Stephen Few, Perceptual Edge Visual Business Intelligence Newsletter November/December 2008



Similar documents
Quantitative Displays for Combining Time-Series and Part-to-Whole Relationships

Sometimes We Must Raise Our Voices

Introduction to Geographical Data Visualization

Common Mistakes in Data Presentation Stephen Few September 4, 2004

Quantitative vs. Categorical Data: A Difference Worth Knowing Stephen Few April 2005

Based on Chapter 11, Excel 2007 Dashboards & Reports (Alexander) and Create Dynamic Charts in Microsoft Office Excel 2007 and Beyond (Scheck)

AT&T Global Network Client for Windows Product Support Matrix January 29, 2015

Choosing Colors for Data Visualization Maureen Stone January 17, 2006

Visualizing Multidimensional Data Through Time Stephen Few July 2005

Dashboard Design for Rich and Rapid Monitoring

Part 2: Data Visualization How to communicate complex ideas with simple, efficient and accurate data graphics

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

COMPARISON OF FIXED & VARIABLE RATES (25 YEARS) CHARTERED BANK ADMINISTERED INTEREST RATES - PRIME BUSINESS*

1. Introduction. 2. User Instructions. 2.1 Set-up

Common Tools for Displaying and Communicating Data for Process Improvement

Infographics in the Classroom: Using Data Visualization to Engage in Scientific Practices

Case 2:08-cv ABC-E Document 1-4 Filed 04/15/2008 Page 1 of 138. Exhibit 8

Unit Charts Are For Kids

Principles of Data Visualization for Exploratory Data Analysis. Renee M. P. Teate. SYS 6023 Cognitive Systems Engineering April 28, 2015

Numbers as pictures: Examples of data visualization from the Business Employment Dynamics program. October 2009

Effective Big Data Visualization

Tableau Data Visualization Cookbook

Get to the Point HOW GOOD DATA VISUALIZATION IMPROVES BUSINESS DECISIONS

Analysis One Code Desc. Transaction Amount. Fiscal Period

Save the Pies for Dessert

Are you prepared to make the decisions that matter most? Decision making in manufacturing

Ways We Use Integers. Negative Numbers in Bar Graphs

Chapter 6: Constructing and Interpreting Graphic Displays of Behavioral Data

Data Visualization Handbook

Diagrams and Graphs of Statistical Data

31 Misleading Graphs and Statistics

The work breakdown structure can be illustrated in a block diagram:

Top 5 best practices for creating effective dashboards. and the 7 mistakes you don t want to make

Data Visualization Techniques

Change-Point Analysis: A Powerful New Tool For Detecting Changes

Computing & Telecommunications Services Monthly Report March 2015

Are you prepared to make the decisions that matter most? Decision making in retail

Visualization Quick Guide

Using Excel (Microsoft Office 2007 Version) for Graphical Analysis of Data

CSU, Fresno - Institutional Research, Assessment and Planning - Dmitri Rogulkin

a. mean b. interquartile range c. range d. median

Copyright 2008 Stephen Few, Perceptual Edge Page of 11

Basic Tools for Process Improvement

Enhanced Vessel Traffic Management System Booking Slots Available and Vessels Booked per Day From 12-JAN-2016 To 30-JUN-2017

Trendline Tips And Tricks

FORECASTING. Operations Management

Principles of Data Visualization

Expert Color Choices for Presenting Data

Get The Picture: Visualizing Financial Data part 1

The Power of Visual Analytics

Are you prepared to make the decisions that matter most? Decision making in healthcare

Interpreting Data in Normal Distributions

Exploring All of Your Options

The New Prior Approval Rate Application Process Frequently Asked Questions

CALL VOLUME FORECASTING FOR SERVICE DESKS

If the World Were Our Classroom. Brief Overview:

USING TIME SERIES CHARTS TO ANALYZE FINANCIAL DATA (Presented at 2002 Annual Quality Conference)

top 5 best practices for creating effective campaign dashboards and the 7 mistakes you don t want to make

13 Managing Devices. Your computer is an assembly of many components from different manufacturers. LESSON OBJECTIVES

Choosing a Cell Phone Plan-Verizon

Data Visualization: Some Basics

Data Visualization Techniques

OMBU ENTERPRISES, LLC. Process Metrics. 3 Forest Ave. Swanzey, NH Phone: Fax: OmbuEnterprises@msn.

