Supplementary Material

Similar documents
Supporting Information

A prochelator with a modular masking group featuring hydrogen peroxide activation with concurrent fluorescent reporting

4026 Synthesis of 2-chloro-2-methylpropane (tert-butyl chloride) from tert-butanol

The D-glucosamine-derived recoverable catalyst for Mizoroki-Heck reactions under solvent-free conditions

Online edition for students of organic chemistry lab courses at the University of Colorado, Boulder, Dept of Chem and Biochem.

and its application in the synthesis of Nilotinib intermediate

Experimental procedures. Solid phase peptide synthesis (SPPS)

SYNTHETIC STUDIES ON TULEARIN MACROLIDES. M.Montserrat Martínez, Luis A. Sarandeses, José Pérez Sestelo

CH243: Lab 4 Synthesis of Artificial Flavorings by Fischer Esterification

Alkoxycarbonylation of Ethylene with Cellulose in Ionic Liquids

Structure-Based Design of Covalent Siah Inhibitors

Proton Nuclear Magnetic Resonance Spectroscopy

Supporting Information

A Ratiometric NMR ph Sensing Strategy Based on Slow- Proton-Exchange (SPE) Mechanism

A Grignard reagent formed would deprotonate H of the ethyl alcohol OH.

Ceric ammonium nitrate catalyzed mild and efficient α-chlorination of ketones by acetyl chloride

Supplementary Information for

Enantiomers: Synthesis, characterization, and resolution of tris(ethylenediamine)cobalt(iii) chloride Introduction:

A Simple and efficient method for mild and selective oxidation of propargylic alcohols using TEMPO and calcium hypochlorite

Identification of Unknown Organic Compounds

Convenient and robust one-pot synthesis of symmetrical and unsymmetrical benzyl thioethers from benzyl halides using thiourea

Page 1 of 5. Purification of Cholesterol An Oxidative Addition-Reductive Elimination Sequence

Syntheses of partially hydrogenated [1,2,4]triazolo[4,5-a] pyrimidine-4-ones through cyclisation of 2-arylidenehydrazino- 6-methyl-4-pyrimidones

Syllabus CHM 2202 Organic Chemistry Laboratory II Spring 2011

Experiment 6 Qualitative Tests for Alcohols, Alcohol Unknown, IR of Unknown

PROTON NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY (H-NMR)

HOMEWORK PROBLEMS: IR SPECTROSCOPY AND 13C NMR. The peak at 1720 indicates a C=O bond (carbonyl). One possibility is acetone:

Synthesis and Antimicrobial Activity of 7-Amino cephalosporanic Acid Derivatives of Amino Acids and Peptides

Supporting information. Cyclic peptide-polymer conjugates: grafting to VS grafting from

APPENDIX 2: A BRIEF GUIDE TO WRITING IN CHEMISTRY

Supporting Information. Copyright Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2008

NMR Chemical Shifts of Common Laboratory Solvents as Trace Impurities

EXPERIMENT Aspirin: Synthesis and NMR Analysis

Enzyme Pre-Lab. Using the Enzyme worksheet and Enzyme lab handout answer the Pre-Lab questions the pre-lab must be complete before beginning the lab.

Figure 8. Example of simple benzene naming with chlorine and NO 2 as substituents.

Supplementary Information. Primary amino acid lithium salt as a catalyst for asymmetric Michael addition of isobutyraldehyde with β-nitroalkenes.

Organic Chemistry Tenth Edition

Determination of the amount of sodium carbonate and sodium hydroxide in a mixture by titration.

Synthesis of Fragrant Esters

Experiment 3: Extraction: Separation of an Acidic, a Basic and a Neutral Substance

Nuclear Magnetic Resonance

Green Principles Atom Economy Solventless Reactions Catalysis

Synthesis and Analysis of Acetyl Salicylic Acid

CHEMISTRY 338 THE SYNTHESIS OF LIDOCAINE

ph-induced outward Movement of Star Centers within Coumarin-Centered Star-Block Polymer Micelles Supporting Information

Self-Propelled Chemotactic Ionic Liquid Droplets

Neutralization Reactions. Evaluation copy

Light-driven Nanoscale Chiral Molecular Switch: Reversible Dynamic Full Range Color Phototuning

