Long Distance Connection and WAN



Similar documents
(Refer Slide Time: 2:10)

Connection Services. Hakim S. ADICHE, MSc

Network+ Guide to Networks 6 th Edition. Chapter 7 Wide Area Networks

Public Network. 1. Relatively long physical distance 2. Requiring a service provider (carrier) Branch Office. Home. Private Network.

CTS2134 Introduction to Networking. Module 07: Wide Area Networks

Chapter 9 Using Telephone and Cable Networks for Data Transmission

Access to Data & Computer Networks Physical Level

Analysis of xdsl Technologies

Residential Broadband: Technologies for High-Speed Access To Homes

Narrowband and Broadband Access Technologies

By: Mohsen Aminifar Fall 2014

: Instructor

Chapter 11: WAN. Abdullah Konak School of Information Sciences and Technology Penn State Berks. Wide Area Networks (WAN)

Broadband 101: Installation and Testing

Telecommunications systems (Part 2)

Residential Broadband: Technologies for High-Speed Access To Homes

ADSL part 2, Cable Internet, Cellular

Analog vs. Digital Transmission

Chapter 9A. Network Definition. The Uses of a Network. Network Basics

Fundamentals of Telecommunications

Public Switched Telephone System

The Telephone Network

Next Generation of High Speed. Modems8

ADSL or Asymmetric Digital Subscriber Line. Backbone. Bandwidth. Bit. Bits Per Second or bps

TELECOMMUNICATIONS STANDARDS ADVISORY COMMITTEE TSAC WORKING GROUP ON NEW STANDARDS AND POLICY (NSP)

1.264 Lecture 34. Telecom: Connecting wired LAN, WAN. Next class: Green chapter 17. Exercise due before class

XDSL and DSLAM Access Technologies

Telecommunications, Networks, and Wireless Computing

How To Get High Speed Internet In Australia

EECC694 - Shaaban. Transmission Channel

Intel System Engineers Documents. DSL General Overview

Chapter 2 from Tanenbaum - modified. The Physical Layer. Ref: A.S. Tanenbaum, Computer Networks, 4 th Ed., Prentice-Hall, 2003, ISBN:

Appendix A: Basic network architecture

WAN Technology. Heng Sovannarith

Black Box Explains: DSL

R2. The word protocol is often used to describe diplomatic relations. How does Wikipedia describe diplomatic protocol?

1.264 Lecture 32. Telecom: Basic technology. Next class: Green chapter 4, 6, 7, 10. Exercise due before class

INTERNET CONNECTIVITY

WAN Data Link Protocols

Communication Networks. MAP-TELE 2011/12 José Ruela

Computer Networks. Definition of LAN. Connection of Network. Key Points of LAN. Lecture 06 Connecting Networks

VDSL (VERY HIGH DATA BIT RATE DIGITAL SUBSCRIBER LINE)

Objectives. Lecture 4. How do computers communicate? How do computers communicate? Local asynchronous communication. How do computers communicate?

Copyright. Transport networks. Physical layer Transport and access networks. Pag. 1

DSL Variations. NEXTEP Broadband White Paper. Broadband Networks Group. Definitions and differences of Digital Subscriber Line variations.

Voice and Delivery Data Networks

Telecommunications systems (Part 1)

CS 5516 Computer Architecture Networks

CSCI Topics: Internet Programming Fall 2008

BROADBAND AND HIGH SPEED NETWORKS

Data Transmission via Modem. The Last Mile Problem. Modulation of Digital Signals. Modem Standards (CCITT)

Physical Layer. Communication Satellites. ECE 453 Introduction to Computer Networks. Lecture 3 Physical Layer II

TELECOMMUNICATION SYSTEMS

Chapter 5. Data Communication And Internet Technology

Think! Think! Data communications. Long-Distance. Modems: to analog and back. Transmission Media. The last mile is the hardest for digital information

How DSL Works. by Curt Franklin

Lecture 21 ISDN Integrated Digital Network.

Digital Subscriber Line (DSL)

VoIP Bandwidth Considerations - design decisions

DSL: An Overview. By M. V. Ramana Murthy. All Rights Reserved

THE BCS PROFESSIONAL EXAMINATIONS BCS Level 5 Diploma in IT. October 2009 EXAMINERS' REPORT. Computer Networks

Objectives. Remote Connection Options. Teleworking. Connecting Teleworkers to the Corporate WAN. Providing Teleworker Services

WANs connect remote sites. Connection requirements vary depending on user requirements, cost, and availability.