East Coast Visual Business Intelligence Workshop

DATA VISUALIZATION 101: HOW TO DESIGN CHARTS AND GRAPHS

How To Choose A Search Engine Marketing (SEM) Agency

Using INZight for Time series analysis. A step-by-step guide.

Create Stoplight charts using Milestones Professional

Normality Testing in Excel

Criteria for Evaluating Visual EDA Tools

Tracking Real Estate Market Conditions Using the HousingPulse Survey

Industry Environment and Concepts for Forecasting 1

Time Management II. June 5, Copyright 2008, Jason Paul Kazarian. All rights reserved.

Ashley Institute of Training Schedule of VET Tuition Fees 2015

High School Functions Interpreting Functions Understand the concept of a function and use function notation.

Detailed guidance for employers


Financial Operating Procedure: Budget Monitoring

Growing Your Business Through Marketing

Briefing document: How to create a Gantt chart using a spreadsheet

Good Scientific Visualization Practices + Python

Statistics Chapter 2

Seven Tips for Building a Great Dashboard

Improve Your Vision and Expand Your Mind with Visual Analytics

ebrief for freelancers and contractors Borrowing company money

Good Graphs: Graphical Perception and Data Visualization

Internet Basics for Business

TO UNDERSTANDING SHORT-TERM HEALTH INSURANCE

TEXT-FILLED STACKED AREA GRAPHS Martin Kraus

This file contains 2 years of our interlibrary loan transactions downloaded from ILLiad. 70,000+ rows, multiple fields = an ideal file for pivot

P/T 2B: 2 nd Half of Term (8 weeks) Start: 25-AUG-2014 End: 19-OCT-2014 Start: 20-OCT-2014 End: 14-DEC-2014

P/T 2B: 2 nd Half of Term (8 weeks) Start: 26-AUG-2013 End: 20-OCT-2013 Start: 21-OCT-2013 End: 15-DEC-2013

A Beginner s Guide to Financial Freedom through the Stock-market. Includes The 6 Steps to Successful Investing

The basics of storytelling through numbers

Introducing the. Tools for. Continuous Improvement

Measurement with Ratios

Transcription:

perceptual edge Line Graphs and Irregular Intervals: An Incompatible Partnership Stephen Few, Perceptual Edge Visual Business Intelligence Newsletter November/December 28 I recently received an email from Colin Banfi eld, a fellow who has read my books and follows my work. In it, Colin invited me to join a discussion about line graphs and unequal intervals of time. The occasion for his email was a disagreement between Jon Peltier and him that you can read on Jon s blog at www.peltiertech. com. In his email, Colin wrote: I have a long-standing battle with Jon Peltier, who believes that it s OK to chart unequal date intervals on a line chart. Jon is an Excel expert extraordinaire one of a few Excel afi cionados that I correspond with from time to time. In contrast to our usual agreement, Jon and I appear to differ on this particular matter. The debate between Jon and Colin originally began in response to the following graph of U.S. postage stamp rates, borrowed from www.thefi nancejourney.com, which Jon used in his blog as an example of data better suited to a step chart: When Colin objected to the unequal intervals of time that appear along the X-axis, Jon responded: I don t understand the obsession with an equal date interval. A line chart need not show the trend of only evenly-spaced data. Suppose I am observing temperatures, and I decide for simplicity that where the temperature hasn t changed, or where it has been changing steadily, I do not need to record every value. Overnight after the temperature has dropped, I can characterize my temperature profi le with one point per hour. As the sun rises, I may need more frequent recordings to capture the morning warm up. Then the clouds blow over, it starts to rain, then it clears up again; I may need minute-by-minute data points to track this. When I make my plot, is it any less relevant because the spacing of the data ranges from minutes to hours? On this matter, I side with Colin. Using a line to connect values along unequal intervals of time or to connect intervals that are not adjacent in time is misleading. Copyright 28 Stephen Few, Perceptual Edge Page 1 of 11