MASS SPECTROMETRIC IDENTIFICATION OF SOME SULPHUR CONTAINING PHENALKYLAMINE DESIGNER DRUGS *

Liquid phase. Balance equation Moles A Stoic. coefficient. Aqueous phase

PET Recycling. Nicholas Robusto Maggie Ifarraguerri Nathaniel Lawton Isabel Hefner

SYNTHESIS AND ANALYSIS OF A COORDINATION COMPOUND OF COPPER

Alkanes. Chapter 1.1

Summer Holidays Questions

OXIDATION-REDUCTION TITRATIONS-Permanganometry

#9 Condensation Polymerization: Preparation of Nylon 6/10

Chemistry: Chemical Equations

Acid-Base Extraction.

CERTIFICATE OF ANALYSIS Methyl 4-Hydroxybenzoate

NMR and other Instrumental Techniques in Chemistry and the proposed National Curriculum.

1. Read P , P & P ; P. 375 # 1-11 & P. 389 # 1,7,9,12,15; P. 436 #1, 7, 8, 11

Chemiluminescence: Synthesis of Cyalume 3 Chemiluminescence: Synthesis of Cyalume and Making it Glow

Q1: What is the ph Scale? Q6: As acids become more acidic, their ph values

A Greener Synthesis of Creatine

Unit title: Chemical Laboratory Techniques

Name Lab #3: Solubility of Organic Compounds Objectives: Introduction: soluble insoluble partially soluble miscible immiscible

EUDRAGIT E 100, EUDRAGIT E PO and

CHM1 Review for Exam 12

Recovery of Elemental Copper from Copper (II) Nitrate

EXPERIMENT 3 (Organic Chemistry II) Nitration of Aromatic Compounds: Preparation of methyl-m-nitrobenzoate

Synthesis of Isopentyl Acetate

CHEMICAL REACTIONS AND REACTING MASSES AND VOLUMES

Nuclear Magnetic Resonance Spectroscopy

Honors 227 Fall 2007 Laboratory with Ms. Clark. Enzymes, Reactions, Metabolism and Homeostasis

Solvent-free, catalyst-free Michael-type addition of amines to electron-deficient alkenes

TABLE OF CONTENTS CHAPTER TITLE PAGE DECLARATION ACKNOWLEDGEMENT ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF APPENDICES

Supporting Information

Unit 2: Quantities in Chemistry

Nomenclature and Household Items

Environmental Water Testing: Surface Water, Groundwater, Hard Water, Wastewater, & Seawater

Number of moles of solute = Concentration (mol. L ) x Volume of solution (litres) or n = C x V

The Grignard Reaction. Preparation of Benzoic Acid

EXPERIMENT Oil of Wintergreen: Synthesis and NMR Analysis

Reactions of Aldehydes and Ketones

EXPERIMENT 9 (Organic Chemistry II) Pahlavan - Cherif Synthesis of Aspirin - Esterification

Synthesis of tetraamminecopper(ii) sulfate, [Cu(NH 3 ) 4 ]SO 4 The reaction for making tetraamminecopper(ii) sulfate and some molar masses are:

Preparation of frequently used solutions

CORK INSTITUTE OF TECHNOLOGY INSTITIÚID TEICNEOLAÍOCHTA CHORCAÍ

Separation by Solvent Extraction

Sorbents. [ A] [ A] aq. Strong affinity = large K D. Digital chromatography: all-or. or-nothing LC mechanism to extremes K =

LABORATORY OF ORGANIC CHEMISTRY

EXPERIMENT 5: DIPEPTIDE RESEARCH PROJECT

Solving Spectroscopy Problems

Working with Hazardous Chemicals

1. Qualitative Analysis of Chromium, Iron, and Copper

Experiment 5: Column Chromatography

PRODUCT DATA SHEET PDS A115_E. Metric thread M 1.5 pitch CEI EN CEI EN 50262

PECTINS. SYNONYMS INS No. 440 DEFINITION DESCRIPTION. FUNCTIONAL USES Gelling agent, thickener, stabilizer, emulsifier CHARACTERISTICS

