Repairing & Strengthening Earthquake Damaged RC Beams with Composites

Similar documents
USE OF CFRP LAMINATES FOR STRENGTHENING OF REINFORCED CONCRETE CORBELS

SEISMIC RETROFITTING TECHNIQUE USING CARBON FIBERS FOR REINFORCED CONCRETE BUILDINGS

Fire-Damage or Freeze-Thaw of Strengthening Concrete Using Ultra High Performance Concrete

ANALYSIS FOR BEHAVIOR AND ULTIMATE STRENGTH OF CONCRETE CORBELS WITH HYBRID REINFORCEMENT

THE EFFECT OF STIRRUPS AND HOOKED STEEL FIBERS INSTEAD ON MOMENT-ROTATION CAPACITY OF BEAM-COLUMN CONNECTIONS

In-situ Load Testing to Evaluate New Repair Techniques

Experimental assessment of concrete damage due to exposure to high temperature and efficacy of the repair system

Numerical modelling of shear connection between concrete slab and sheeting deck

BEHAVIOR OF SHORT CONCRETE COLUMNS REINFORCED BY CFRP BARS AND SUBJECTED TO ECCENTRIC LOAD

Shear Strengthening. Sika CarboDur Composite Systems

Hardened Concrete. Lecture No. 14

ICS: Strengthening retrofitting of reinforced concrete structures by gluing of fibre reinforced polymeric fabrics (FRP fabrics)

STRENGTHENING AND LOAD TESTING OF THREE BRIDGES IN BOONE COUNTY, MO

Miss S. S. Nibhorkar 1 1 M. E (Structure) Scholar,

Chapter 5 Bridge Deck Slabs. Bridge Engineering 1

Analysis and Repair of an Earthquake-Damaged High-rise Building in Santiago, Chile

ASSESSMENT AND PROPOSED STRUCTURAL REPAIR STRATEGIES FOR BRIDGE PIERS IN TAIWAN DAMAGED BY THE JI-JI EARTHQUAKE ABSTRACT

Compression load testing straw bale walls. Peter Walker Dept. Architecture & Civil Engineering University of Bath Bath BA2 7AY.

Current Status of Seismic Retrofitting Technology

A Decade of Performance of FRP-Repaired Concrete Structures

APE T CFRP Aslan 500

Methods for Seismic Retrofitting of Structures

PRESENTATION ON REPAIR AND REHABILITATION OF BUILDINGS DAMAGED IN EARTHQUAKE. By H P Gupta & D K Gupta

SEISMIC RETROFITTING OF EARTHQUAKE-DAMAGED CONCRETE COLUMNS BY LATERAL PRE-TENSIONING OF FRP BELTS. K. Nasrollahzadeh Nesheli 1 and K.

CFRP STRENGTHENING OF CIRCULAR CONCRETE SLAB WITH AND WITHOUT OPENINGS

Evaluation of the Seismic Performance of Brick Walls Retrofitted and Repaired by Expansive Epoxy Injection

SEISMIC RETROFITTING OF STRUCTURES

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 1 Introduction / Design Criteria for Reinforced Concrete Structures

REHABILITATION OF THE FIGUEIRA DA FOZ BRIDGE

BRIDGE REHABILITATION TECHNIQUES

The Strength of Concrete

bi directional loading). Prototype ten story

SEISMIC UPGRADE OF OAK STREET BRIDGE WITH GFRP

The Original Carbon Fiber Reinforced Polymer System

Retrofitting By Means Of Post Tensioning. Khaled Nahlawi 1

Research on the meaning of reinforcement ductility for a behavior of double-spans reinforced concrete beam.

CHARACTERIZATION OF HIGH PRESSURE RTM PROCESSES FOR MANUFACTURING OF HIGH PERFORMANCE COMPOSITES

DEVELOPMENT OF A NEW TEST FOR DETERMINATION OF TENSILE STRENGTH OF CONCRETE BLOCKS

Lab 1 Concrete Proportioning, Mixing, and Testing

The University of Birmingham (Live System)

Rolla, Rolla, MO 65409, USA

Seismic Retrofit of Reinforced Concrete Beam- Column T-Joints in Bridge Piers with FRP Composite Jackets

Objectives. Experimentally determine the yield strength, tensile strength, and modules of elasticity and ductility of given materials.

