FeynRules Status and Plans

Similar documents
Neil D. Christensen CV 1

Higgs and Electroweak Physics

Vector-like quarks t and partners

Middle East Technical University. Studying Selected Tools for HEP: CalcHEP

arxiv: v1 [hep-ph] 28 Jun 2010

Higgs characterisation - beyond leading order

Introduction to SME and Scattering Theory. Don Colladay. New College of Florida Sarasota, FL, 34243, U.S.A.

Investigation of a dark matter particle in the Higgs Portal model. Alicia Wongel

How To Teach Physics At The Lhc

Standard Model of Particle Physics

A SUSY SO(10) GUT with 2 Intermediate Scales

Extensions of the Standard Model (part 2)

t th signal: theory status

Gauge theories and the standard model of elementary particle physics

ffmssmsc a C++ library for spectrum calculation and renormalization group analysis of the MSSM

FLAVOUR OVERVIEW. Luca Silvestrini. INFN, Rome. M. SUSY2013. Special thanks to D. Derkach & M. Bona

Theoretical Particle Physics FYTN04: Oral Exam Questions, version ht15

Status Report on WHIZARD

Axiomatic design of software systems

FINDING SUPERSYMMETRY AT THE LHC

From Jet Scaling to Jet Vetos

Search for Dark Matter at the LHC

Selected Topics in Elementary Particle Physics ( Haupt-Seminar )

SUSY Breaking and Axino Cosmology

Particle Physics. Bryan Webber University of Cambridge. IMPRS, Munich November 2007

Mass spectrum prediction in non-minimal supersymmetric models

Scalar Mediated Fermion Masses for Technicolor

How To Find The Higgs Boson

Particle Physics. Michaelmas Term 2011 Prof Mark Thomson. Handout 7 : Symmetries and the Quark Model. Introduction/Aims

Implications of CMS searches for the Constrained MSSM A Bayesian approach

Feynman diagrams. 1 Aim of the game 2

SCATTERING CROSS SECTIONS AND LORENTZ VIOLATION DON COLLADAY

Victims Compensation Claim Status of All Pending Claims and Claims Decided Within the Last Three Years

Concepts in Theoretical Physics

Physics Department, Southampton University Highfield, Southampton, S09 5NH, U.K.

Dynamics. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dynamics / 30

Measurement of the Mass of the Top Quark in the l+ Jets Channel Using the Matrix Element Method

Open access to data and analysis tools from the CMS experiment at the LHC

The Higgs sector in the MSSM with CP-phases at higher orders

LCG MCDB Knowledge Base of Monte Carlo Simulated Events

Higgs production through gluon fusion at leading order

POLAR IT SERVICES. Business Intelligence Project Methodology

FCC JGU WBS_v0034.xlsm

Monodromies, Fluxes, and Compact Three-Generation F-theory GUTs

Chapter 9 Unitary Groups and SU(N)

Gravity and running coupling constants

Thomas Jefferson High School for Science and Technology Program of Studies Foundations of Computer Science. Unit of Study / Textbook Correlation

Animation (-4, -2, 0 ) + (( 2, 6, -4 ) - (-4, -2, 0 ))*.75 = (-4, -2, 0 ) + ( 6, 8, -4)*.75 = (.5, 4, -3 ).

Channels & Challenges New Physics at LHC

SLIM Estimate and Microsoft Project Best Practices

DATA ANALYSIS II. Matrix Algorithms

Chapter 19. General Matrices. An n m matrix is an array. a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm. The matrix A has n row vectors

Risultati recenti dell'esperimento CMS ad LHC e prospettive per il run a 14 TeV

UCINET Quick Start Guide

Time Ordered Perturbation Theory

Sunpak 72-in-1 High-speed Card Reader SIM Editor Software. Installation and Users Guide