Solid-phase Synthesis of Homodimeric Peptides: Preparation of Covalently-linked Dimers of Amyloid-beta Peptide

PRODUCT DATA SHEET PDS A17_E

Transcription:

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 1 Supplementary Material NMR spectra ( 1 H and 13 C), infrared and the typical procedure for preparation of the compounds. GENERAL PROCEDURE FOR THE ANTHRANILIC ACIDS SYNTHESIS All anthranilic acids were synthesized following the same procedure. A mixture of isatin (1 mmol), 5 ml of sodium hydroxide solution 5% w/w and 5 ml of hydrogen peroxide 30% w/v was allowed to stir at room temperature for 15 or 45 minutes (Table I). The end of the reactions was confirmed by TLC, employing 50% hexane ethyl acetate as eluent. After total consumption of the substrate, hydrochloric acid 6 M was added dropwise until precipitation of the product, which was filtered under vacuum. The final ph of the resulting solution was 1 to 3 and was measured with an universal indicator paper. The yields, reaction times and solution ph values are shown in Table I. SPECTROSCOPIC AND SPECTROMETRIC METHODS 1 H and 13 C NMR were obtained on a Bruker DRX-200 model, operating at 200 MHz for 1 H nuclei and 50 MHz for 13 C in DMSO-d 6. Chemical shifts (δ) are expressed in parts per million (ppm) and values of coupling constants (J), in Hertz (Hz). IR spectra were recorded on a Nicolet Magna 760 (KBr). 1 H and 13 C NMR data and melting point of the products 5-BROMO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3493, 3379, 3060, 2991, 2879, 2838, 2706, 2625, 1671, 1610, 1584, 1547, 1480, 1421, 1312, 1292, 1239, 1159, 1127, 1083, 903, 812, 789, 688, 628, 554, 516, 441; NMR 1 H δ H (200 MHz, DMSO): 7.61 (1H, d, J 4 Hz), 7.21 (1H, dd, J 4 and 8 Hz), 6.76 (1H, d, J 8 Hz). NMR 13 C δ C (50 MHz, DMSO-d 6 ): 168.32, 150.55, 136.08, 132.81, 118.67, 111.14, 104.54; Melting Point: 212 C 5-CHLORO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3504, 3470, 3390, 3359, 3011, 2884, 2840, 1674, 1613, 1589,1552, 1483, 1421, 1291, 1238, 1157, 1133, 1088, 882, 810, 788, 705, 651, 655, 518, 442; NMR ¹H δ H (200 MHz, DMSO): 7.61 (1H, d, J 4 Hz), 7.21 (1H, dd, J 4 and 8 Hz), 6.72 (1H, d, J 8 Hz); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 168.41, 150.24, 133.39, 129.83, 118.22, 117.51, 110.48; Melting Point: 212 C 5-NITRO-ANTHRANILIC ACID IV ν max (KBr), cm -1 : 3542, 3482, 3414, 3368, 3305, 3216, 3088, 1694, 1639, 1629, 1491, 1428, 1327, 1290, 1245, 1168, 1141,1075, 920, 827, 749, 696, 644, 569, 521, 505; NMR 1 H δ H (200 MHz, DMSO): 8.56 (1H, d, J 2 Hz), 8.04 (1H, dd, J 2 and 10 Hz); 7.85 (2H, s); 6.83 (1H, d, J 10 Hz); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 168.07, 156.11, 135.03, 128.70, 128.62, 116.44, 108.45; Melting Point: 280 C 5-METHYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3425, 3325, 3022, 2953, 2926, 1674, 1599, 1569, 1493, 1421, 1303, 1241, 1214, 1162, 913, 818, 792, 758, 675, 620, 553, 524, 475, 439; NMR 1 H δ H (200 MHz, DMSO-d 6 ): 7.49 (1H, d, J 2 Hz),

