How To Study The Climatic Impact Assessment Of Teesta Barrage Irrigation Project In Bhamphit



Similar documents
CE394K GIS IN WATER RESOURCES TERM PROJECT REPORT

SUPPLY, RESTRICTIONS AND WATER USE: A SURVEY AT THE WAIMAKARIRI IRRIGATION SCHEME

< SUBSURFACE DAMS TO AUGMENT GROUNDWATER STORAGE IN BASEMENT TERRAIN FOR HUMAN SUBSISTENCE BRAZILIAN EXPERIENCE >

Effects Of Rainfall And Maximum Temperature On Aman Rice Production Of Bangladesh: A Case Study For Last Decade

The Alternatives of Flood Mitigation in The Downstream Area of Mun River Basin

Domestic Policy Framework on Adaptation to Climate Change in Water Resources: Case Study for India. Working Together to Respond to Climate Change

Section 5 CLIMATE TABLES

TOPIC: CLOUD CLASSIFICATION

Presentation from the 2013 World Water Week in Stockholm

NREGA for Water Management

World Water and Climate Atlas

WILLOCHRA BASIN GROUNDWATER STATUS REPORT

Climate Change. Lauma M. Jurkevics - DWR, Southern Region Senior Environmental Scientist

DRYLAND SYSTEMS Science for better food security and livelihoods in the dry areas

THE ECOSYSTEM - Biomes

THE FOUR RIVERS RESTORATION PROJECT AND ITS IMPLICATIONS TO THE CHAO PHRAYA RIVER

Development of Water Allocation Strategy to Increase Water Use Efficiency of Irrigation Project

GLOBAL CIRCULATION OF WATER

1. Incredible India. Shade the map on the next page, to show India s relief. The correct shading is shown on the final page! Incredible India India

Ensuring Water Security for the sustainability of the Hani Rice Terraces, China against Climate and Land Use changes

The Effects of Climate Change on Water Resources in Spain

Moisture Content in Insulated Basement Walls

Deficit Rainfall Insurance Payouts in Most Vulnerable Agro Climatic Zones of Tamil Nadu, India

How To Understand And Understand The Flood Risk Of Hoang Long River In Phuon Vietnam

GROUNDWATER BANKING AN AGRICULTURAL SYSTEMS APPROACH FOR WATER SECURITY IN CALIFORNIA

Asia-Pacific Environmental Innovation Strategy (APEIS)

The Watergy greenhouse: Improved productivity and water use efficiency using a closed greenhouse

6. Base your answer to the following question on the graph below, which shows the average monthly temperature of two cities A and B.

Purpose of the water security outlook

RICE CULTIVATION: ENVIRONMENTAL ISSUES AND WATER SAVING APPROACHES

Grade 4 Standard 1 Unit Test Water Cycle. Multiple Choice. 1. Where is most water found on Earth? A. in glaciers B. in lakes C. in rivers D.

Physical Stock Accounts for Water 1

The Climate of Oregon Climate Zone 2 Willamette Valley

Development of Rural Drinking Water Security Plan A Case Study from Raipur Block, Bhilwara District, Rajasthan

Drought in the Czech Republic in 2015 A preliminary summary

CHAPTER - VI FLOOD DAMAGES

Guideline for Stress Testing the Climate Resilience of Urban Areas

Ponds- Planning, Design, Construction

Solar chilled drinking water sourced from thin air: modelling and simulation of a solar powered atmospheric water generator

AT&T Global Network Client for Windows Product Support Matrix January 29, 2015

The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation

Lecture Series in Water, Soil and Atmosphere ( ) Unit 1: Interaction Soil / Vegetation / Atmosphere

Foothill Municipal Water District Recycled Water Project

Socio-Economic Impacts of Climate Change in Afghanistan Executive Summary

Climate Change Impacts in the Asia/Pacific Region

Chapter D9. Irrigation scheduling

Stage 4. Geography. Blackline Masters. By Karen Devine

Forests and Water: A Policy Perspective

Water Resource. 1 Initiating and Sustaining Water Sector Reforms : A Synthesis World Bank in collaboration with the Government of India, Ministry of