DETERMINATION OF TIME-TEMPERATURE SHIFT FACTOR FOR LONG-TERM LIFE PREDICTION OF POLYMER COMPOSITES

MILMAN & ASSOCIATES STRUCTURAL CONSULTING ENGINEERS/ PROJECT MANAGERS

Composite Design Fundamentals. David Richardson

REVISION OF GUIDELINE FOR POST- EARTHQUAKE DAMAGE EVALUATION OF RC BUILDINGS IN JAPAN

Structural Audit of Buildings

Detailing of Reinforcment in Concrete Structures

Optimum proportions for the design of suspension bridge

Bridge Structural Rehabilitation Using FRP Laminates

DESIGN OF SLABS. 3) Based on support or boundary condition: Simply supported, Cantilever slab,

Behavior of High-Strength Concrete Rectangular Columns

SEISMIC DESIGN. Various building codes consider the following categories for the analysis and design for earthquake loading:

Strengthening and Repair of Reinforced Concrete Structures. Ian Wienholt Business Development Manager

Chapter. Restoration of Damaged Structures

Stress Strain Relationships

The International Journal Of Science & Technoledge (ISSN X)

REPAIR AND STRENGTHENING OF HISTORICAL CONCRETE BRIDGE OVER VENTA RIVER IN LATVIA

Chapter 3 DESIGN AND CONSTRUCTION FEATURES IMPORTANT TO SEISMIC PERFORMANCE

Construction. Structural Strengthening with SikaWrap Fabric Systems

Technical Notes 3B - Brick Masonry Section Properties May 1993

Numerical Analysis of Independent Wire Strand Core (IWSC) Wire Rope

IMPROVING THE STRUT AND TIE METHOD BY INCLUDING THE CONCRETE SOFTENING EFFECT

Prestressed Concrete Pipe Fitness for Service and Repair

LARGE SCALE TENSILE TESTS OF HIGH PERFORMANCE FIBER REINFORCED CEMENT COMPOSITES

Waterproofing System for Wastewater Tanks in Petrochemical Industries and Refineries

3. Observed Damage in Railway Viaducts

SLAB DESIGN. Introduction ACI318 Code provides two design procedures for slab systems:

Repair of Fatigued Steel Bridge Girders with Carbon Fiber Strips

ENGINEERING SPECIFICATION PULTRUDED DYNARAIL FIBERGLASS LADDER & LADDER CAGES

FLEXURAL BEHAVIOUR OF HYBRID FRP-UHPC GIRDERS UNDER STATIC LOADING

Seismic Risk Prioritization of RC Public Buildings

Prepared For San Francisco Community College District 33 Gough Street San Francisco, California Prepared By

Rehabilitation of Unreinforced Brick Masonry Walls Using Composites

Validation of Cable Bolt Support Design in Weak Rock Using SMART Instruments and Phase 2

Deflection Calculation of RC Beams: Finite Element Software Versus Design Code Methods

MODELLING OF AN INFILL WALL FOR THE ANALYSIS OF A BUILDING FRAME SUBJECTED TO LATERAL FORCE

INFLUENCE OF STEEL FIBERS AS ADMIX IN NORMAL CONCRETE MIX

Strengthening of a Bridge Using Two FRP Technologies. Paolo Casadei, Nestore Galati, Renato Parretti and Antonio Nanni

Design and Construction of Cantilevered Reinforced Concrete Structures

Structural Retrofitting Process and Techniques

Comparison of Seismic Performance of D-region of Existing RC Structures Designed with Different Recommendations

beams columns blast walls slabs pipes protective coatings polymer concrete Solutions Looking for Problems...

ADVANTAGES OF STEEL FIBRE REINFORCED CONCRETE IN INDUSTRIAL FLOORS

Naue GmbH&Co.KG. Quality Control and. Quality Assurance. Manual. For Geomembranes

Use of Strain Gauge Rosette to Investigate Stress concentration in Isotropic and Orthotropic Plate with Circular Hole

REPAIR AND RETROFIT OF BRIDGES DAMAGED BY THE 2010 CHILE MAULE EARTHQUAKE

Overview of Topics. Stress-Strain Behavior in Concrete. Elastic Behavior. Non-Linear Inelastic Behavior. Stress Distribution.