2 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO 7.04 (1H, dd, J 2 and 8 Hz), 6.64 (1H, d, J 8 Hz), 2.12 (3H, s); NMR 13 C δ C (50 MHz, DMSO): 169.57, 149.39, 134.80, 130.69, 122.90, 116.52, 109.49, 19.84; Melting Point: 173 C 5-IODO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3501, 3416, 3388, 3008, 2934, 2891, 2843, 2724, 2624, 1898, 1759, 1678, 1614, 1578, 1542, 1476, 1419, 1321, 1290, 1228, 1162, 1124, 1076, 1043, 914, 865, 811, 786, 688, 620, 558, 517, 448, 421; NMR 1 H δh (200 MHz, DMSO): 7.91 (1H, d, J 2 Hz), 7.44 (1H, dd, J 2 and 8 Hz); 6.60 (1H, d, J 8 Hz); NMR 13 C δc (50 MHz, DMSO-d6): 168.19, 150.85, 141.39, 138.86, 119.02, 112.00, 74.09; Melting Point: 210 C 5-FLUORO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3503, 3381, 3078, 2893, 2587, 1674, 1591, 1562, 1491, 1434, 1417, 1310, 1291, 1238, 1199, 1151, 935, 883, 828, 799, 788, 757, 676, 559; NMR 1 H δh (200 MHz, DMSO): 7.36 (1H, dd, J 4 and 10 Hz), 7.14 (1H, ddd, J 2, 4 and 10 Hz), 6.75 (1H, dd, J 4 and 10 Hz); NMR 13 C δc (50 MHz, DMSO-d6): 168.59, 151.44 (d, J 229.5 Hz), 148.31, 121.72 (d, J 22 Hz), 117.83 (d, J 7 Hz), 115.41 (d, J 22 Hz), 109.29 (d, J 7 Hz); Melting Point: 180 C 4-FLUORO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3506, 3385, 3064, 2911, 2854, 2720, 2647, 2614, 2538, 1664, 1600, 1570, 1497, 1429, 1324, 1254, 1179, 1142, 1114, 979, 892, 837, 762, 688, 613, 530, 462, 447; NMR 1 H δh (200 MHz, DMSO): 7.77-7.69 (1H, m), 6.48 (1H, dd, J 2 e 10 Hz), 6.29 (1H, td, J 2 and 10 Hz); NMR 13 C δc (50 MHz, DMSO-d6): 168.79, 165.69 (d, J 246 Hz), 153.60 (d, J 13 Hz), 134.13 (d, J 13 Hz), 106.71, 102.32 (d, J 23 Hz), 101.16 (d, J 23 Hz); Melting Point: 196 C 3-CHLOROANTHRANILIC ACID IV ν max (KBr), cm 1 : 3478, 3366, 3100, 3057, 3006, 2907, 2864, 2825, 2715, 2632, 2567, 2539, 1667, 1610, 1586, 1547, 1454, 1420, 1337, 1311, 1250, 1164, 1092, 1077, 919, 892, 855, 749, 708, 612, 574, 547, 459; NMR 1 H δh (200 MHz, DMSO-d6): 7.73 (1H, dd, J 2 and 8 Hz), 7.46 (1H, dd, J 2 and 8 Hz), 6.56 (1H, t, J 8). NMR 13 C δc (50 MHz, DMSO): 169.08, 146.89, 133.68, 130.35, 118.98, 115.06, 111.79; Melting Point: 190 C 3,5-DICHLORO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3490, 3371, 3081, 2706, 1678, 1615, 1573, 1541, 1424, 1402, 1250, 1219, 1152, 1075, 876, 839, 788, 702, 600, 552, 461; NMR 1 H δh (200 MHz, DMSO): 7.68 (1H, d, J 2 Hz), 7.59 (1H, d, J 2 Hz); NMR 13 C δc (50 MHz, DMSO-d6): 167.98, 145.94, 132.86, 129.35, 119.92, 117.49, 112.27; Melting Point: 230 C 3,5-DIBROMO-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3467, 3363, 3083, 1784, 1682, 1599, 1564, 1537, 1452, 1420, 1326, 1306, 1265, 1243, 1223, 1063, 881, 789, 710, 689, 590, 544, 456; NMR 1 H δ H (200 MHz, DMSO): 7.84 (1H, d, J 2 Hz), 7.81 (1H, d, J 2 Hz); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 167.81, 147.08, 138.35, 132.86, 112.98, 110.42, 104.69; Melting Point: 234 C

