Lecture 14 Gas Tungsten Arc welding I Keywords: 14.1 Introduction

Similar documents
Chapter 5 - Aircraft Welding

SMARTY 160 POWER page 4-5 SMARTY 180 / 220 XL page 4-6 SMARTY TX 250 page 4-7. SMARTY TX 160 Alu page 4-8 SMARTY TX 220 Alu page 4-9

EML 2322L MAE Design and Manufacturing Laboratory. Welding

WORD DEFINITION WORD (NATIONAL LANGUAGE)

AN INTRODUCTION TO TIG WELDING. wws group

TIG WELDING TIPS by Tom Bell

Overview on Welding and Ergonomics

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation

8.2 FUSION WELDING. Types of welding processes. Oxyfuel gas welding

Lecture: 33. Solidification of Weld Metal

Problems in Welding of High Strength Aluminium Alloys

A Beginner s Guide to TIG Welding

Copper Alloys COPPER ALLOYS. Weld Tech News VOL 1. NO. 8

TABLE OF CONTENT

Job Ready Assessment Blueprint. Welding. Test Code: 4172 / Version: 01. Copyright All Rights Reserved.

Section 10.0: Electrode Erosion

Structural Steel Welding

WELDING & CUTTING MAIN EQUIPMENT

Gas Tungsten Arc Welding GTAW (40 Hours Course)

Welding. Module

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association

INDIAN STANDARDS (BIS) ON WELDING

Lecture 35: Atmosphere in Furnaces

Stainless Steel Pipe Fabrication

Gas Metal Arc Welding. Product and Procedure Selection

ALLOY C276 DATA SHEET

Copper. Consumables. Copper and Copper Alloys. Welding Processes

A Beginner s Guide to MIG Welding

Lasline gases for laser welding and brazing, Expertise that gets right to the point

Coating Technology: Evaporation Vs Sputtering

LASER CUTTING OF STAINLESS STEEL

TIG torches to 3-5 Tungsten electrodes to 3-7 TIG consumables Miscellaneous

TITANIUM FABRICATION CORP.

Vacuum Pumping of Large Vessels and Modelling of Extended UHV Systems

Autogenous Laser Welding of Aluminum

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

EXTRACTION OF METALS

The TransCut 300 plasma cutting system - Plasmacutting with liquid working medium

Structural welding is a process by which the parts that are to be connected are heated and

Typical TIG-plasma solutions

3.3 Welding and welded connections

GAS SHIELDED-ARC WELDING

Gas tungsten arc welding, commonly called TIG (tungsten inert gas), produces an arc between a

TERMS AND TERMINOLOGY FOR WELDING PROCESSES AND WELD CONFIGURATIONS

CATHODIC PROTECTION SYSTEM DESIGN

Welding. ArcelorMittal Europe Flat Products. Definitions of welding and weldability. Consequences of welding

Comparison of Mechanical Properties on 15CDV6 Steel Plates by TIG- Welding with and without copper coated filler wires

FLAME CuTTIng te la P is utting B c

Drill Pipe Hard-facing

Metals and Non-metals. Comparison of physical properties of metals and non metals

Risks with the welding of stainless steel (2)

Welding Basics 1. Table Of Contents

SURFACE MODIFICATION OF METAL IMPLANTS WITH PLASMA SPRAYED LAYERS

STUDY OF SHIELDING GASES FOR MAG WELDING

GK Packing System Welding Instructions

WELDING PROCESSES. Chapter 1

ChoosingTungstenElectrodes

Field Welding Inspection Guide

A Beginners Guide to Flux Cored Arc Welding

WELDING TECHNOLOGY DEGREES AND CERTIFICATES. Welding Technology Degree. Shielded Metal Arc Plate and Pipe (270 hours) Certificate

WJM Technologies excellence in material joining

Vacuum Evaporation Recap

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators

NON DESTRUCTIVE TESTING & ASNT WELD INSPECTION & AWS

Steel production. Furnace linings made from carbon and graphite are applied for the production of primary iron.