REVIEW OF STRENGTHENING TECHNIQUES USING EXTERNALLY BONDED FIBER REINFORCED POLYMER COMPOSITES

Draft Table of Contents. Building Code Requirements for Structural Concrete and Commentary ACI

A STUDY ON BONDING STRENGTH OF POLYMERIC FIBERS TO CEMENTITIOUS MATRIX

METHOD OF STATEMENT FOR STATIC LOADING TEST

Tensile Testing Laboratory

Condition assessment and repair of antenna towers concrete foundations

The advantages and disadvantages of dynamic load testing and statnamic load testing

MATERIALS AND MECHANICS OF BENDING

Seismic performance evaluation of an existing school building in Turkey

DESIGN OF SLABS. Department of Structures and Materials Engineering Faculty of Civil and Environmental Engineering University Tun Hussein Onn Malaysia

Transcription:

Repairing & Strengthening Earthquake Damaged RC Beams with Composites H. Murat Tanarslan Abstract The dominant judgment for earthquake damaged reinforced concrete (RC) structures is to rebuild them with the new ones. Consequently, this paper estimates if there is chance to repair earthquake RC beams and obtain economical contribution to modern day society. Therefore, the totally damaged (damaged in shear under cyclic load) reinforced concrete (RC) beams repaired and strengthened by externally bonded carbon fibre reinforced polymer (CFRP) strips in this study. Four specimens, apart from the reference beam, were separated into two distinct groups. Two experimental beams in the first group primarily tested up to failure then appropriately repaired and strengthened with CFRP strips. Two undamaged specimens from the second group were not repaired but strengthened by the identical strengthening scheme as the first group for comparison. This study studies whether earthquake damaged RC beams that have been repaired and strengthened will validate similar strength and behavior to equally strengthened, undamaged RC beams. Accordingly, a strength correspondence according to strengthened specimens was acquired for the repaired and strengthened specimens. Test results confirmed that repair and strengthening, which were estimated in the experimental program, were effective for the specimens with the cracking patterns considered in the experimental program. T Keywords Shear Strengthening, Repairing, CFRP Strips. I. INTRODUCTION HERE is a common thought for earthquake damaged RC structures that replacing the building with the new one is more reliable instead of repairing them. This is because of the insufficient data in literature that indicates repairing & strengthening is adequate if it is done properly. This paper deals with this fact. Cracks, concrete spalling and large deflections result in the deviation of structures from their designed strengths. It is clear that structures should be repaired in order to eliminate these deteriorations. In some cases, repair of structures is not sufficient alone for obtaining the expected features as a consequence it is necessary to strengthen the structures. However, a proper chosen repair technique increases the proposed service-life, restores or increases its strength and stiffness, guarantees the safety and serviceability, protects reinforcing steel bars from exterior effects, and finally improves structure s durability. Nevertheless only small number of studies was encountered in literature which investigates and/or examines that considerable and critical H. M. Tanarslan is with the Civil Engineering Department of Dokuz Eylul University, Izmir, Turkey, (phone: +90-232-301-70-47; fax: +90-453-11-92; e-mail: murat.tanarslan@ deu.edu.tr). subject, repairing and/or strengthening of flexural-damaged specimens with CFRP [1]-[3]. In addition, not many studies were scrutinized the efficiency of CFRP on repairing and/or strengthening of shear-damaged RC beams [4]-[6]. Besides, monotonic loading was applied in all the previous studies and the performance of repaired and CFRP strengthened specimens was not investigated under cyclic loads, which act like earthquake to the structure. Therefore the behavior, cracking pattern, deflection, ultimate capacities and failure modes of the repaired and then strengthened structures have to be evaluated. Besides, the factors which influence the behavior have to be laid bare for assisting the designers for further executions. Although any case studies have not found in literature about repair & strengthening of earthquake-damaged (damaged in shear under cyclic load) RC beams, the main aim of this experimental work was to investigate the behavior and failure modes of repaired & strengthened RC beams. Therefore, four specimens, apart from the reference beam, were separated into two distinct groups for evaluation. Two experimental beams in the first group subjected to cyclic load up to failure then properly repaired and CFRP strengthened. Undamaged specimens, two, specimens from the second group, were strengthened with the identical strengthening schemes of repaired & strengthened specimens for comparison II. PROPERTIES OF MATERIALS To reach correspondence in strength, a single concrete mix was used for all specimens. The concrete was a mixture of water, cement, sand and aggregate with the ratio of 0.68:1:2:3 by mass. The average compressive strengths of 28-day concrete cylinder were approximately 25MPa. For all specimens, standard deformed reinforcement steel bars with a characteristic strength of 414MPa and elastic modulus of 205GPa were used as longitudinal reinforcement. 6mm bars with a characteristic strength of 275MPa and an elastic modulus of 192GPa were used for the shear reinforcement outside the shear span.. III. DETAILS OF TEST SPECIMENS SPEC-1 was the reference of shear deficient beams, was tested without strengthening, and used as a baseline comparison to evaluate the contribution of strengthening material to shear capacity. Specimen will also refer to the repaired & strengthened specimens. Specimens, apart from the reference beam, have been evaluated in two separate groups. Two specimens in the first 489