Their debate came to life again this month when Jon featured a guest blog by Mike Alexander, the author of Excel 27 Dashboard and Reports for Dummies (an excellent book), in which Mike presented Ten Chart Design Principles. After reading Mike s blog, Colin breathed fresh life into the debate because a graph that appears several times in various forms displays unequal intervals of time. Here s an example of the graph: Notice that the years 1999 and 22 are missing, yet nothing in the graph alerts us to this fact. Colin agreed with Mike s charting tips, but couldn t let these line charts with unequal intervals of time slip by without comment. Unfortunately, the line chart examples are misleading. You cannot simply compare equal intervals for some data points and then switch to a different interval and expect the result to be a meaningful trend of the plotted data For all we know, there might have been declines in the years 1999 and 22 the line chart constructed would mask this perfectly. Corresponding Quantity and Matching Visual Encoding When we present quantitative information graphically, we should take care to match the visual features of the graph to the perceptual inclinations of the reader s mind. When lines are used in a graph to connect unequal or non-adjacent intervals of time, they misrepresent the information. Edward Tufte expressed the problem as follows: The representation of numbers, as physically measured on the surface of the graphic itself, should be directly proportional to the numerical quantities represented. (The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press, Cheshire, CT, 1983, p. 77.) Each part of a graphic generates visual expectations about its other parts and, in the economy of graphical perceptions, these expectations often determine what the eye sees. Deception results from the incorrect extrapolation of visual expectations generated at one place on the graphic to other places. A scale moving in regular intervals, for example, is expected to continue its march to the very end in a consistent fashion, without the muddling or trickery of non-uniform changes. (The Visual Display of Quantitative Information, Edward R. Tufte, Graphics Press, Cheshire, CT, 1983, p. 6) Nicely put. When encoding time graphically as distance along an axis, equal intervals of time should be displayed as equal intervals of distance. Copyright 28 Stephen Few, Perceptual Edge Page 2 of 11

Stephen Kosslyn, a Harvard cognitive psychologist who has applied his knowledge of perception and cognition to graphical design, also expressed the problem insightfully. Our visual system and memory system tend to make a direct connection between the properties of a pattern and the properties of the entities symbolized by that pattern. A continuous rise and fall of a line will naturally be taken to refl ect a continuous variation in the entity being measured. If the changes in that entity are in fact not continuous but discrete, the continuity implied by a line graph is misleading; a bar graph would better represent the actual situation being depicted. The specifi c principle here is compatibility. The properties of the visual pattern itself should refl ect the properties of what is symbolized. (Elements of Graph Design, Stephen M. Kosslyn, W. H. Freeman and Company, New York, p. 8) Connecting values with a line along an interval scale such as time accurately represents reality only if (1) the intervals are equal in size, (2) the intervals are in proper order, and (3) values have been recorded for all intervals. Missing values constitute a discontinuity in the data that is not meaningfully represented by a continuous line. Connection suggests a constant slope of change between two points in time, when in fact the intervening states that are missing might have been quite different. Line Graph Best Practices Based on these principles, we can derive a set of guidelines for line graphs. 1. Lines should only be used to connect values along an interval scale (with a couple exceptions). An interval scale is one that divides a continuous range of quantitative values into equal intervals. For example, if you wanted to display the incidence of obesity among elementary school children at a particular school by age, you could divide the age range of 5 to 11 years into equal intervals of one year each and then count the number of children who are obese per age group. This range of ages is an example of an interval scale. You could use bars to represent the number of children who are obese per age group. When bars are used to display a frequency distribution (in this case the frequency of obesity by age), the graph is called a histogram. Because an interval scale represents a continuous range of quantitative values, an intimate connections exists from one interval to the next. As such, rather than using bars, it would be fi ne if you wished to use a line to display this frequency distribution, connecting one age group to the next, because the line would meaningfully represent a connection that exists in the data. Another more common example of an interval scale is one that divides a continuous range of time into equal intervals, such as years, quarters, months, or days. (Yes, I know that not all months include an equal number of days, but usually when we display change through time by month, we consider the months equal in size.) Rarely does any other form of graph display the shape of change through time better than a simple line graph. Not only does a line meaningfully suggest fl uid connection from one point in time to the next, but it displays changes in value clearly as up and down slopes of varying magnitudes along the line. There are a couple of exceptions to the general rule that lines should only be used in graphs to connect values along an interval scale: Pareto charts and Parallel Coordinates plots. Both of these exceptions are acceptable because the connection between values that s suggested by a line is meaningful, although different from what it means when a line connects values along an interval scale. Copyright 28 Stephen Few, Perceptual Edge Page 3 of 11