11/22/

WAN. Introduction. Services used by WAN. Circuit Switched Services. Architecture of Switch Services

Chapter 4 Connecting to the Internet through an ISP

Computer Network. Interconnected collection of autonomous computers that are able to exchange information

Data Transmission. Data Communications Model. CSE 3461 / 5461: Computer Networking & Internet Technologies. Presentation B

Avancerede Datanet. Ole Brun Madsen Professor Department of Control Engineering University of Aalborg. Infrastruktur

Computers Are Your Future Prentice-Hall, Inc.

Chapter 2 - The TCP/IP and OSI Networking Models

Network Technologies

Multiplexing on Wireline Telephone Systems

ECE Chapter 1

Internet Access. Definition. Overview. Topics

A General Glossary of Telecommunications Terminology

Evolution from Voiceband to Broadband Internet Access

How To Understand The Technical Specifications Of Videoconferencing

Chapter 1: roadmap. Access networks and physical media

Introduction to computer networks and Cloud Computing

Protocols. Packets. What's in an IP packet

Getting Broadband. FCC Consumer Facts. What Is Broadband?

ADSL WAN Connections. Contents

ZHONE VDSL2 TECHNOLOGY. Access Technology for the Future. November 2009 CONTENTS

WAN Technologies Based on CCNA 4 v3.1 Slides Compiled & modified by C. Pham

Broadband Access Technologies

EE3414 Multimedia Communication Systems Part I

Introduction to ADSL. NEXTEP Broadband White Paper. Broadband Networks Group. A primer on Asymmetric Digital Subscriber Line transmission technology.


Chapter 6 Bandwidth Utilization: Multiplexing and Spreading 6.1

How To Get A Phone In The United States

Wired & Wireless LAN Connections

ADSL over ISDN, DAML, and Long Loops

Broadband Technology Clinic. Burlington Telecom Advisory Board

Exam questions. 1. Which of the following are true regarding xdsl? Choose three. It uses a portion of the existing phone line.

ICS 153 Introduction to Computer Networks. Inst: Chris Davison

Chapter 13: Internet Connectivity

Wireless Links - Wireless communication relies on radio signals or infrared signals for transmitting data.

Digital Subscriber Line

TELECOMMUNICATIONS STANDARDS ADVISORY COMMITTEE WORKING GROUP ON COMMON CONNECTION STANDARDS (CCS)

Transcription:

Lecture 6 Long Distance Connection and WAN Digital Telephone, PCM and Nyquist Sampling Theorem DSU/CSU, T Line Series and OC line Series Local Loop DSL Technologies - ADSL, HDSL, SDSL, VDSL Cable Modem WAN and Packet Switch Switch Addressing and Routing Typical WANs - ARPANET, X.25, Frame Rely, SMDS, ATM Wireless WANs, Cellular Networks

Lecture 6 Long Distance Telephone Network and Others - A single LAN can t handle an arbitrary number of computers - A LAN is usually owned by a company, organization, university,, which can t build their own long distance links to connect computers in arbitrary sites - Telephone and other companies offer long distance connections which can be leased to build large computer networks covered many distance sites Telephone Company AD/DA Modem Circuit Switch Analogy Network Circuit Switch Digital Network Modem AD/DA Comp LAN Convert Packet Switch Digital Network Convert Comp LAN Modem Other Company CATV/Power Network Modem Modem Satellite Network... Modem

Digital Telephone Network and PCM Lecture 6 Analogy telephone network: transfers analogy voice signal in the frequency range [0, 3.5KHz] Digital telephone network: transfers digital voice signal PCM (Pulse Code Modulation): a standard of conversion from analogy voice to digital voice - Analogy signal is first sampled in sampling interval T or with sampling frequency F=1/T - Nyquist sampling theorem: Original analogy signal can be reconstructed from a sequence of sampled values if F>2B where B is the maximum signal frequency - Sampling frequency of digital voice = 8 KHz - Each sampled value is quantized to an integer in [-127, 127] - Encoding the integer to an 8-bit binary value, PCM hardware is a analogy-to-digital (AD) device - Bit rate of one digital voice channel: 8KHz x 8 bits = 64 Kbps Nyquist Rate 00000111 00000110 F<2B 00000101 00000100 00000011 F=2B 00000010 00000001 00000000 T T, sampling interval F=1/T, sampling frequency F>2B

Lecture 6 DSU/CSU - Computer industry and telephone industry use own standards in different encoding - DSU/CSU perform the conversion between two standards - DSU (Data Service Unit): Translations between two encoding - CSU (Channel Service Unit): management of line termination and diagnose DSU/CSU Gateway http://en.wikipedia.org/wiki/gateway_(telecommunications)