group were initially tested up to failure. It was aimed to evaluate the behavior of RC beams with different damage degree. To acquire different damage form and degree, one specimen was tested without strengthening. It was planned to obtain the damage within the limits permitted by ACI 224 committee report [8]. One major and both large and small cracks was observed for the specimen. Remaining was tested after strengthening. Photos of the collapsed specimens are presented in Fig. 1. SPEC-3, which shear damage was limited with one major and both large and small scaled cracks, were strengthened with side-bonded CFRP strips. As the tension and compression face of SPEC-2 was heavily damaged, specimens were wrapped to obstruct similar cracking pattern after strengthening. CFRP spacing was ideal to hinder crack propagation [7]. Undamaged specimens, two specimens, Spec-4 and Spec-5, from the second group, were strengthened with the identical strengthening schemes of repaired & strengthened specimens for comparison [10]. The details of different ways of strengthening schemes are presented in Fig. 2 IV. EXPERIMENTAL STUDY All specimens were tested under cyclic loading. To perform cyclic load to the specimen, a loading column was designed with hinges by the beam s free end. Loading column contained two hinges, a load cell and a hydraulic jack. The capacity of the hydraulic jack was 500kN while the load cell s capacity was 400kN with 0.06% linearity. Load was applied in cycles of loading and unloading. Load cycles were selected as they will help to evaluate the flexure and shear crack propagations and their affect to behavior. Loading was increased up to yield of flexural reinforcements or until the failure of the specimen. Four linear variable differential transformers (LVDTs) were used to monitor displacements. The LVTD s are located at the end of the beam for maximum displacement, under the rigid support to calculate the undesired displacement and finally on the rigid support to calculate the rotation. A schematic view of experimental set-up is shown in Fig. 3. V. REPAIRING AND STRENGTHENING PROCEDURE A. Epoxy Injection Technique The repairing process was started with purifying the damaged-beam with compressed air. Right after that treatment, the damage degree of the cracks became observable. Thereafter, determined spalled and damaged concrete was chipped out from the beam body. Pieced cracks that are in a manner which cannot be cured with epoxy, especially at the tension and compression face was filled with SikaMonoTop620. Afterwards, injection nipples were installed along the cracks at about 200mm centers on both sides of the beam. Sikadur30 was used to fix the injection nipples as well as to seal the small scaled surface cracks. After designating that the cracks were properly sealed, the surface of the beam was leveled until obtaining the original shape and dimensions. The injection of low viscosing epoxy, Sikadur52, was fulfilled when the cure period of Sikadur30 was finalized. A special hydraulic pump was used for injection. During the injection process a constant pressure, which do not cause additional damage to the existing cracks, was provided. The epoxy injection was started from the lowest nipple and carried on until the epoxy was executed from the above nipple. Thereafter, the lower injection nipple was capped and the injection was carried out from the above nipple. The process was repeated for each nipple until designating that the epoxy completely filled the crack. After drying of the injected epoxy, all nipples were removed from the beam surface. B. CFRP and EPOXY Adhesive SikaWrap 230c (unidirectional) CFRP sheets were used for strengthening and Sikadur-330 was used as adhesive. Two different surface preparation procedures were carried out before attaching the CFRP strips. The surface of the specimens, which were repaired & strengthened, was almost covered with epoxy; actually there is no need for sand blasting for these specimens. Notwithstanding, the surface was leveled and concrete parts without epoxy were sand blasted [9]. Apart from the first application, the undamaged specimens outer weak surface of the concrete was properly removed with sand blasting. Afterwards, loose particles on the surface of the specimens were cleaned with compressed air to prepare the specimens for bonding. Bonding procedure was entirely identical for all specimens. The epoxy resin was mixed in accordance with manufacturer s directions and applied on the prepared concrete surface and to CFRP strips. Afterwards, CFRP laminates were attached at the designated places and a roller was used to guarantee impregnation of the sheets by the resin. Thereafter, another layer of epoxy was put on top of the fabric and the excess epoxy was removed. Finally, the system was left for curing at room temperature for at least three weeks before testing. The humidity ratio at the laboratory was measured throughout the curing period with hygrometer. It was checked to decide whether humidity was influencing the strengthening period or not. The same strengthening procedure was carried out for all strengthened specimens. 490