Atomic Structure. Atoms consist of: Nucleus: Electrons Atom is electrically balanced equal electrons and protons. Protons Neutrons

2.3. Continuous Hot-Dip Galvanizing versus General (Batch) Galvanizing Rev 1.0 Jan GalvInfoNote. Introduction. Continuous Galvanizing

Heat Pipe Selection Revision 12/04/2001

FIELD ACCEPTANCE OF FIELD WELDING GUIDE

Welding Procedure Guide

Welding Terminology. Welders

Crevice Corrosion on Stainless Steel Propeller Shafts

FABRICATION OF STAINLESS STEEL FOR PRESENTED BY C.C.SAMPATH SREEVATSA STAINLESS STEEL FABRICATORS (P) LTD. CHENNAI WORKSHOP

Laser beam sintering of coatings and structures

ESAB Swift Arc Transfer TM MAG welding at very high travel speed

UNIT 4 METAL COATING PROCESSES

Effects of the MuCell Molding Process

EDEXCEL INTERNATIONAL GCSE CHEMISTRY EDEXCEL CERTIFICATE IN CHEMISTRY ANSWERS SECTION C

VIKING 3350 SERIES AUTO-DARKENING HELMETS 4.50 x 5.25 STANDARD REPLACEMENT LENS

North American Stainless

North American Stainless

PRELIMINARY BROCHURE. Uddeholm Ramax HH

Dissimilar Metal Corrosion

North American Stainless

Lasline, Nitrocut, Oxycut gases for laser cutting, Expertise that gets right to the point

AUSTENITIC STAINLESS DAMASCENE STEEL

High Rate Oxide Deposition onto Web by Reactive Sputtering from Rotatable Magnetrons

CENTRIFUGAL CASTING.

Additive manufacturing (aka 3D printing) of metallic materials Industrial applications and efficiency of technology

The soot and scale problems

Transcription:

Lecture 14 Gas Tungsten Arc welding I This chapter presents the principle of tungsten inert gas (TIG) welding process besides important components of TIG welding system and their role. This process is also known as gas tungsten arc welding (GTAW) process. Further, fundamentals of heat generation, arc stability and arc efficiency have also been described. Additionally, comparison of argon and helium as shielded gases has been discussed. Keywords: Tungsten inert gas welding, shielding gas, welding torch, arc stability, Arvs. He 14.1 Introduction Tungsten inert gas welding process also called as gas tungsten arc welding is named so because it uses a) electrode primarily made of tungsten and b) inert gas for shielding the weld pool to prevent its contamination from atmospheric gases especially when joining high strength reactive metals and alloys such as stainless steel, aluminium and magnesium alloys, wherever high quality weld joints need to be developed for critical applications like nuclear reactors, aircraft etc. Invention of this process in middle of twentieth century gave a big boost to fabricators of these reactive metals as none of the processes (SMAW and Gas welding) available at that time were able to weld them successfully primarily due to two limitations a) contamination of weld from atmospheric gases and b) poor control over the heat input required for melting (Fig. 14.1). Moreover, welding of aluminium and its alloys with shielded metal arc welding process can be realized using halide flux coated electrodes by overcoming the problems associated with Al 2 O 3, however, halides are very corrosive and therefore welding of aluminium is preferable carried out using inert shielding environment with the lerp of processes like GTAW and GMAW. Despite of so many developments in the field of welding, TIG process is invariably recommended for joining of thin aluminium sheets of thickness less than 1mm.

Fig. 14.1 Schematic of tungsten inert gas welding process 14.2 TIG welding system There are four basic components (Fig. 14.2) of TIG welding system namely a) DC/AC power source to deliver the welding current as per needs, b) welding torch (air/water cooled) with tungsten electrode and gas nozzle, c) inert shielding gas (He, Ar or their mixture) for protecting the molten weld pool contamination from atmospheric gases and d) controls for moving the welding torch as per mode of operation (manual, semi-automatic and automatic). This process uses the heat generated by an electric arc between the non-consumable tungsten electrode and work piece (mostly reactive metals like stainless steel, Al, Mg etc.) for melting of faying surfaces and inert gas is used for shielding the arc zone and weld pool from the atmospheric gases. 14.2.1 Power source TIG welding normally uses constant current type of power source with welding current ranging from 3-200A or 5-300A or higher and welding voltage ranging from 10-35V at 60% duty cycle. Pure tungsten electrode of ball tip shape with DCEN provides good arc stability. Moreover, thorium, zirconium and lanthanum modified tungsten electrodes can be used with AC and DCEP as coating of these elements on pure tungsten electrodes improves the electron emission capability which in turn enhances the arc stability. TIG welding with DCEP is preferred for welding of reactive metals like aluminium to take advantage of cleaning action due to development of mobile cathode spots in work piece side during welding which loosens the tenacious alumina oxide layer. This helps to clean the weld pool.dcen polarity is used for welding of metal such as carbon steel that don t require much cleaning.