Elements of Abstract Group Theory

Axion/Saxion Cosmology Revisited

STRING THEORY: Past, Present, and Future

Top rediscovery at ATLAS and CMS

Running Deuterium (H2) NMR at SCS NMR facility

7 Gaussian Elimination and LU Factorization

CA Gen. Change Management

State of Stress at Point

3.2 Roulette and Markov Chains

Weak Interactions: towards the Standard Model of Physics

Physik des Higgs Bosons. Higgs decays V( ) Re( ) Im( ) Figures and calculations from A. Djouadi, Phys.Rept. 457 (2008) 1-216

Theory versus Experiment. Prof. Jorgen D Hondt Vrije Universiteit Brussel jodhondt@vub.ac.be

Benefits of databases

[1] Diagonal factorization

Measurement of Neutralino Mass Differences with CMS in Dilepton Final States at the Benchmark Point LM9

Bounding the Higgs width at the LHC

Solution Derivations for Capa #11

Visual Basic Programming. An Introduction

Database Design and Database Programming with SQL - 5 Day In Class Event Day 1 Activity Start Time Length

Jürgen R. Reuter, DESY. J.R.Reuter Status Report on WHIZARD ALCW 2015, KEK,

OneNote 2013 Advanced

A unifying description of Dark Energy (& modified gravity) David Langlois (APC, Paris)

Transcription:

FeynRules Status and Plans Claude Duhr in collaboration with N. D. Christensen and B. Fuks + P. de Aquino, C. Degrande, D. Grellscheid, W. Link, F. Maltoni, + O. Mattelaer, C. Speckner, S. Schumann, M. Wiebusch MadGraph Week 2010, VUB Bruxelles, October 6th 2010

Outline A Roadmap for BSM physics Status: What is FeynRules..? Status of the current public version (1.4.10) Plans: New interfaces Superfields Mass diagonalisation Web validation interface

A Roadmap for BSM @ the LHC Idea Data

A Roadmap for BSM @ the LHC Idea Model Building Model Lagrangian Pen&Paper Constraints Publication Data

A Roadmap for BSM @ the LHC Idea Model Building Model Lagrangian Pen&Paper Constraints Publication Phenomenology ME / MC PS / Had. Fast Sim. Publication Data

A Roadmap for BSM @ the LHC Idea Model Building Model Lagrangian Pen&Paper Constraints Publication Phenomenology ME / MC PS / Had. Fast Sim. Publication Experiment PS / Had. Exp. SW. Full Sim. Publication Data

A Roadmap for BSM @ the LHC Workload is tripled, due to disconnected fields of expertise. Error-prone, painful validation at each step. Proliferation of private MC s/pythia tunings: No clear documentation. Not traceable. We need more than just papers to communicate between theorists and experimentalists!

A Roadmap for BSM @ the LHC Theory Pheno Experiment Publications

A Roadmap for BSM @ the LHC Idea Theory Pheno Experiment Lagrangian FeynRules MC / ME PS / Had. Publications Fast Sim. Full Sim. Data

FeynRules in a nutshell FeynRules is a Mathematica package that allows to derive Feynman rules from a Lagrangian. Current public version: 1.4.10, available from http://feynrules.phys.ucl.ac.be The only requirements on the Lagrangian are: All indices need to be contracted (Lorentz and gauge invariance) Locality Supported field types: spin 0, 1/2, 1, 2 & ghosts

FeynRules in a nutshell FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix element Introduction generators. From FeynRules to FeynArts so far The new FeynRules interface to FeynArts Conclusion Welcome in the FeynRules era Interfaces coming with current public version CalcHep / CompHep FeynArts / FormCalc MadGraph 4 Sherpa Whizard / Omega C. Degrande The new FeynRules interface C. Degrande c

FeynRules in a nutshell FeynRules comes with a set of interfaces, that allow to export the Feynman rules to various matrix Introduction element From FeynRules to FeynArts so far generators. The new FeynRules interface to FeynArts Conclusion For each tool, the right input Interfaces coming with current public version: CalcHep / CompHep FeynArts / FormCalc MadGraph 4 Sherpa Whizard / Omega C. Degrande C. Degrande The new FeynRules interface