Initial State of SPEC-2 Initial State of SPEC-3 Fig. 1 Photos of the Collapsed Specimens Section A-A Section A-A 120 350 d=320 120 350 d=320 400 a=1600 a d 5.0 1700 Spec-2, Spec-4 (Sf=350mm wf=50 mm) (Sf=350mm wf=100 mm) Rigid Wall Rigid Floor 400 Fig. 2 CFRP Arrangements for Specimen Beams LVDT Hinge Load Cell Hydraulic Jack Hinge Fig. 3 Test Setup and Instrumentation VI. OBSERVED BEHAVIOR AND FAILURE MODES To designate the experimental work s success, repaired & strengthened specimens behavior was primarily compared with SPEC-1, unstrengthened and initially uncracked control specimen. SPEC-1 was failed in shear due to critical shear crack propagation at -61.90kN load level. In all tests, repaired specimens reached and exceeded the strength of control beam and furthermore showed better behavior. SPEC-2 was strengthened by considering that the tension face was heavily damaged and a main crack at the beam body was situated. In this instance, inclined CFRP strips in which vertical CFRP strips were wrapped the beam at the overlapping regions was preferred for strengthening. Although the beam was heavily damaged, beam behavior was developed by the evaluated repair and CFRP strengthening technique. a=1600 1700 Spec-3, Spec-5 (Sf=200 mm wf=50 mm) Side Bonded a d 5.0 Dimensions in mm. Longitudinal compressive and tension reinforcements of the beam were reached at their yield strengths at 106.33kN and - 105.21kN load, respectively. Specimen was constrained and finished two more load cycles after the yield of the longitudinal reinforcements. However, localization of shear cracks at a section compelled the strips to higher stresses that they can resist and right after CFRP strips were ruptured at - 103.82kN load level. As the strengthened part lost its resistance against shear, critical shear crack propagation was materialized abruptly at the decayed section as can be seen from Fig. 4 (a). The repaired main crack was endured until the rupture but abandoned and heavily damaged right after the failure occurrence. The behavior of SPEC-4 did not bear a resemblance to SPEC-3. In spite of the new load cycles that were exposed to the SPEC-4, no significant increase on the number and size of cracks has seen after the yield of the longitudinal reinforcements. In addition, the new propagated and previously developed shear cracks did not intensify at a section. Therefore, CFRP strips were not compelled under increasing stresses as much as SPEC-2. As the specimen s behavior was reliable, a plastic hinge was formed between the supporting base and all through the cross section of the beam. This resulted in a ductile beam, which is able to undergo visible deflection without losing its load carrying capacity (Fig. 4). 491

CFRP Rupture Plastic Hinge (a) (b) Fig. 4 Failure modes of Specimens Shear Crack (a) SPEC-3 and SPEC-5 showed similar behavior and strength when tested. The only distinction between these specimens is the region where the main shear cracks were advanced. Various shear cracks were developed at the shear span until completing the 90 kn load level but none of these cracks were critical. However, during the forward loading step of 90 kn load cycle, both large and small scaled shear cracks were intensified between the fifth inclined cross and the sixth inclined cross. There after specimen strength was decreased %1. Notwithstanding, an increase at strength was observed and specimen straightened up that unconscious state without failure. As the load increased, small scaled cracks length and wideness was increased at once and that cause the specimen to fail in shear at 93.92 kn load level (Fig. 5 (a)). Shear cracks were not propagated at a specific section but all throughout the shear span for SPEC-5. Besides, less shear crack propagations were also observed according to SPEC-3. It was expected that specimen behavior will be directed to flexural while testing. However, at 97.31 kn load level main shear crack, which was developed between the third inclined cross and the fourth inclined cross, was advanced abruptly and caused the beam to fail in shear as seen from Fig. 5. Fig. 5 Failure modes of Specimens (b) Shear Crack According to test results, the repair technique that was selected in the experimental program is capable of restoring the ultimate capacity of the earthquake-damaged RC beams. The contribution of strengthening material to shear capacity of the strengthened specimens can be seen from Table I. Accordingly, CFRP usage exhibited satisfying increase at load-carrying capacity. All CFRP applications were increased the strength and behavior of the undamaged strengthened specimens in different manner. But behavior similarity was observed for the repaired and unrepaired specimens. That proves the success of repairing procedure. 492