Fig. 14.2 Details of components of GTAW system [Millerweld.com] 14.2.2 Welding Torch TIG welding torch includes three main parts namely non-consumable tungsten electrode, collets and nozzle. A collet is primarily used to hold the tungsten electrodes of varying diameters in position. Nozzle helps to form a firm jet of inert gas around the arc, weld pool and the tungsten electrode. The diameter of the gas nozzle must be selected in light of expected size of weld pool so that proper shielding of the weld pool can be obtained by forming cover of inert gas. The gas nozzle needs to be replaced at regular interval as it is damaged by wear and tear under the influence of intense heat of the welding arc. Damaged nozzle does not form uniform jet of inert gas around the weld pool for protection from the atmospheric gases. Typical flow rate of shielding inert gas may vary from 5-50 liters/min. TIG welding torch is generally rated on the basis of their current carrying capacity as it directly affects the welding speed and so the production rate. Depending upon the current carrying capacity, the welding torch can be either water or air cooled. Air cooled welding torch is generally used for lower range of welding current than water cooled torches. 14.2.3 Filler wire Filler metal is generally not used for welding thin sheet by TIGW. Welding of thick steel plates by TIG welding to produce high quality welds for critical applications such as joining of nuclear and aero-space components, requires addition of filler metal to fill the groove. The filler wire can be fed manually or using some wire feed mechanism. For feeding small diameter filler wires (0.8-2.4mm) usually push type wire feed mechanism with speed control device is used. Selection of filler metal is very critical for successful welding because in some cases even use of filler metal similar to that base metal causes cracking of weld metal especially when their solidification temperature range is every wide (>50 o C). Therefore, selection of filler wire should be done after giving full consideration to the following aspects such as mechanical property requirement, metallurgical compatibility, cracking tendency of base metal under welding conditions, fabrication conditions etc. For welding of aluminium alloys, Al-(5-12wt.%) Si filler is used as general purpose filler metal. Al-5%Mg filler is also used for welding of some aluminium alloys.

Welding of dissimilar steels namely stainless steel with carbon or alloy steels for high temperature applications needs development of buttering layer before welding for reducing carbon migration and residual stress development related problems. 14.2.4 Shielding gas Helium, Argon and their mixtures are commonly used as inert shielding gas for protecting the weld pool depending upon the metal to be welded, criticality of application and economics. Helium or hydrogen is sometimes added (1-2%) in argon for specific purposes such as increasing the arc voltage and arc stability which in turn helps to increase the heat of arc. The selection of inert gases to be used as shielding gas in GTAW and GMAW process depends upon the type of metal to be welded and criticality of their applications. Carbon dioxide is not used with GTAW process, at high temperature in arc environment, the thermal decomposition of the carbon dioxide produces CO and O 2. Generation of these gases adversely affect the quality and soundness of the weld joint and reduces the life of tungsten electrode. Inert Gases Argon and helium are the mostly commonly used shielding gases for developing high quality weld joints of reactive and ferrous metals. Small amount of hydrogen or helium is often added in argon to increase the penetration capability and welding speed. These two inert gases as shielding gas are different in many ways. Some of these features are described in following section. A. Heat of welding arc The ionization potential of He (25eV) is higher than Ar (16eV). Therefore, application of He as shielding gas results in higher arc voltage and hence different VI arc characteristics of arc than when argon is used as shielding gas. In general, arc voltage generated by helium for a given arc length during welding is found higher than argon. This results in hotter helium arc than argon arc. Hence, helium is preferred for the welding of thick plates at high speed especially metal systems having high thermal conductivity and high melting point. B. Arc efficiency Helium offers higher thermal conductivity than argon. Hence, He effectively transfers the heat from arc to the base metal which in turn helps in increasing the welding speed and arc efficiency. C. Arc stability