FeynRules in a nutshell The input requested form the user is twofold. The Model File: Definitions of particles and parameters (e.g., a quark) F[1] == {ClassName -> q, SelfConjugate -> False, Indices -> {Index[Colour]}, Mass -> {MQ, 200}, Width -> {WQ, 5} } The Lagrangian: L = 1 4 Ga µν G µν a + i q γ µ D µ q M q qq L = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a] + I qbar.ga[mu].del[q,mu] - MQ qbar.q

FeynRules in a nutshell Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model: FeynmanRules[ L ]

FeynRules in a nutshell Once this information has been provided, FeynRules can be used to compute the Feynman rules for the model: FeynmanRules[ L ]

FeynRules in a nutshell Equivalently, we can export the Feynman rules to a matrix element generator, e.g., for MadGraph 4, WriteMGOutput[ L ] This produces a set of files that can be directly used in the matrix element generator ( plug n play ). interactions.dat q q G GG QCD G G G MGVX1 QCD G G G G MGVX2 QCD QCD particles.dat q q~ F S ZERO ZERO T d 1 G G V C ZERO ZERO O G 21 couplings.dat GG(1) = -G GG(1) = -G MGVX1 = G MGVX2 = G^2

FeynRules Model-file Particles, parameters,... Lagrangian FeynRules TeX Feynman Rules Translation Interfaces FeynArts MadGraph CalcHep Sherpa Whizard Golem Herwig

Implemented models CalcHep Herwig MadGraph Sherpa Whizard SM c c c c c cmssm c c c c c MSSM c c c NMSSM c 2HDM c UED c c ADD c Technicolor

Implemented models SM cmssm MSSM NMSSM 2HDM UED ADD Technicolor CalcHep Herwig MadGraph Sherpa Whizard c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c c

Implemented models Standard Model* (CD, N. Christensen) Most general two Higgs doublet model* (CD, M. Herquet) Minimal Higgsless Model* (N. Christensen) * available at http://feynrules.phys.ucl.ac.be Validation of the models:

Implemented models: (Susy) Full MSSM* (B. Fuks) NMSSM (B. Fuks) R-symmetric MSSM (B. Fuks) RPV MSSM (B. Fuks) * available at http://feynrules.phys.ucl.ac.be

Implemented models: (ED) Universal Extra Dimensions* (P. de Aquino) Large extra dimensions* (P. de Aquino) Randall-Sundrum I (P. de Aquino) * available at http://feynrules.phys.ucl.ac.be

Implemented models: (Effective) Strongly interacting Little Higgs (C. Degrande) Composite Top model (C. Degrande) Chiral perturbation theory (C. Degrande) * available at http://feynrules.phys.ucl.ac.be

Improvements for the future FeynRules can handle mixing of particles, however the mass matrices must be diagonalized manually by the user. SUSY models have to be implemented in component fields. Many interfaces are running, but matrix element generators can only handle a very limited set of color/ Lorentz structures.

New Developments In spring 2010, we locked up 13 experts in a room in a nice monastry for 5 days, and let them gather new ideas... FeynRules 2010 Workshop Idea: Lock 13 experts in a (very nice) Monaster Exceptional interactions with MC s developers As a result, many new projects got started (in fact too many to review them all here...) Celine Sasha Priscila Martin Benj Christian Claude Will Olivier David Neil Thomas

New Developments Mass Diagonalisation Superfields FeynRules Web validation FeynArts FormCalc UFO

New Developments Mass Diagonalisation Superfields FeynRules Web validation FeynArts FormCalc UFO