Global water resources under increasing pressure from rapidly growing demands and climate change, according to new UN World Water Development Report

Climate Change on the Prairie:

TEACHING SUSTAINABLE ENERGY SYSTEMS A CASE STUDY

Analysis One Code Desc. Transaction Amount. Fiscal Period

Water Resources Development and Management in India - An Overview

Frequently Asked Questions (FAQs) on Hydropower

Chapter 18 Introduction to. A f r i c a

WATER CONSERVATION TECHNICAL BRIEFS

THE GREAT RUAHA RIVER PROFILE

Climate of Illinois Narrative Jim Angel, state climatologist. Introduction. Climatic controls

AZ EGER-PATAK HIDROLÓGIAI VIZSGÁLATA, A FELSZÍNI VÍZKÉSZLETEK VÁRHATÓ VÁLTOZÁSÁBÓL ADÓDÓ MÓDOSULÁSOK AZ ÉGHAJLATVÁLTOZÁS HATÁSÁRA

EU China River Basin Management Programme

2015 Climate Review for Puerto Rico and the U.S. Virgin Islands. Odalys Martínez-Sánchez

El Niño-Southern Oscillation (ENSO): Review of possible impact on agricultural production in 2014/15 following the increased probability of occurrence

El Niño Insurance & Low-Emission Climate-Resilient Development in Peru

Monsoon Variability and Extreme Weather Events

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

Addressing Declining Elevations in Lake Mead

Climate, Drought, and Change Michael Anderson State Climatologist. Managing Drought Public Policy Institute of California January 12, 2015

Deserts, Wind Erosion and Deposition

Chapter 2 The hydrological cycle

Pre- FEASIBILITY REPORT

Master Plan on Water Resource Management

National Environment Awareness Campaign(NEAC) Theme

COTTON WATER RELATIONS

Assessment of Impact of Hydropower Dams Reservoir Outflow on the Downstream River Flood Regime Nigeria s Experience

Flash Flood Science. Chapter 2. What Is in This Chapter? Flash Flood Processes

The Ultimate Guide To Protecting Your House From Water In The Basement

Clean Water Services. Ecosystems Services Case Study: Tualatin River, Washington

Brazil February Production Update and Weekly Crop Condition Report

National Policy on Water Resources Restoration in Thailand

FLOOD FORECASTING PRACTICE IN NORTHERN CALIFORNIA

An Online School for Weather.

Water at a Glance The relationship between water, agriculture, food security and poverty

COMPREHENSIVE PLAN SECTION B, ELEMENT 4 WATER RESOURCES. April 20, 2010 EXHIBIT 1

North American Weather & Climate Extremes: Progress in Monitoring and Research

THE GEORGIA AUTOMATED ENVIRONMENTAL MONITORING NETWORK: TEN YEARS OF WEATHER INFORMATION FOR WATER RESOURCES MANAGEMENT

List 10 different words to describe the weather in the box, below.

Proposed Terms of Reference for EIA studies

COMPREHENSIVE DEVELOPMENT OF THE BRANTAS RIVER BASIN THE REPUBLIC OF INDONESIA

Abaya-Chamo Lakes Physical and Water Resources Characteristics, including Scenarios and Impacts

MALAWI Food Security Outlook July to December High prices, declining incomes, and poor winter production cause Crisis food insecurity

Water Saving Technology

sample The IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation

How To Conduct An Environmental Impact Assessment

TANZANIA. The land area of Tanzania is about 1 million square kilometres. This includes the offshore islands of Zanzibar, Pemba and Mafia.