He is found to offer more problems related with arc stability and arc initiation than Ar as a shielding gas. This behaviour is primarily due to higher ionization potential of Hethan Ar. High ionization potential of helium means it will result in presence of fewer charged particles between electrode and work piece required for initiation and maintenance of welding arc. Therefore, arc characteristics are found to be different for Ar and He. A minima arc voltage is found in VI characteristics curve of an arc when both the gases are used as shielding gas but at different level of welding currents. With argon as shielding gas the welding current corresponding to the lowest arc voltage is found around 50A while that for helium occurs at around 150A (Fig. 14.3). Reduction in welding current below this critical level (up to certain range) increases the arc voltage; which permits some flexibility in arc length to control the welding operation. 50 Voltage [V] 40 30 20 Ar He 10 0 50 100 150 200 250 300 350 400 Current [A] Fig. 14.3 Influence of shielding gas on VI characteristics of GTAW process D. Flow rate of shielding gas Argon (density 1.783g/l) is about 1.33 and 10 times heavier than the air and the helium respectively. This difference in density of air with shielding gases determines the flow rate of particular shielding gas required to form a blanket over the weld pool and arc zone to provide protection against the environmental attack. Helium being lighter than air tends to rise up immediately in turbulent manner away from the weld pool after coming out of the nozzle. Therefore, for effective shielding of the arc zone, flow rate of helium (12-22 l/min) must be 2-3 times higher than the argon (5-12 l/min). Flow rate of shielding gas to be supplied for effective protection of weld pool is determined by the size of molten weld pool, sizes of electrode and nozzle, distance between the electrode and work piece, extent of turbulence being created ambient air movement (above 8-10km/hr). For given welding conditions and welding torch,

flow rate of the shielding gas should be such that it produces a jet of shielding gas so as to overcome the ambient air turbulence and provides perfect cover around the weld pool. Unnecessarily high flow rate of the shielding gas leads to poor arc stability and weld pool contamination from atmospheric gases due to suction effect. E. Mixture of shielding gases Small addition of hydrogen in argon increases arc voltage which burns the arc hotter and this in turn increases the weld penetration and welding speed like He. To take the advantage of good characteristics of He (thermal conductivity, high temperature arc) and Ar (good arc initiation and stability) a mixture of these two gases Ar-(25-75%)He is also used. Increasing proportion of He in mixture increases the welding speed and depth of penetration of weld. Addition of oxygen in argon also helps to increase the penetration capability of GTAW process owing to increase in arc temperature and plasma velocity (Fig. 14.4) Temperature [0C] 30000 25000 Ar + 5%O2 20000 Ar 15000 10000 5000 0 0 1 2 3 4 5 6 7 8 9 10 Distance from anode to cathode [mm] 450 400 Ar + O2 350 300 Ar 250 200 150 100 50 0 0 1 2 3 4 5 6 7 8 9 10 Distance from anode to cathode[mm] a) b) Fig. 14.4 Influence of oxygen addition in Ar on a) arc temperature and b) plasma velocity of GTAW process F. Advantages of Ar over He as Shielding Gas For general, purpose quality weld, argon offers many advantages over helium a) easy arc initiation, b) cost effective and good availability c) good cleaning action with (AC/DCEP in aluminium and magnesium welding) and d) shallow penetration required for thin sheet welding of aluminium and magnesium alloys. References and books for further reading Plasma velocity [ms -1 ] Metals Handbook-Welding, Brazing and Soldering, American Society for Metals, 1993, 10 th edition, Volume 6, USA. R S Parmar, Welding process and technology, Khanna Publisher, New Delhi

R S Parmar, Welding engineering & technology, Khanna Publisher, 2002, 2 nd edition, New Delhi. Richard Little, Welding and Welding Technology, McGraw Hill, 2001, 1 st edition. H Cary, Welding Technology, Prentice Hall, 1988, 2 nd edition. S V Nadkarni, Modern Arc Welding Technology, Ador Welding Limited, 2010, New Delhi. Welding handbook, American Welding Society, 1987, 8th edition, volume 1 & 2, USA. http://www.millerwelds.com/resources/tech_tips/tig_tips/setup.html