Beginning with a Pareto chart, here s an example: 1% Laptop Computer Returns Percentage by Reason 9% 8% 7% 6% 5% 4% 3% 2% 1% % Setup difficulty Not easy to use Not fast enough Screen too small Wrong manual Others Won't start Not Internet compatible Missing cord Won't print Too heavy Incompatible In this example, the reasons that customers have returned laptops that they purchased appear in order of rank from most to least frequent, and each bar s height represents the percentage of total returns associated with a particular reason. The red line displays the cumulative percentage of returns. Each point along the line is the sum of the percentage of laptops returned for that particular reason and all preceding reasons, which increases with each item until it reaches 1% of all returns at the right-hand edge of the graph. The scale along the X-axis is not quantitative in nature, and thus not an interval scale. The items that make up this scale are independent from one another; not intimately connected like items along an interval scale. Yet a line has been used to connect the cumulative value along the scale. In this case, the line is meaningful, because each value is the sum of that item s independent value and the values of all previous items, which connects the values intimately. In this respect, the line makes sense and therefore works. I hesitate to show an example of a parallel coordinates plot, because they look odd, complicated, and overwhelming until you learn how they work, which I won t be able to adequately explain in this article. Brace yourself here s an example: Parallel coordinate plots were designed to support a particular type of multivariate analysis, which seeks to fi nd similarities and differences between things across several variables that make up composite multivariate profi les of those things. This particular example displays 49 different products, one per dark gray line that Copyright 28 Stephen Few, Perceptual Edge Page 4 of 11

extends from the left vertical axis titled Price all the way across several axes to the fi nal one titled Profi t at the right. The position where one of these lines intersects a vertical axis indicates that product s value for that variable, for each of the following six: Price (the product s list price) Duration (how long the product has been on the market) Revenue (the amount of revenue the product has generated during the current year) Units Sold (the quantity of the product that has sold during the current year) Marketing$ (the amount of money that was spent on marketing the product during the current year) Profi t (the profi t that was earned during the current year resulting from sales of the product) This article isn t about parallel coordinates or multivariate analysis, so I ll refer you to an article that I wrote in September of 26 titled Multivariate Analysis Using Parallel Coordinates for more information about them and focus now only on why the lines are meaningful. Not only don t the lines connect values along an interval scale in parallel coordinates plots, they don t even connect values that are associated with the same variable. In these graphs, the lines serve a different, but nevertheless meaningful purpose: they form a pattern that represents the multivariate profi le of a single entity, such as each of the products represented in the example above, and do so in a way that makes it possible for us to compare the multivariate profi les of many entities to one another. I haven t seen any other graphical object that does this as well as a line that moves up and down to intersect each of the axes at the appropriate point along its scale, resulting in an overall pattern that can be easily compared to the patterns formed by other lines. To illustrate what I m saying, in the following example I ve selected a single product (the one that s highlighted and labeled YBL111C) and the other product out of the total of 49 that is most like it across the six variables as a whole. Although they vary, when the plot is uncluttered by all 49 lines, it is easy to see the similar multivariate profi les of these products as represented by the pattern formed by these two lines. Copyright 28 Stephen Few, Perceptual Edge Page 5 of 11