TABLE I EXPERIMENTAL RESULTS Specimen # (1) Cracking Flexure (2) Flexural Yield (3) Failure (4) Stiffness at Yield (kn/mm) (8) Ductility Ratio (9) Increase in Ultimate Strength (10) Failure Mode at Ultimate (11) Specimen-1 Control 39.2 ----- -61.9 ----- ----- ----- Shear Specimen -2 Repaired& Strengthened 33.1 106.3-103.8 3.72 1.92 1.72 Flexure-Shear Specimen -3 Repaired& Strengthened 24.8 ----- 93.9 ----- ----- 1.52 Shear Specimen -4 Strengthened -37.5 106.5 107.5 4.57 1.99 1.72 Flexure Specimen -5 Strengthened 36.6 ----- 97.3 ----- ----- 1.57 Shear *Forward loading step was described with positive mark and backward loading step was described with negative mark in Table I VII. CONCLUSION In the experimental program, the behavior and failure modes of earthquake-damaged RC beams were investigated. Tests results indicated that repair and strengthening technique is capable of restoring the ultimate capacity of the earthquakedamaged RC beams. A strength similarity with a distinction of 4% according to references was obtained for the repaired & strengthened specimens. Accordingly, the evaluated method in the experimental program has the ability of advancing the behavior of earth-quake damaged RC beams to resembling level [11]. The evaluated technique was behaved enormously prosperous that the crack patterns of repaired specimens were entirely changed according to the prior crack patterns. Additionally, the failure of the repaired specimen was materialized because of the new cracks that have been developed on a section other than that of the critical ones were situated. The behavior of the specimens, which were failed due to concrete cover separation while initial testing, was developed after wrapping. Besides, initially occurred failure was obstructed. In this instance, choosing the right strengthening scheme by considering the initially materialized failure mode is essential for improving the behavior. The beams that are repaired & strengthened after being brought to original position have the yield stiffness of repaired & strengthened specimens were decreased to up to 23% when compared with the strengthened reference specimens. Accordingly, strengthening material was not contributed effectively for increasing the initial stiffness and the yield stiffness of repaired specimen. As mechanical anchorage usage could produce extra harm to the specimens, it was not preferred to be performed to the earthquake-damaged RC beams in the experimental program. [2] Emmanuelle, D, Chafika, D., François, B, B., Repair and Strengthening of Reinforced Concrete Beams Using Composite Materials 2nd International PhD Symposium in Civil Engineering, 1998, pp. 1-8. [3] Buyukozturk, O., Hearing, B., Failure Behavior of Pre-cracked Concrete Beams Retrofitted with FRP, Journals of Composites for Construction, 1998, Vol. 2, pp. 138-144. [4] Shamim, A., Sheikh, A., Derose, D., Mardukhi, J., Retrofitting of Concrete Structures for Shear and Flexure with Fiber-Reinforced Polymer, ACI Structural Journal, 2002, Vol. 99, pp. 451-459. [5] Jayaprakash, J, Samad, A, A, A., Abbasovich A, A.,,Abang, A, A, A, Shear Capacity Of Precracked And Non-Precracked Reinforced Concrete Shear Beams With Externally Bonded Bi-Directional CFRP Strips, Journal of Composites for Construction, Article in Press. [6] Arduini M, Nanni A. Behaviour Of Pre-Cracked RC Beams Strengthened With Carbon FRP Sheets, Journal of Composites for Construction, 1997;1(2):14 043. [7] ACI Committee 318. Building Code Requirements for Structural Concrete, American Concrete Institute Committee, 2005, 430 pp. [8] ACI 224.1R-93. Causes, Evaluation, and Repair of Cracks in Concrete Structures, American Concrete Institute Committee, 1998, 22 pp. [9] ACI Committee 440. State-of-the-art Report on Fiber Reinforced Plastic (FRP) Reinforcement for Concrete Structures, American Concrete Institute Committee, 1996, Detroit, Michigan, 68 pp. [10] Tanarslan, H, M,. Altin, S,. Ertutar, Y,. The Effects of CFRP Strips for Improving Shear Capacity of RC Beams, Journal of Reinforced Plastics and Composites, 2008, Vol. 27, No. 12, 1287-1308 [11] Tanarslan, H, M,. Repairing&Strengthening of Earthquake Damaged RC Beams with CFRP Strips, An Experimental Investigation, Magazine of Concrete Research, 2010, No. 5, 365-378 REFERENCES [1] Swamy RN, Jones R, Charif A. The Effect Of External Plate Reinforcement On The Strengthening Of Structurally Damaged RC Beams. The Structural Engineering 1989;67(3):45-493