:e Ø gw g 8-Hv* Yu@Index@Generation, 3D, Index@Generation, 1DDL ê H2* Sqrt@2DL, -Hv* Yu@Index@ 8 H2*, gsqrt@2dl, s Ø 2 p-hv* AlfaS Yu@Index@Generation,, DiagonalizationHSEigensystem, 3D, Index@Generation, UW, 80, m3ddl Z <Lê H2* Ø Sqrt@2DL< Diagonalization@HEigensystem, CKMD, 8MD, MS, MB<D -> 88-Hv* (N. Yd@Index@Generati Christensen, g 2 + gw -Hv* 2-1 4 Yd@Index@Generation, 1D, Index@Generation, 2DDL ê H2* Sqrt@2DL, M. Wiebusch) gw v -Hv* Yd@Index@Generation, 1D, Index@Generation, 3DDL ê H2* Sqrt@2DL<, 8-Hv* Yd@Index@Generation, 2D, Index@Generation, - v Yu 1,1 1DDL- ê H2* v Yu 1,2 Sqrt@2DL, - v Yu 1,3 -Hv* Yd@Index@ H2* Sqrt@2DL, -Hv* Yd@Index@Generation, 2D, Index@Generation, 2 2 2 3DDL 2 ê H2* Sqrt@2DL< 8-Hv* Yd@Index@Generation, 3D, Index@Generation, - v Yu 2,1DDL - ê H2* v Yu 2,2 Sqrt@2DL, - v Yu 2,3-Hv* Yd@Index@ H2* Sqrt@2DL, -Hv* Yd@Index@Generation, 3D, Index@Generation, 3DDL, ê H2* Sqrt@2DL< Mass Matrix diagonalization 2 2 In the future, FeynRules will perform the DiagonalizationHHEigensystem, diagonalization automatically. CKMU, 8m u, m c, m t <L Ø ----- sorted list of rules ----- Input 1: Lagrangian qlbar[s1,l1,f1,i].ur[s1,f2,i] Yu[f1,f2] Eps[l1,l2] Phibar[l2] :e Ø gw g Input 2: Mixing relations, g s Ø 2 p AlfaS, DiagonalizationHSEigensystem, UW, 80, m Z <L Ø - v Yd 1,1 - v Yd 1,2 - v Yd 1,3 g 2 + gw 2 2 2 2 2 2 2 uq[s, #, o] == CKMU.uqp[s, #, o] DiagonalizationIHEigensystem, CKMD, 9m d, m s, m b =M Ø Output 1: Mass matrix to be diagonalized In[22]:= DiagonalizationHHEigensystem, CKMU, 8m u, m c, m t <L 2 Ø2 Output 2: Rotation rules Out[22]= 2 2 2 2 - v Yd 2,2 - v Yu - v Yd 2,3 1,1 - v Yu 1,2 2 2 2 2 2 2 2 2 - v Yd 3,2 - v Yu - v Yd 3,3 2,1 - v Yu 2,2 2 2 2 2 2 2 2 2 2 2 2 2 - v Yu 3,1 - v Yu 3,2 - v Yu 3,3 2 2 2 2 2 2 - v Yd 2,1 2 2 - v Yd 3,1 2 2, Alfa - v Yu 1,3Ø e2 4 p, 2 2, - v Yu 2,3 2 2 ProjP@s1, sd - v Yu 3,1 - v Yu 3,2 - v Yu 3,3 PRIVATE`MR$RightMixing@uqp@Index@Spin, sd, Index@Generation, 1D, HP + L s1,s ICKMUH1, 1L! uq s,1,o + CKMUH2, 1L! uq s,2,o + CKMUH3, 1L! uq s,3,o M 2 2 - v Yd 1,1 - v Yd 1,2 In[19]:= To?? be PRIVATE`MR$RightMixing done: numerical code for the diagonalization. 2 2 2 2 - v Yd 1,3 2 2 v Yd 2,1 v Yd 2,2 v Yd 2,3

New Developments Mass Diagonalisation Superfields FeynRules Web validation FeynArts FormCalc UFO

New Developments Superfields FeynArts FormCalc FeynRules Mass Diagonalisation UFO Web validation