POTENTIAL IMPACTS OF CLIMATE CHANGE ON FLOODING IN WISCONSIN

Agricultural Water Conservation and Efficiency Potential in California

APPLICATION PROCESS FOR LAND DISTURBING PERMIT

Bringing Covert Land Use Strategies into the Spotlight: Cracking the Code for Sustainable Coastal Communities

Transcription:

International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 75 Climatic Impact Assessment: A Case Study of Teesta Barrage Irrigation Project in Bangladesh Sarker, D.C., Pramanik, B.K., Zerin, A.I. and Ara, I. Department of Civil Engineering Rajshahi University of Engineering & Technology Rajshahi - 64, Bangladesh. Email: dipok47@yahoo.com Abstract-- Increasing water demand due to faced over population, overexploitation of natural resources and environmental degradation have notable tainted the world s freshwater resources. Since the dawn of civilization, the means of water storage are explored and transferred by human to the area those suffer from a paucity of water. The ultimate goal of the agricultural development projects is to ensure a better living for the local people, but climatic issues are generated by this project in practice. The Teesta Barrage Project was also implemented to increase the agricultural production in the vast area of northern Bangladesh suffering from acute shortage of water every year. The aim of this study is to find out the change of climatic parameters due to construction of Teesta Barage Irrigation Project on its catchment area. all, the project has succeeded in increased production of crops; improved lifestyle of rural people and conservation of community resources. Change in climate is noticed in surrounding project area, has some positive and negative impacts on the ecosystem. Index Term-- Teesta Barrage, Climatic Change, Paucity of Water, Development. 1. INTRODUCTION Food production is always a crying need and it directly depends on irrigation systems, irrigated lands and other associated factors. However, surface water is the best option to produce more food which would enable the farmers to use cheaper irrigation water that would also be environmentfriendly. Moreover, water is becoming an increasingly scarce commodity because most region of Bangladesh is located in semi-arid regions with a high population growth. Groundwater has played an important role in irrigated agriculture in Bangladesh. For many cases, supply of irrigation water for their crops is a matter of life and death. However, water increases productivity in the agricultural sector and the costeffectiveness of irrigation infrastructure are increasingly necessary to enhance the reliability of the water supply to the farmers. In fact, difficulties of having access to water frequently determine the position of the poor on the poverty scale (ADB, 5; Islam and Akmam, 7). Northern Bangladesh is a plain land area and 9% of its population rely on agricultural production, depending on nature. Due to lack of water they cannot cultivate the land in the dry season. Every year they used to face drought and lose a huge amount of crop and hence be hit by mass poverty. But the Teesta Barrage Irrigation Project (TBIP) is a blessing to the distressed people with supplying irrigation water through a network of canal system and a Barrage across the river Teesta at Doani in Lalmonirhat District mainly for supplementary irrigation during Monsoon. It also caters to the requirements as possible during lean period by crop diversification and irrigation rotation. Moreover, it is also likely to create better job opportunities, leading to economic emancipation of the poverty stricken people. India constructed a Barrage at Gazoldoba over the Teesta river which is around 1 km upstream of Teesta Barrage (Bangladesh). In the rainy season they depart excessive water through the Gazoldoba Barrage to the Bangladesh area causing floods. But in the dry season India retraces water from the Teesta River for using in agricultural fields and navigation purposes in their land. So, lacking in sufficient flow of water in the Teesta River, irrigation system is likely to be hampered and climatic conditions of the surrounding region has been dampened day by day. The agricultural development projects have to ensure a better living for the local people, but most often climatic issues are generated by the projects in practice. Variation in agroclimatic parameters e.g. rainfall, temperature, humidity, evaporation, evapo-transpiration etc. during the year has led to the division of the year into distinct crop seasons. Therefore, the main objective of the TBP is to increase agricultural production through irrigation and thereby create employment opportunities in the vast area of northern Bangladesh by supplying sufficient water during Monsoon season when there might have irrigation water scarcity. Keeping in mind the objective of the TBIP, this study focuses to evaluate climatic changes in the catchment of Teesta basin due to construction of TBIP. 2. PROJECT BACKGROUND Most of the rivers in Bangladesh which have their upstream in India, flow to the south towards the Bay of Bengal, which not only bring misery for the people but also every year they bring alluvial sediments and make the land more fertile, help to produce more crops. In spite of expansion of population and predominant agrarian economy, such lands can produce

