Development of Copper MIM Powders for Thermal Management Applications. ARC Seibersdorf Research GmbH Materials Research A-2444 Seibersdorf Austria

Similar documents
Powder Injection Moulding (PIM) of Dissimilar Materials and Complex Internal Features

Development of Metal Injection Molding Process for Aircraft Engine Part Production

NetShape - MIM. Metal Injection Molding Design Guide. NetShape Technologies - MIM Phone: Solon Road FAX:

In-mold Labeling Micro Powder Injection Molding: Large Scale Production of Micro Structured Two-component Parts

Metal Injection Molding (MIM) of components made of Titanium and its alloys

CONSOLIDATION AND HIGH STRAIN RATE MECHANICAL BEHAVIOR OF NANOCRYSTALLINE TANTALUM POWDER

XFA 600 Thermal Diffusivity Thermal Conductivity

Metal Injection Molded Parts

As published in PIM International

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

Natural Convection. Buoyancy force

EFFECT OF COPPER ALLOY ADDITION METHOD ON THE DIMENSIONAL RESPONSE OF SINTERED FE-CU-C STEELS

Thermal diffusivity and conductivity - an introduction to theory and practice

CHROMIUM STEEL POWDERS FOR COMPONENTS. JEANETTE LEWENHAGEN Höganäs AB, Sweden

Wax-based binder for low-pressure injection molding and the robust production of ceramic parts

THE ELEMENT C. Introduction graphite and carbon Lattice Classification of grain size. Properties of graphite and carbon

Sinterstation. Pro Direct Metal SLM System

Table of content. L81/RITA high speed Thermo Balance. Quattro Dilatometer. L75/1250/B/S Macro Dilatometer. New air cooled furnace program

Microwave absorbing tiles:

Chapter 5 POWDER-BASED RAPID PROTOTYPING SYSTEMS

Effective Cooling Method for Spin Casting Process

Solution for Homework #1

Improved Powder Performance Through Binder Treatment of Premixes

Laser beam sintering of coatings and structures

MIT Manufacturing Processes and Systems. Homework 6 Solutions. Casting. October 15, Figure 1: Casting defects

Rapid Prototyping. Training Objective

Basic Properties and Application Examples of PGS Graphite Sheet

GLOBAL MANUFACTURING. ARAUJO, Anna Carla AUG, 2015 Mechanical Engineering Department POLI/COPPE/UFRJ

How To Design A 3D Print In Metal

Steel production. Furnace linings made from carbon and graphite are applied for the production of primary iron.

INTERTECH EDM Technology To cut PCD Materials. Presented by. Eric Ostini Product Manager +GF+ Agie Charmilles Group

G8 GALILEO. Innovation with Integrity. High-End Melt-extraction Analyzer. Inert Gas Method

Influence of material data on injection moulding simulation Application examples Ass.Prof. Dr. Thomas Lucyshyn

The creation of tooling using the selective laser sintering process. Scott Schermer S.C. Johnson

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077

Engine Bearing Materials

POWDER PROPERTIES LABORATORY

A Comparison of FC-0208 to a 0.3% Molybdenum Prealloyed Low-Alloy Powder with 0.8% Graphite

DIFFUSION IN SOLIDS. Materials often heat treated to improve properties. Atomic diffusion occurs during heat treatment

Laser sintering of greens compacts of MoSi 2

A SCULPTEO GUIDE TO COST EFFICIENCY THROUGH SHORT SERIES MANUFACTURING HOW SCULPTEO S BATCH CONTROL 3D PRINTING COMPARES TO INJECTION MOLDS

Thermal Diffusivity Thermal Conductivity

TECHNICAL DATA SHEET GRILON BG-15 S

EVERYDAY ENGINEERING EXAMPLES FOR SIMPLE CONCEPTS

WORKSHOP P I M. Powder Injection Moulding

How To Calculate Thermal Resistance On A Pb (Plastipo)