Digital Telephone Line Standard Lecture 6 Japan Japan Japan - Specified by the telephone industry in each country, different from the world - Fractional T1= 64, 9.6 or 4.8Kbps, use multiple fractional T1 with multiplxier - Can be leased in two points - Three campus networks in Hosei University are connected by T1 (before 2001) To outside Ichigaya T2 Koganei T1 T1 T1 Tama

High Capacity Digital Lines Lecture 6 - Use both electrical signal and optical signal - Electrical standard called Synchronous Transport Signal (STS) - Optical standard called Optical Carrier (OC) - Engineers usually use OC- terminology for everything - OC-3 is popular - OC-3: three OC-1 lines, OC-3C: a single line operating at 155.520 Mbps Synchronous Optical Networking

Lecture 6 Local Loop: Analogy Line, ISDN and DSL Subscribers Analogy line ISDN line DSL line Local Central Office ( CO ) Telephone network Local Loop Analogy line: - Analogy signal (300~3300Hz), modem needed, low speed (34/56Kbps) ISDN (Integrated Services Digital Network): - BRI (Basic Rate Interface) = 2B+D, B=64Kbps for data, D=16Kbps for control - PRI (Primary Rate Interface)=23B+64D=1.544Mbps=T1 - called Narrowband ISDN (N-ISDN), relatively slow - B-ISDN (Broadband ISDN), 155 or 622 Mbps to each subscriber xdsl (Digital Subscriber Line) - use existing telephone line to provide high speed transmission, current technology

xdsl Technology Lecture 6 xdsl is a family of technologies to use existing analogy telephone line (copper pair) for delivery of high-speed data between a subscriber and telephone central office. Analogy phone 0 Telephone Network Local Central Office (CO) DSL f (KHz) 20 25 Fa Fb Fc Upstream Downstream xdsl family ADSL: Asymmetric Digital Subscriber Line HDSL: High-rate Digital Subscriber Line SDSL: Symmetric Digital Subscriber Line VDSL: Very high bite rate Digital Subscriber Line xdsl ADSL HDSL SDSL VDSL Bit rate 32K~3M Up 1.5M 1.5M 1.5~2.3M Up 32K~40M Down 1.5M 1.5M 13~52M Down Mode Asymmetric Symmetric Symm Asym wire 1 pair 2 pairs 1 pair 1 pair Length 3.7~5.5km 3.7km 3.0km 1.4km Phone Computer More and latest at Digital Subscriber Line (DSL): http://en.wikipedia.org/wiki/digital_subscriber_line 0 Spectrum of copper pair f (KHz) FDM Frequency Division Multiplexing Frequency range (<20KHz) for analogy phone Frequency range (>25Kz) for data transmission Local line quality Low frequency is better than high frequency Characteristic of each line is different from others

ADSL Lecture 6 DMT (Discrete MultiTone) by ANSI - FDM and QAM modulation - 31 channels (carriers) for upstream - 255 channels (carriers) for downstream Analogy phone f (KHz) 0 20 25 200 250 1M Upstream Downstream 0 Spectrum of copper pair f (KHz) ADSL2/2+, VDSL2, etc. http://en.wikipedia.org/wiki/asymmetric_digital_subscriber_line_2 - Concurrent and independent uses of analogy phone and data transmission - Upstream ~few Mbps, Downstream ~tenths M, suited for accessing Internet

Lecture 6 Cable Modem Technology Cable TV already brings high bandwidth coax into houses Conventional Cable TV is one direction - Signal broadcast at central location - Amplifiers boost signal through network - Amplifiers are unidirectional CATV Center M M Solutions: - Alternate upstream path - e.g., dialup - Replaced by bi-directional amplifiers Amplifier M - Cable Modem Cable modems encode and decode data from cable TV coax - One in cable TV center connects to network - One in home connects to computer Users share the cable - Each subscriber is assigned an address - TDM is used like multiple computers in LAN TV Upstream Downstream (shared by multiple users) TV f (MHz)

Lecture 6 Cable Modem Connections Hybrid Fibre-Coaxial (HFC)

Lecture 6 Cable Modem Connections

Lecture 6 FTTX - Fiber To The X Fiber to the x

Lecture 6 WAN and Switch WAN Wide Area Network: A network that can span a large geographic area, e.g., multiple cities, countries or continents. WAN building blocks: (1) Long-distance connection (e.g., T1/T3 lines, OC1/OC3 lines, etc.) (2) Packet switch - A hardware device connected to other switches and computers - Has CPU, memory, I/O interface, etc. - Handles packet WAN, Wiki Packet Header Frame Data or Payload Trailer Dest Addr Sour Addr