International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 76 sufficient food to feed the population of Bangladesh, if proper modernization policy and planning can be implemented. The economy of Bangladesh depends on agriculture and Bangladesh is continuing her effort for economic development by increasing agricultural production. As an effort, the Government of Bangladesh undertook and completed the TBIP for irrigation purposes to boost agricultural production by bringing more land under cultivation during the dry season. The idea of irrigation from the Teesta River was conceived since British time (1935). The Teesta Barrage has been completed in 199 to provide irrigation water in three crop seasons from the river through canal networks in the TBIP catchment area. It is a concrete structure of 615 m long fitted with 44 radial gates having a discharge capacity at 12,75 cumec. Water is diverted by the Barrage through a canal head regulator at 11 m long with a discharge capacity of 28 cumec. There is 4,5 km long network of canal system for supply of irrigation water to the field. In order to exclude silt from entering into canal system, silt trap covering an area of 45. hectares has been constructed just below the head regulator. Moreover, improvement of the internal drainage system (about 5, km) has been removed drainage congestions from the project area. Beside, the flood affected area along the Teesta river is protected from flood by an earthen flood embankment. The construction of 8 km flood embankment with nearly 1 km bank protection (sand cement block & c.c. block revetment) has been completed and the major portion of the project is being protected from flood. The project was planned to be completed in two phases. The phase 1 has been completed in 1998. The phase I (restructured) has a command area of 154,25 hectares with a net irrigable area of 111,46 hectares. It comprises construction of Barrage, flood, embankment, flood bypass, silt trap, main canal, and part of canal system with improvement of drainage. The remaining area will be developed under phase-ii that is under construction. 2.1 Boundary and Area of the Project The TBIP is the largest irrigation project of Bangladesh. It stands across the Teesta river at Dalia-Doani point in Lalmonirhat district. The project is bounded by the Teesta river on the North, the Atrai river on the West, Shantahar- Bogra railway line on the south and Bogra-Kaunia railway line on the East. It is being implemented for irrigation, flood control and drainage for a command area of 75, hectares of which 54, hectares are irrigable. The project covers seven districts of northern Bangladesh. However, the TBIP command area covers parts of the administrative districts of Nilphamari, Rangpur, Dinajpur, Bogra, Gaibandha and Joypurhat though the barrage itself is situated at Doani in the district of Lalmonirhat. 2.2 Data Collection This study is based on analyses of secondary data sources. Secondary data have been collected from various agencies as: Bangladesh Water Development Board (BWDB); Teesta Barrage Monitoring Office, Dalia, Lalmonirhat; Water Supply Authority, Bangladesh; Ministry of Agriculture, Bangladesh and Bangladesh Bureau of Statistics (BBS). 3. CLIMATE CHANGE AND IMPACTS IN THE PROJECT AREA Global climate change may have serious impacts on water resources and agriculture in future. Variation in agro-climatic parameters during the year has led to the division of the year into crop seasons. Temperature in Bangladesh is suitable for cultivation and growth of crops throughout the year. Moreover, rainfall and flooding are the natural sources of soil moisture; these are supplemented by irrigation. Amount of evaporation, evapo-transpiration, humidity, wind load, wind pressure has a bit effect to crop production. Crop production is governed by moisture supply from rainfall and soil storage. Unreliable rainfall and droughty soils are the limitations to the crop production. The crop damage from drought is many times higher than the damage from flood (MPO, 1987). In this study, the changes of climatic parameters temperature, rainfall, humidity and evaporation due to construction of TBIP are discussed. The TBIP was constructed and implemented in 199. There data sets of before and after 199 are collected and analysed to assess the climatic impacts on the catchment area. 3.1 Variation of Temperatures Temperature is an independent variable among the climatic elements whose variation causes corresponding changes in the pressure distribution and consequently in the direction of wind as well as its velocity which controls atmospheric humidity, condensation formation of cloud and their drafting in the sky, precipitation and storms. Nevertheless, temperature increases can have both positive and negative impacts on crop yields. Higher temperature also affects the rate of plant development (vegetative growth) and hence speeds annual crops through the developmental process.

