D Geometrical Transformations. Foley & Van Dam, Chapter 5
2D Geometrical Transformations Fole & Van Dam, Chapter 5 2D Geometrical Transformations Translation Scaling Rotation Shear Matri notation Compositions Homogeneous coordinates 2D Geometrical Transformations