Vapor Chambers. Figure 1: Example of vapor chamber. Benefits of Using Vapor Chambers

Formation of solids from solutions and melts

Surface Mount Technology cooling for high volumes applications by: Cesare Capriz Aavid Thermalloy via XXV Aprile 32 Cadriano (BO) ITALY

Casting. Training Objective

Lecture 9, Thermal Notes, 3.054

Journal bearings/sliding bearings

Ferroxcube. For more information on Product Status Definitions, see page Sep CBW625

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

FATIGUE PROPERTIES OF P/M MATERIALS. Robert C. O'Brien. Hoeganaes Corporation River Road Riverton, New Jersey 08077

POURING THE MOLTEN METAL

Die casting Figure M2.3.1

Recommendations Regarding the Handling of Norit GL 50 in Flue Gas Clean up Systems

Innovative components meeting technical challenges often require a complex design and superior material properties; high manufacturing costs often

Determination of Thermal Conductivity of Coarse and Fine Sand Soils

POROUS BURNER - A New Approach to Infrared

Praxis Technology: Enhancements to Ti-MIM processing bring medical implants a step closer

CHAPTER 6 THERMAL DESIGN CONSIDERATIONS. page. Introduction 6-2. Thermal resistance 6-2. Junction temperature 6-2. Factors affecting R th(j-a) 6-2

The atomic packing factor is defined as the ratio of sphere volume to the total unit cell volume, or APF = V S V C. = 2(sphere volume) = 2 = V C = 4R

Laboratory scale electrical resistivity measurements to monitor the heat propagation within porous media for low enthalpy geothermal applications

CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include:

Meeting the Thermal Management Needs of Evolving Electronics Applications

Understanding Plastics Engineering Calculations

Material data sheet. EOS Aluminium AlSi10Mg_200C. Description

Ceralink Capabilities and Opportunities

Trace Layer Import for Printed Circuit Boards Under Icepak

INJECTION MOLDING PROCESSING GUIDE Polymer

A NEW GENERATION OF FLAME RETARDED POLYAMIDES BASED ON PHOSPHINATES

Selective Laser Sintering of Duraform TM Polyamide with Small-Scale Features

CaMPUS Placements: UK Industrial - Reports 2014

Der Einfluss thermophysikalischer Daten auf die numerische Simulation von Gießprozessen

Radial-axial Radial mixing is based on the premise that the fluids to be mixed enter the mixer in the correct proportions simultaneously

DAMPING BEHAVIOUR OF CAST AND SINTERED ALUMINIUM

North American Stainless

Materials Standards for Metal Injection Molded Parts

Tool Design and Concurrent Engineering using Rapid Tooling Construction Methods

Product-group categories

PIEZOELECTRIC FILMS TECHNICAL INFORMATION

Integrated Computational Materials Engineering (ICME) for Steel Industry

Ceramic Injection Moulding Capabilities

EOSINT P and FORMIGA P materials for plastic laser-sintering systems

Verification Experiment on Cooling and Deformation Effects of Automatically Designed Cooling Channels for Block Laminated Molds

HFM Heat Flow Meter Thermal Conductivity Analyzer

Welding of Plastics. Amit Mukund Joshi. (B.E Mechanical, A.M.I.Prod.E)

Outline of a quality system and standard for the certification of conformity

Under sill units. Type FSL-B-ZAS

5.56 MM CERAMIC GUN BARREL THERMAL ANALYSES WITH CYCLED AMMUNITION

Mechanical Properties of Metals Mechanical Properties refers to the behavior of material when external forces are applied

SAND CAST CHILL CAST LM4 - TF

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-

Solid shape molding is not desired in injection molding due to following reasons.