Temperature C Temperature C International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 77 4 35 3 25 15 Fig. 1. Yearly variation of maximum temperature at Rangpur 3 25 15 1 5 Fig. 2. Yearly variation of minimum temperature at Rangpur

Rainfall (mm) International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 78 However, yearly variation of maximum and minimum temperature at Rangpur before (1977) and after (1) TBIP started is shown in Fig. 1 and Fig. 2 respectively. From the Fig. 1, it is observed that the maximum temperature varies from 25.1 to 35.8 C and 25.1 to 33.2 C before and after the TBIP commencement respectively, whereas the respective highest values are observed in month of September (before) and July (after). On the other hand the minimum temperature 5 varies from 9.5 to 21.3 C and 9.8 to 26.4 C before and after the TBIP commencement respectively. Therefore it can be said that there is no abrupt change of temperature between before and after construction period. During the winter (especially January and February), there is usually little rain or snow in the valley as well as hot periods (April-October) occur during the growing season when temperatures can rise. 4 3 1 Dalia Kaunia Nilphamari Lalmonihat Rangpur Stations Fig. 3. Increment of mean annual rainfall in different stations in TBIP catchment area 3.2 Rainfall variation at before and after the TBIP construction Rainfall is a product of some phenomena as evaporation, condensation, vapour pressure and formation of cloud etc. It is one of the dominant factors in the assessment of climatic water balance region. Moreover, agricultural growth largely depends on water, which is the prime input. The primary source of water for agricultural production for most of the world is rainfall. But, rainfall is not quite dependable or helpful to agricultural development in Bangladesh. The Bangladesh monsoon is known for its vagaries. So, the study was compared the rainfall distribution among these catchments areas. Fig. 3 shows the rainfall amount on before and after at different adjacent station of TBIP catchment area. It is seen that the percentage increases of mean annual rainfall is 24.35, 27.65, 48.36, 41.84 and 22.49 in Dalia, Kaunia, Nilphamari, Lalmonirhat and Rangpur stations. The reason behind the increasing rainfall could be tree plantation on the bank of the canals. 3.3 Change in Humidity at TBIP catchment area Analysis of relative humidity, which is a major important for human comfort and plant growth, shows in Fig. 4. Humidity varies from season to season in this part of the country (Fig. 4), being highest during the high rainfall season from July to September. During the dry season, December to January, relative humidity drops, small streams dry up, and the volume of water in big streams and rivers is reduced in some parts. The maximum humidity was found in September with the value of 85% and 87% for both year of 1982 and 1 respectively. The humidity was increased all over the month in 1 than 1982, except in July. However, Temperature humidity index (THI) is often placed into classes to indicate the degree of heat stress (Armstrong, 1994; Mader et al., 6; Dikmen and Hansen, 9) and its value is also lower than the actual temperature. THI is calculated by using the following equation RH THI.8* T (( )*( T 14.3)) 46.4 1 where, T = Ambient temperature ( C) RH = Relative humidity (%) In this study, THI shows that humidity was increased all over the year after construction of Teesta irrigation project, except in January (Fig. 5). However, people feel uncomfortable at the month of July, August and September for both of year due to high value of humidity.