Superpotential Superfields (B. Fuks) ü In Superfields QL@iD + 1 ê 2 * M@i, jd QL@iD QL@jD + 1 ê 6 * l@i, j, kd QL@iD QL@jD QL@kD; In SuperW the future, FeynRules will allow the use of superfields. 1 In[25]:= Out[26]= SuperW := al@id QL@iD + 1 ê 2 * M@i, jd QL@iD QL@jD + 1 ê 6 * l@i, j, kd QL@iD + 1 2 QL i QL j M i,j + al i QL i Example: Superpotential for left-handed quarks 6 QL i QL j QL k l i,j,k + 1 2 QL i QL j M i,j + al i QL i ü In Components W = a i Q Li + M ij Q Li Q Lj + 1 6 λ ijkq Li Q Lj Q 2Components@SuperWDD; Print@WZ1@@1DDD; WZ1 = WZ1@@2DD; Lk 2Components@HC@SuperWDDD; In[30]:= WZ1 = Timing@SF2Components@SuperWDD; Print@WZ2@@1DDD; Print@WZ1@@1DDD; WZ2 = WZ2@@2DD; WZ1 = WZ1@@2DD; W WZ2 = a[i] = Timing@SF2Components@HC@SuperWDDD; QL[i] + 1/2*M[i, j] QL[i] QL[j] + 1/6*l[i, Print@WZ2@@1DDD; j, k] QL[i] QL[j] WZ2 QL[k] = WZ2@@2 WZ1@@2, 5DD FeynRules then converts the superfields into component fields: 1.19323 1.20424 Out[32]= SF2Components[ W ] L - 1 6 FTerm3 i sql j sql k l i,j,k - 1 6 FTerm3 k sql i sql j l i,j,k - 1 6 FTerm3 j sql i sql k l i,j,k - 1 k l i,j,k - 1 6 FTerm3 k sql i sql j l i,j,k - 1 6 FTerm3 j sql i sql k l i,j,k - 1 2 FTerm3 i sql j M i,j - 1 2 FTerm3 2 FTerm3 j sql i M i sql 1 6 sql k l i,j,k ql sp$2,i.ql sp$2,j 1 sql j i,j,k ql sp$2,i.ql sp$2,k - 1 6 sql i l i,j,k ql sp$2,j.ql sp$2,k - 1,i.qL sp$2,j - 1 6 sql j l i,j,k ql sp$2,i.ql sp$2,k - 1 6 sql i l i,j,k ql sp$2,j.ql sp$2,k - 1 2 M i,j ql sp$2,i.ql sp$2,j - al i FTerm3 2 M i i,j ql 1.20216

New Developments Superfields FeynArts FormCalc FeynRules Mass Diagonalisation UFO Web validation

New Developments FeynArts FormCalc UFO Superfields FeynRules Web validation Mass Diagonalisation

FeynArts interface (C. Degrande, CD) A new interface to FeynArts has been developed that allows to implement arbitrary Lorentz structures. FeynRules Model-dependent couplings (cf. couplings.f and interactions.dat).mod -file FeynArts.gen -file (Model-independent) Lorentz structures (cf. HELAS)

FeynArts interface (C. Degrande, CD) A new interface to FeynArts has been developed that allows to implement arbitrary Lorentz structures. FeynRules Model-dependent couplings (cf. couplings.f and interactions.dat).mod -file FeynArts.gen -file (Model-independent) Lorentz structures (cf. HELAS) This development goes along with a new version of FormCalc able to deal with multi-fermion interactions.

FeynArts interface (C. Degrande, CD) Example: L = g 1 Φ Q L σ µν T a t R G a µν

FeynArts interface (C. Degrande, CD) Example: L = g 1 Φ Q L σ µν T a t R G a µν FeynArts output: G G t t H t t G G t H G G t H T1 G1 N1 T1 C1 N2

FeynArts interface (C. Degrande, CD) Example: Classes coupling : L = g 1 Φ Q L σ µν T a t R G a µν C[ -F[9, {i}], F[9, {j}], V[4, {a}], V[4, {b}], S[1] ] == {{I*gc78*Conjugate[G1]*(SUNT[a, b, i, j] - SUNT[b, a, i, j])}, {I*G1*gc78*(SUNT[a, b, i, j] - SUNT[b, a, i, j])}, {(-I)*gc78*Conjugate[G1]*(SUNT[a, b, i, j] - SUNT[b, a, i, j])}, {(-I)*G1*gc78*(SUNT[a, b, i, j] - SUNT[b, a, i, j])}}