4 Thermomechanical Analysis (TMA)

Injection molding equipment

DESIGN AND MANUFACTURING OF THE INJECTION MOLD FOR METAL-INSERTED RUBBER PARTS USING CAD/CAM/CAE TECHNOLOGIES: A CASE STUDY OF THE ENGINE MOUNTING

Rapid Prototyping Technologies. May, 2016

Transcription:

Development of Copper MIM Powders for Thermal Management Applications R. Zauner 1), R. Nagel 1), E. Neubauer 1), K. Portschy 1), P.A Davies 2), M.A.Kearns 2) 1) ARC Seibersdorf Research GmbH Materials Research A-2444 Seibersdorf Austria 2) Sandvik Osprey Limited Red Jacket Works Milland Road Neath, SA11 1NJ United Kingdom Abstract Metal Injection Moulding is continuing to see strong growth in the variety and volume of parts and materials in use. We report here the development and application of fine copper powders for MIM of heat sinks for thermal management applications. This is an important field for development in view of the increasing need for cooling of compact electronic devices and the need to use cost effective net-shape forming methods for expensive materials. Sandvik Osprey Ltd. has produced fine, low oxygen powders (90% -22µm and 90% -31µm) which have been incorporated into MIM feedstock at ARC Seibersdorf. The properties of the finished components are presented and the potential for applications in thermal management is discussed. INTRODUCTION Copper is a particularly suitable material for thermal management applications due to its high thermal conductivity and relatively high sintering activity. In combination with a net-shape process like MIM, complex heat sink components with optimized thermal features can be manufactured [1,2]. Composite structures integrating porous elements for heat pipes are also in development. Johnson & Lye-King Tan [2] have reported development of copper MIM parts using a variety of copper powder feedstocks made by different processes. This study highlighted the importance of porosity and impurities in affecting the conductivity of finished parts. Sintered densities in the range 93-96% and thermal conductivities in the range 280-385 W/mK were reported. At the high end, these values approach the performance of wrought copper but with the advantage of cost effective manufacturing. One of a number of heat sink components under development is shown in Figure 1. The part is a heat sink for an automotive thermal management application where a power LED is mounted on a PCB on the flat surface. The energy which is not converted into light (about 80%) is removed from the LED via this array of thin-walled cylindrical structures [3]. In this paper we report the manufacture of this part by MIM and the evaluation of its thermal performance against design targets.

Figure 1. LED heat sink for thermal management EXPERIMENTS The copper powders used for this study were supplied by Sandvik Osprey Ltd. They were produced from the same lot of HC (High Conductivity) copper which was gas atomised in nitrogen and air classified to produce separate fine fractions at 90%<31 microns and 90% <22 microns. The atomising conditions were designed to minimise oxygen pick up and product was stored in vacuum packaging before use. The oxygen level for each powder was measured at 0.055% and 0.078% respectively. Table 1 shows the particle size distribution characteristics d10, d50 and d90 of the powder feedstocks measured using a Malvern Mastersizer. Table 1. Particle size distribution and powder density of starting materials. Product D10 µm D50 µm D90 µm 90% <31 µm 6.0 14.5 30.5 90% <22 µm 4.9 10.6 21.8 Feedstock Fabrication The copper powders were compounded to feedstock using a proprietary wax-polymer binder system. An optimised powder loading of 60 vol % obtained from previous rheological characterization and torque evaluation proved suitable. The binder components were mixed with the metallic powder at room temperature in a Turbula Mixer to homogenize the batches of a Werner- Pfleiderer double-sigma compounder. The pycnometric density of fresh, treated powders and feedstocks was evaluated by a Quantachrome pycnometer. Component Fabrication Before the actual component fabrication started, three-point-bend bars and tensile test bars for both thermophysical and mechanical testing were produced using an Arburg 320 C injection moulding machine (Figure 2).