Thom's Temperature Humidity Index (THI) Relative Humidity (%) International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 79 1 8 6 4 Fig. 4. Mean monthly relative humidity (%) at Rangpur 3 25 15 1 5 Fig. 5. Thom's temperature humidity index (THI) for pre and post project situation at Rangpur

Evaporation (inch) International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 8 3.4 Evaporation Evaporation is a change of a solid or liquid in to vapor. Evaporation is subject to less variation than rainfall. However, the study was investigated the amount of evaporation at Rangpur district in both time of before and after the implementation of the project. The amount of evaporation was 6 significantly increased after implementation of the project (Fig. 6). Except in April, the maximum mean monthly evaporation was 3.25 inch and 4.82 inch for the year of 198 and respectively, which indicate that the evaporation after implementation of the project have increased by 32.57%. But evaporation was slightly decreased in April by 6%. 5 4 3 2 1 Jan Feb Mar Apr May Jun July Aug Sep Oct Nov Dec Fig. 6. Mean monthly variation of evaporation for the year 198 and at Rangpur 4. CONCLUSION In recent years, the use of water for agricultural and industrial purposes has increased tremendously. It has recognized that water resources project like Teesta Barrage Project is necessary for the development of a nation. The successful implementation of the Teesta Barrage Irrigation Project was a dream comes true for them. The poverty stricken people could now hope for a better future. Based on the above discussion, the major findings of the study can be summarised as below: (i) There is no significant change of temperature due to implementation of the project, whereas a significant change in rainfall pattern was observed. (ii) There is a minor change in humidity but remarkable change is observed in evaporation. (iii) Proper use surface water available in Teesta Barrage catchment area is the best option, which would enable the farmers to use cheaper irrigation water that would also be environment-friendly. ACKNOWLEDGEMENTS We would like to acknowledge Bangladesh Water Development Board (BWDB); Teesta Barrage Monitoring Office, Dalia, Lalmonirhat; Water Supply Authority, Bangladesh; Ministry of Agriculture, Bangladesh and Bangladesh Bureau of Statistics (BBS) for giving opportunity to use the data for this study. REFERENCES [1] MPO. (1987). Crop production limitations in Bangladesh, Technical Report No 1, Master Plan Organization (Water Resources Planning Organization), Ministry of Water Resources, Dhaka. [2] ADB-The Asian Development Bank (5), Water for All, The Water Policy for Asian Development Bank, http://www.google.com.sg/search.adb_org.html. [3] Islam, M. Fakrul and Higano, Yoshiro (2). Attainment of Economic Benefit through Optimal Sharing of International River Water: A Case Study of the Teesta River. Indian Journal of Regional Science, 34(2), 1-1. [4] Md. Fakrul Islam and Wardatul Akmam (7). Changes in Socioeconomic and Environmental Situations in the Dalia Irrigation Project Area During -7: Policy Recommendations. Journal of Bangladesh Studies, 9(1), 32-38. [5] Dikmen S. and Hansen P. J. (9). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science, 92,19 116. [6] Armstrong D. V. (1994). Heat stress interaction with shade and cooling. Journal of Dairy Science, 77, 44 5. [7] Mader T. L., Davis M. S., and Brown-Brandl T. (6). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science, 84,712 719.

International Journal of Civil & Environmental Engineering IJCEE-IJENS Vol: 11 No: 1 81 ABO UT THE AUTHO RS: Sarker, D.C. is an Assistant Professor in the Department of Civil Engineering of Rajshahi University of Engineering & Technology (RUET), Bangladesh. He has a Bachelor degree (B. Sc Eng.) in Civil Engineering from RUET and Master degree (M. Eng.) in Environmental Engineering and Management from Asian Institute of Technology (AIT), Bangkok, Thailand. He is the corresponding author of this article. Pramanik, B.K. has Bachelor degree (B. Sc Eng.) in Civil Engineering from RUET and Master degree (M. Sc.) in Environmental Engineering from Universiti Kebangsaan Malaysia (UKM), Malaysia. Zerin, A.I. and Ara, I. have finished their B.Sc Eng. degree from RUET, Bangladesh.