Lecture 6 Illustration of A WAN Animation - Place one or more switches at each site - Interconnect switches: LAN technology for local connections Leased digital lines for long distance connections Leased Line - Interconnections depend on traffic amount and reliability requirement - Packet is sent from source, travels switch-to-switch, and delivered to destination - Switch stores packet in memory, examines address, and forwards it toward destination

Lecture 6 Addressing in WAN - Each computer has a unique address - It is a two-part hierarchical address including 2 integers: [Integer1, Integer2] Integer1 for switch number Integer2 for computer number

Lecture 6 Next-Hop Forwarding and Routing Table Routing table of switch 2 - Packet switch must choose outgoing connection for forwarding If destination is local computer, packet switch delivers computer port If destination is attached another switch, this packet switch forwards to next hop through connection to another switch - Packet switch doesn't keep complete information about all possible destination - A routing table just keeps next hop - For each packet, packet switch looks up destination in its routing table and forwards through connection to next hop - Next hop to destination does not depend on source of packet - Called source independence

Routing Table and Graph Lecture 6 Graph: Node models switch Edge models connection Routing tables without default routes Routing tables with default routes - Each switch or node has a routing table: Left entry right entry destination switch edge number pair - Default route can remove duplicate routes, reduce memory and improve performance

Routing Table Computation Lecture 6 - Static routing table: fixed in switch booting and does not change - Dynamic routing table: initialized in booting and alters as conditions in the network change Shortest path computation: - Label on edge represents distance - Possible distance metric: geographic distance, economic cost, capacity, etc - Shortest means the minimum sum of distances in all paths between two nodes - Darkened path is minimum from node 4 to node 5 Algorithms for computing shortest paths - Dijkstra s algorithm - Distance Vector (DV) algorithm Dijkstra's algorithm Distance Vector Routing

History of WAN Technologies Lecture 6 ARPANET - The first WAN, began in 1960s, low speed: 56Kbps - Funded by Advanced Research Projects Agency, an organization of US Defense Department - Incubator for many of current ideas, algorithms and internet technologies X.25 - Early standard for connection-oriented networking from ITU, which was originally CCITT - Early commercial service, more popular in Europe - Predates computer connections, used for terminal/timesharing connection Frame Relay - Telco service for delivering blocks of data - Connection-based service; - Typically 56Kbps or 1.5Mbps; can run to 100Mbps -SMDS - Switched Multi-megabit Data Service - Connectionless service; any SMDS station can send a frame to any other station - Typically 1.5-100Mbps ATM - Asynchronous Transfer Mode - Designed as single technology for voice, video, data,... - Low jitter (variance in delivery time) and high capacity - Uses fixed size, small cells - 48 bytes data, 5 bytes header - Can connect multiple ATM switches into a network - Potential in future B-ISDN - Can be worked as a LAN

Wireless Networks Lecture 6 Wireless LANs Wireless WANs Satellite Networks Cellular Networks Region BS: Base Station BS BS BS TAXI City BS BS BS laptops, PDAs Campus BS BS In-Building F: Carrier Frequency

Cellular Wireless Networks Lecture 6 Geographic region divided into cells Frequencies/timeslots/codes reused at spatially-separated locations. Co-channel interference between same color cells. Cllular Network: http://en.wikipedia.org/wiki/cellular_network

Cellular Phone Networks Lecture 6

Lecture 6 Handoff in Cellular Networks Base stations/main stations coordinate handoff and control functions Shrinking cell size increases capacity, as well as networking burden

4 Generations of Data Communications Lecture 6

Data Transmission Speeds Lecture 6 4G WWAN: http://en.wikipedia.org/wiki/4g

Exercise 6 1. For an analogy TV signal, its frequency range is in [0, 6MHz]. To transmit the TV signal across a digital network, it is necessary to convert the analogy signal to a digital TV signal. What is the minimum sampling frequency in such conversion? Suppose that every sample will be encoded into 16 bits binary value (this is called TV PCM coding). Calculate bit rate of the digital TV signal after PCM coding. 2. Summarize the features and performance of typical long-distance connection technologies including T and OC series services, conventional modem, ISDN, xdsl and Cable modem. 3. Explain why bit rates of the upstream and the downstream in ADSL are not fixed? 4. In a packet switch network, the address of each computer consists two parts: one identifies a switch and other identifies a computer attached to that switch. Why? 5. Suppose that a packet switch network with a five nodes is given below. Give a routing table for each of the five nodes. 2 3 1 4 5