Figure 2. Injection moulding machine used for component fabrication at ARC Seibersdorf research GmbH After these initial tests, the actual components were manufactured. The tooling used comprised a mould frame with 230 mm by 180 mm inserts (Figure 3). Figure 3. Mould frame with mould inserts Injection moulded components are shown in Figure 4. Even though the component is relatively large (approx. 100 g), filling and demoulding of the component was quite straightforward. Figure 4. Injection moulded LED heat sinks

Combined debinding and sintering took place under hydrogen atmosphere and with a maximum temperature of 1030 o C. The furnace which is equipped with a binder trap and a burn-off stack for efficiently removal of the binder components is shown in Figure 5. Figure 5. Combined debinding and sintering furnace for maximum temperatures of 1100 o C Figure 6. Sintered component: dimensions 56 mm x 48 mm x 32 mm (height) RESULTS Optimisation of Thermal Management Characteristics The original solution for the heat sink was an aluminium high pressure die-cast component. Due to the limitations of this manufacturing process and the non-ideal material properties, the thermal budget was only just enough to remove the heat loss of one 1.25W power LED. In future, multiple power LEDs have to be mounted on the same available space: therefore an improved thermal management concept had to be developed. Using calculations based on the VDI Wärmeatlas [4] on free and forced convection, the geometry of the component has been optimized. By additionally using copper as a material with high thermal conductivity, it was possible to find a solution which can deal with the energy of four 1.25 W LEDs under the same special boundary conditions (Figure

7). It was assumed that a thermal conductivity of 380 W/mK could be achieved which had to be validated later in the thermophysical characterization. Material: G-AlSi Volume: 16,40cm³ Surface: 130,30cm² Overall height: 27,50mm Heat dissipation: 1,25W (1 LED) Material: Copper Volume: 11,80cm³ Surface: 140,50cm² Overall height: 19,25mm Heat dissipation: 5,00W (4 LEDs) Figure 7. Old and new design for LED heat sink Thermophysical Characterization The main material property which has to be optimized for the LED heat sink application is the thermal conductivity. OHFC copper with a density of 8,93 g/cm 3 has a thermal conductivity in the order of 390-400 W/mK. Therefore one of the main challenges is to optimize the injection, the debinding and sintering process in order to have zero porosity in the sintered material. In a first the step we were interested in the influence of different raw materials (Cu powders with size of <31 µm and <22 µm) on the thermal properties. Therefore samples with a size of approx 80x10x6mm were prepared under identical conditions (the same injection parameters, debinding & sintering conditions as used for the LED heat sink) and tested with respect to the thermophysical properties. From these sintered parts, test samples for the different thermophysical measurements were cut out. Thermal diffusivity, specific heat and the Coefficient of Thermal Expansion (CTE) were measured as a function of temperature in the range of RT to 300 C. For the calculation of thermal conductivity, the following relationship was used: λ ( T ) = a( T ) ρ( T ) c ( T ) or (1) P λ(t) = a(t). c p (T). ρ(t); where ρ(t) = ρ 0. (1 + α. T) 3 (2)

λ( T )...Thermal Conductivity [W/mK] a( T )...Thermal Diffusivity ρ( T )...Density [kg/m c ( T )...Specific Heat [J/kgK] P α( T )... CTE[ K In the case of materials with high thermal conductivity (>100 W/mK) the more precise technique for determining the thermal conductivity is via measurement of the thermal diffusivity. The thermal conductivity can be calculated using thermal diffusivity (measured by a laser flash system), specific heat (measured by Dynamic Scanning Calorimetry, DSC) and density (measured via Archimedes principle) data according to the relationship (1). For the measurement of the density as a function of temperature, CTE data (measured by dilatometer) can be used. The used technique for measurement of thermal diffusivity is a laser flash method. This method is based on a laser, which fires a pulse at the sample's surface and the infrared detector measures the temperature rise of the surface. The laser has energy of some Joules and the duration of the pulse is about 0.5 ms. The induced heat pulse propagates in the sample and results in a temperature increase at the surface of the sample. The temperature increase as a function of time is directly proportional to the thermal diffusivity. The software uses literature-based analysis routines to match a theoretical curve to the experimental temperature rise curve. The thermal diffusivity value is associated with the selected theoretical curve. The measurements for all thermal properties have been done at different temperatures. In the following section the results of sintered parts prepared from two different powders (D90 < 22 µm and D90 < 31 µm) are compared. The densification achieved for the sintered compacts was 96,5% for the 22 µm powder and 95,5% for the 31 µm powder. The results of the thermophysical properties as a function of temperature are be shown in the following diagrams. For comparison the literature value of pure copper is shown. 1 ] 3 ] [m 2 /s] Figure 8. Specific heat and CTE as a function of temperature for sintered parts made of 22 µm and 31 µm copper powder compared to literature values of pure copper. The specific heat for both materials shows more or less identical behavior as a function of temperature. For the CTE a different behavior at higher temperature is observed which might be due to a greater amount of porosity in the sintered sample for the Cu powder with 31 µm (Figure 8).