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 3 3-BROMO-5-METHYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3480, 3365, 2921, 2716, 2604, 1780, 1675, 1620, 1578, 1545, 1480, 1461, 1423, 1332, 1310, 1274, 1235, 1105, 1075, 1001, 938, 893, 868, 789, 705, 593, 553, 481, 456; NMR 1 H δ H (200 MHz, DMSO): 7.58 (1H, d, J 2 Hz), 7.47 (1H, d, J 2 Hz); 2.15 (3H, s); NMR ¹³C δ C (50 MHz, DMSO-d 6 ): 168.92, 145.58, 137.66, 130.93, 124.69, 111.63, 109.53, 19.33; Melting Point: 205 C N-ACETYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3481, 3376, 3181, 3123, 2927, 2918, 2609, 2798, 2789, 2595, 2667, 2539, 2502, 2474, 1702, 1655, 1605, 1581, 1522, 1453, 1430, 1377, 1327, 1312, 1298, 1268, 1243, 1164, 1149, 1088, 1042, 968, 881, 845, 792, 769, 755, 699, 651, 604, 558, 527; NMR 1 H δ H (200 MHz, DMSO-d 6 ): 11.04 (1H, s), 8.45 (1H, d, J 8 Hz), 7.96 (1H, dd, J 2 e 8 Hz), 7.55 (1H, td, J 2 and 8 Hz), 7.11 (1H, td, J 2 and 8 Hz), 2.11 (3H, s); NMR 13 C δ C (50 MHz, DMSO): 169.45, 168.44, 140.85, 133.95, 131.02, 122.51, 119.19, 116.46, 24.96; Melting Point: 184 C N-ALLYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3376, 3084, 3014, 2855, 2855, 2642, 2562, 1668, 1574, 1517, 1443, 1420, 1411, 1319, 1252, 1172, 932, 912, 753, 742, 668, 523; NMR ¹H δ H (200 MHz, DMSO-d 6 ): 7.79 (1 H, dd, J 2 and 8 Hz), 7.33 (1H, td, J 2 and 8 Hz); 6.67 (1 H, d, J 8 Hz); 6.55 (1H, t, J 8 Hz), 6.02-5.83 (1H, m), 5.26-5.10 (2 H, m), 3.85 (2 H, J 4 Hz); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 170.01, 150.71 (C-NH 2 ), 135.31, 134.31, 115.49, 114.31, 111.50, 110.07, 44.38; Melting Point: 119 C N-BENZYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3376, 3029, 2916, 2865, 1663, 1576, 1518, 1495, 1441, 1411, 1363, 1625, 1277, 1249, 1236, 1176, 1166, 1154, 907, 836, 753, 728, 694, 658, 556, 527, 488, 457; NMR 1 H δ H (200 MHz, DMSO-d 6 ): 7.81 (1H, dd, J 2 and 8 Hz), 7.34-7.25 (5H, m), 6.65 (1H, d, J 8 Hz), 6.55 (1H, t, J 8 Hz), 4.44 (2H, s); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 169.96, 150.64, 139.32, 134.31, 131.65, 128.48, 127.00, 114.46, 111.63, 110.30, 45.85; Melting Point: 182 C 5-IODO-N-ALLYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3372, 3075, 2923, 2851, 2623, 2543, 1668, 1567, 1503, 1441, 1422, 1402, 1310, 1233, 1168, 1105, 991, 932, 899, 807, 787, 688, 585, 516; NMR 1 H δ H (200 MHz, DMSO-d 6 ): 8.00 (1 H, d, J 2 Hz), 7.56 (1 H, dd, J 2 and 8 Hz), 6.54 (1H, d, J 8 Hz), 5.99-5.80 (1H, m), 5.22-5.09 (1H, m), 3.85 (2 H, J 6 Hz); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 168.71, 150.05, 142.04, 139.28, 134.80, 115.67, 114.54, 112.56, 74.33, 44.27; Melting Point: 163 C 5-IODO- N-BENZYL-ANTHRANILIC ACID IV ν max (KBr), cm 1 : 3370, 3082, 3066, 3028, 2921, 2892, 2856, 2721, 2621, 2539, 1902, 1671, 1564, 1499, 1466, 1440, 1402, 1360, 1312, 1238, 1165, 1105, 1078, 1026, 898, 837, 809, 786, 749, 697, 684, 642, 594, 560, 517, 505, 426; NMR 1 H δ H (200 MHz, DMSO-d 6 ): 8.2 (1H, d, J 2 Hz), 7.52 (1H, dd, J 2 and 10 Hz); 7.33-7.23 (5H, m), 6.52 (1H, d, J 10 Hz), 4.44 (1H, s); NMR 13 C δ C (50 MHz, DMSO-d 6 ): 168.63, 149.93, 142.00, 139.87, 138.87, 129.21, 128.52, 126.94, 114.94, 112.81 74.52, 45.66; Melting Point: 163 C