2. Intervals should be equal in size. How could we trust graphical representations of time series or frequency distributions if their shapes could have been altered by inconsistently manipulating the sizes of intervals along the scale, either arbitrarily or intentionally to deceive? We can derive meaning from patterns and trends that these graphs display only if the intervals are consistent. The three graphs below display the same time-series data, but they look quite different. Millions of USD 25 Sales 2 15 1 5 1987 1988 1989 199 1991 1992 1993 1994 1995 1996 1997 1998 1999 2 21 22 23 24 25 26 27 9 8 7 6 5 4 3 2 1 1987-1989 199-1991 1992-1995 1996 1997-1999 2-23 24-27 8 7 6 5 4 3 2 1 1987 1988 1989 199 1991 1992 1993 1994 1995 1996 1997 1998 1999 2 21 22 23 24-27 Only the fi rst graph effectively displays the pattern of change through time. Copyright 28 Stephen Few, Perceptual Edge Page 6 of 11

All three graphs below are based on the same frequency distribution data, but they tell completely different stories. 35% Wireless Phone Users by Age 3% 25% 2% 15% 1% 5% % 1-1 11-2 21-3 31-4 41-5 51-6 61-7 71-8 81-9 91-1 35% 3% 25% 2% 15% 1% 5% % 1-2 21-3 31-4 41-6 61-1 35% 3% 25% 2% 15% 1% 5% % 1-1 11-2 21-3 31-4 41-1 Age Again, only the fi rst display tells the story effectively. There is one situation when breaking the rule of equal intervals is justifi ed, which I ve illustrated in the following example. 1 Distribution of Employees by Salary 9 8 7 6 5 4 3 2 1 <1K 1K - <2K 2K - <3K 3K - <4K 4K - <5K 5K - <6K 6K - <7K Salary Range 7K - <8K 8K - < 9K 9K - <1K 1K - <11K 11K - <12K 12K - <13K 13K+ Copyright 28 Stephen Few, Perceptual Edge Page 7 of 11

In this example, the CEO of the company makes a $3,, salary, which is so much higher than anyone else s salary, to extend the $1, intervals all the way from the second highest salary of $127, to $3,, would produce an unreasonably wide graph. Consistent intervals could be maintained by changing their size from $1, to $5,, but then all but one salary would be lumped into the fi rst interval and nothing about the shape of the distribution could be discerned. In situations when extreme outliers at the high end, low end, or both ends of a frequency distribution would either force the graph to cover an impractical number of intervals or to make the intervals so large that useful information about the shape of the distribution would be lost, it is acceptable to lump the extremes at one or both ends of the scale into a single interval that is larger than the others. When you do this, however, it s important to point out what you ve done, so others can take this inconsistency into account when examining the graph. 3. Lines should only directly connect values in adjacent intervals. Both of the graphs below display the same series of values, but neither represents it correctly. Both use the line to directly connect intervals that aren t adjacent in time. The top graph omits several intervals (the years 1986-1989 and 1995) from the times-series scale altogether, but still directly connects the years with a line as if none were missing. The bottom graph includes the full set of years along the X-axis, but fails to display values on the line for the same years that are missing in the top graph. Millions of USD 4 Profit 35 3 25 2 15 1 5 198 1981 1982 1983 1984 1985 199 1991 1992 1993 1994 1996 1997 1998 1999 2 Millions of USD Profit 4 35 3 25 2 15 1 5 198 1981 1982 1983 1984 1985 1986 1987 1988 1989 199 1991 1992 1993 1994 1995 1996 1997 1998 1999 2 The smooth slope of the line between 1985 and 199 in the bottom graph suggests a pattern of change that s probably quite different from what actually happened. Graphs like the bottom example are sometimes produced as a way to hide what actually happened. Whether done intentionally to deceive or innocently in error, we misrepresent the truth when we use a line to directly connect values in intervals that are not adjacent to one another. Copyright 28 Stephen Few, Perceptual Edge Page 8 of 11