Figure 9. Thermal diffusivity and derived thermal conductivity of sintered parts made from 22 µm and 31 µm copper powder compared to literature values of pure copper. For both powder materials a similar thermal behaviour is visible. Even due to a higher porosity in the Cu powder with a size of 31 µm the thermal diffusivity and conductivity (Figure 9) are more or less identical. Of course a 1% difference in porosity should result in a difference in the thermal diffusivity/conductivity but there maybe a secondary influence of particle size acting against the expected benefit of lower porosity. A smaller powder size may be related to a smaller grain size in the sintered compact which means that the amount of grain boundaries (and therefore additional thermal barriers) is higher than for the coarse powder. DISCUSSION This study has found that the two special copper materials tested are suitable for injection moulding of high-end thermal management components. In the particular application for a LED heat sink a four-fold increase in energy dissipation could be achieved as compared to a pressure die-cast solution in aluminium. Therefore, these materials offer huge potential for further applications in the future as thermal management becomes more and more of a bottleneck when it comes to increasing the power density of LEDs. Both design variations with increased heat exchange surface and materials with optimum thermal properties will be necessary to fulfill the ever increasing thermal requirements. However, this comes at a cost. For the heat sink design shown in this study, the initial solution which is suitable for one LED mounted on it costs around 0.70 each in numbers of larger than 100.000 per year. In comparison, for the optimized material and the fabrication using MIM it was calculated that the costs would be around 2.20 each for the aforementioned volumes per year. Therefore, this solution is only justified when the power density of LEDs further increases. There are many indications that this is already the case and it is just a question of time before the current materialmanufacturing combinations will reach their limits. The thermal properties of the materials investigated (two different sizes of the starting powder) are quite similar although a further optimization of the material will be necessary to get a 100 % dense sintered compact. At the moment both materials reach more than 85% of the thermal conductivity of a pure copper standard. Therefore further optimization is necessary, e.g. using additional heat treatment etc. The reason why the Cu powder with a size of 22 µm did not show a better performance despite a 1 % higher density is expected to be due to a larger number of grain boundaries. These grain boundaries will act as additional barriers for the transfer of heat. To confirm this, a detailed analysis of the microstructure will be carried out.

Both raw materials are suitable for PIM and resulting in quite similar thermal properties. Depending on the application and the geometry of the component the appropriate powder can be chosen, e.g. the fine powder for complex shaped and thin walled components. REFERENCES [1] R. M. German and A. Bose, Injection Molding of Metals and Ceramics, 1997, Princeton, NJ, MPIF. [2] J.L. Johnson and Lye- King Tan, Electronics Cooling, 2004. [3] K. Portschy, MSc Thesis, FH Technikum Wien, 2006 [4] H. Klan, VDI Wärmeatlas, 8 th edition, Part F, VDI Gesellschaft Verfahrenstechnik und Chemieingenieurwesen (VDI-GVC), 1996