FeynArts interface (C. Degrande, CD) Example: Generic coupling : L = g 1 Φ Q L σ µν T a t R G a µν AnalyticalCoupling[s1 F[j1, mom1], s2 F[j2, mom2], s3 V[j3, mom3, {li3}], s4 V[j4, mom4, {li4}], s5 S[j5, mom5] ] == G[+1][s1 F[j1], s2 F[j2], s3 V[j3], s4 V[j4], s5 S[j5]]. {MetricTensor[li3,li4]NonCommutative[ChiralityProjector[-1]], MetricTensor[li3,li4]NonCommutative[ChiralityProjector[+1]], NonCommutative[DiracMatrix[li3], DiracMatrix[li4], ChiralityProjector[-1] ], NonCommutative[DiracMatrix[li3], DiracMatrix[li4], ChiralityProjector[+1] ]},

New Developments FeynArts FormCalc UFO Superfields FeynRules Web validation Mass Diagonalisation

New Developments UFO Web validation FeynRules FeynArts FormCalc Mass Diagonalisation Superfields

The UFO (P. de Aquino, CD, D. Grellscheid, W. Link, O. Mattelaer) UFO = Universal FeynRules Output Idea: Create Python modules that can be linked to other codes and contain all the information on a given model. The UFO is a self-contained Python code, and not tied to a specific matrix element generator. The content of the FR model files, together with the vertices, is translated into a library of Python objects, that can be linked to other codes. Golem, MadGraph 5 and Herwig++ will use the UFO.

The UFO & ALOHA The development of the UFO goes hand in hand with the development of ALOHA. Idea: ALOHA uses the information contained in the UFO to create the required HELAS routines on the fly! particles.py } vertices.py couplings.py MG 5 lorentz.py ALOHA UFO

The UFO & ALOHA Example: t t~ H reloaded! mg5>import model dim6 models.import_ufo: load particles models.import_ufo: load vertices mg5>generate g g > t t~ H INFO: Process has 16 diagrams mg5>output dim6 INFO: Generating Helas calls for process: g g > t t~ h INFO: Processing color information for process: g g > t t~ h Export UFO model to MG4 format ALOHA: aloha creates FFV8 routines ALOHA: aloha creates FFVV8 routines ALOHA: aloha creates FFVS2 routines ALOHA: aloha creates FFVVS2 routines

2 The UFO & ALOHA 5 2 h 5 g h g Example: t t~ H reloaded! t t 3 g t~ t 3 g t~ g 4 1 diagram 1 4 1 diagram 2 page 1/3 2 2 5 2 2 5 g g g g g t h t t~ t~ 3 h t~ 3 5 g g g g g g t t~ h h t t t~ 4 3 3 1 1 4 4 1 1 4 diagram 3 diagram 1 diagram 4 diagram 2 2 4 2 2 t~ 2 g 5 g h 5

New Developments UFO Web validation FeynRules FeynArts FormCalc Mass Diagonalisation Superfields

New Developments Web validation Mass Diagonalisation FeynRules UFO Superfields FeynArts FormCalc

Validation of new models FeynRules does not only provide the power to develop and validate new models, but also to validate them to an unprecendented level! A given model can be output to more than one matrix element generator, and their results can be compared Different conventions Different gauges Different ways of handling large cancellations. This procedure can easily be automatized!

Web validation

A look into the future... The future release of FeynRules will allow even more to develop new models. study the phenomenology of new models. validate new implementations. However we still need to communicate the models to the experimentalists... Idea: Theory paper on the arxiv are not enough to communicate new ideas. so why not getting the model implementations directly instead?

Towards a database of models...

Conclusion The LHC is running, and we have to stay tuned! FeynRules is ready to cope with a large variety of models, ranging from model building, over phenomenology to experimental analysis. In particular, the chain UFO -> ALOHA -> MG5 is working flowlessly so far, making MG5 the probably most flexible BSM tool on the market.