This misrepresentation sometimes occurs because values for some intervals are missing. Consider the graph below of visits to a website. If the site s web host failed to collect accurate visitor statistics for every month, which has happened to me a few times (but hopefully no longer now that I ve switched web hosting companies), you might be tempted to directly connect the last accurate month prior to the problem to the fi rst accurate month following the problem, but this not only suggests a smooth pattern between those values when the pattern is unknown, it also fails to show the important fact that some values are missing. Visitors 12, Monthly Web Traffic 1, 8, 6, 4, 2, Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 27 28 People sometimes handle situations like this by displaying the missing values as zeroes, as illustrated below, but this also misrepresents the facts. The values are not zeroes, they re missing. Visitors 12, Monthly Web Traffic 1, 8, 6, 4, 2, Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 27 28 The best way to display the fact that values are missing is to omit the line altogether for those intervals, as I ve done here. Visitors 12, Monthly Web Traffic 1, 8, 6, 4, 2, Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov 27 28 Copyright 28 Stephen Few, Perceptual Edge Page 9 of 11

Sometimes time-series data are routinely intermittent in nature. Consider the following example, which displays toxin levels in a stream, measured by a researcher at irregular intervals of time. PPM 18 16 14 12 1 8 6 4 2 Toxin Level 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 1 12 14 16 18 2 22 24 26 28 January February We have no idea what the toxin levels were on the missing days. To connect these intermittent measurements with lines suggests a pattern that might have no relation whatsoever to the changes in toxin levels that actually occurred. In such cases, I omit the line altogether, as shown here. PPM 18 16 14 12 1 8 6 4 2 Toxin Level 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 2 4 6 8 1 12 14 16 18 2 22 24 26 28 January February Even if on a few occasions along this timeline toxin levels were measured on consecutive days, I would still prefer to omit the line altogether, because its absence visually reinforces the fact that the measurement process in general was intermittent in nature. In Summary These guidelines for line graphs are rooted in an understanding of human perception and practical experience. It is certainly possible that you will encounter rare occasions when one or more of these guidelines should be broken. One of the privileges and responsibilities of expertise in any fi eld is the ability to break the rules when circumstances demand something different. Do so only when you can justify an alternative just as rationally, given the special circumstances, as I ve justifi ed the general rules for normal circumstances. As a reminder, here are the guidelines once again: 1. Lines should only be used to connect values along an interval scale (with a couple exceptions). 2. Intervals should be equal in size. 3. Lines should only directly connect values in adjacent intervals. Copyright 28 Stephen Few, Perceptual Edge Page 1 of 11

About the Author Stephen Few has worked for over 25 years as an IT innovator, consultant, and teacher. Today, as Principal of the consultancy Perceptual Edge, Stephen focuses on data visualization for analyzing and communicating quantitative business information. He provides training and consulting services, writes the monthly Visual Business Intelligence Newsletter, speaks frequently at conferences, and teaches in the MBA program at the University of California, Berkeley. He is the author of two books: Show Me the Numbers: Designing Tables and Graphs to Enlighten and Information Dashboard Design: The Effective Visual Communication of Data. You can learn more about Stephen s work and access an entire library of articles at www.perceptualedge.com. Between articles, you can read Stephen s thoughts on the industry in his blog. Copyright 28 Stephen Few, Perceptual Edge Page 11 of 11