4 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 1 - IR of 5-chloro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 5 Figure 2-1 H NMR of 5-chloro-anthranilic acid.

6 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 3-13 C NMR of 5-chloro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 7 Figure 4 - IR of 5-bromo-anthranilic acid.

8 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 5-1 H NMR of 5-bromo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 9 Figure 6-13 C NMR of 5-bromo-anthranilic acid.

10 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 7 - IR of 5-nitro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 11 Figure 8-1 H NMR of 5-nitro-anthranilic acid.

12 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 9-13 C NMR of 5-nitro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 13 Figure 10 - IR of 5-methyl-anthranilic acid.

14 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 11-1 H NMR of 5-methyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 15 Figure 12-13 C NMR of 5-methyl-anthranilic acid.

16 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 13 - IR of 5-iodo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 17 Figure 14-1 H NMR of 5-iodo-anthranilic acid.

18 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 15-13 C NMR of 5-iodo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 19 Figure 16 - IR of 5-fluoro-anthranilic acid.

20 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 17-1 H NMR of 5-fluoro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 21 Figure 18-13 C NMR of 5-fluoro-anthranilic acid.

22 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 19 - IR of 4-fluoro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 23 Figure 20-1 H NMR of 4-fluoro-anthranilic acid.

24 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 21-13 C NMR of 4-fluoro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 25 Figure 22 - IR of 3-chloro-anthranilic acid.

26 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 23-1 H NMR of 3-chloro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 27 Figure 24-13 C NMR of 3-chloro-anthranilic acid.

28 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 25 - IR of 3,5-dichloro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 29 Figure 26-1 H NMR of 3,5-dichloro-anthranilic acid.

30 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 27-13 C NMR of 3,5-dichloro-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 31 Figure 28 - IR of 3,5-dibromo-anthranilic acid.

32 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 29-1 H NMR of 3,5-dibromo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 33 Figure 30-13 C NMR of 3,5-bromo-anthranilic acid.

34 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 31 - IR of 3-bromo-5-methyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 35 Figure 32-1 H NMR of 3-bromo-5-methyl-anthranilic acid.

36 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 33-13 C NMR of 3-bromo-5-methyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 37 Figure 34 - IR of N-acetyl-anthranilic acid.

38 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 35-1 H NMR of N-acetyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 39 Figure 36-13 C NMR of N-acetyl-anthranilic acid.

40 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 37 - IR of N-allyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 41 Figure 38-1 H NMR of N-allyl-anthranilic acid.

42 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 39-13 C NMR of N-allyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 43 Figure 40 - IR of ácido N-benzyl-anthranilic acid.

44 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 41-1 H NMR of N-benzyl-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 45 Figure 42-13 C NMR of N-benzyl-anthranilic acid.

46 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 43 - IR of N-allyl-5-iodo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 47 Figure 44-1 H NMR of N-allyl-5-iodo-anthranilic acid.

48 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 45-13 C NMR of N-benzyl-5-iodo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 49 Figure 46 - IR of N-benzyl-5-iodo-anthranilic acid.

50 GABRIEL F. RIO, BÁRBARA V. SILVA, SABRINA T. MARTINEZ and ANGELO C. PINTO Figure 47-1 H NMR of N-benzyl-5-iodo-anthranilic acid.

SYNTHESIS OF A SERIES OF ANTHRANILIC ACIDS 51 Figure 48-13 C NMR of N-benzyl-5-iodo-anthranilic acid.