Stars, Galaxies, and the Universe

Similar documents
Planets and Dwarf Planets by Shauna Hutton

Lesson 3 Understanding Distance in Space (optional)

UNIT V. Earth and Space. Earth and the Solar System

x Distance of the Sun to planet

Related Standards and Background Information

1.1 A Modern View of the Universe" Our goals for learning: What is our place in the universe?"

Pocket Solar System. Make a Scale Model of the Distances in our Solar System

Scales of the Universe

A.4 The Solar System Scale Model

astronomy A planet was viewed from Earth for several hours. The diagrams below represent the appearance of the planet at four different times.

1. Title: Relative Sizes and Distance in the Solar System: Introducing Powers of Ten

Chapter 1 Our Place in the Universe

The orbit of Halley s Comet

Chapter 1: Our Place in the Universe Pearson Education Inc., publishing as Addison-Wesley

Introduction to the Solar System

ASTR 100 Introduction to Astronomy Syllabus for Fall 2015

Voyage: A Journey through our Solar System. Grades Lesson 2: The Voyage Scale Model Solar System

Grade 6 Standard 3 Unit Test A Astronomy. 1. The four inner planets are rocky and small. Which description best fits the next four outer planets?

Solar System Fundamentals. What is a Planet? Planetary orbits Planetary temperatures Planetary Atmospheres Origin of the Solar System

ASTR 115: Introduction to Astronomy. Stephen Kane

So What All Is Out There, Anyway?

The Solar System. Source

Out of This World Classroom Activity

EDMONDS COMMUNITY COLLEGE ASTRONOMY 100 Winter Quarter 2007 Sample Test # 1

Activity One: Activate Prior Knowledge: Powers of Ten Video and Explore the sizes of various objects in the solar system

Copyright 2006, Astronomical Society of the Pacific

Scaling the Solar System

Nevada Department of Education Standards

GRAVITY CONCEPTS. Gravity is the universal force of attraction between all matter

Size and Scale of the Universe

The following questions refer to Chapter 19, (PAGES IN YOUR MANUAL, 7 th ed.)

HONEY, I SHRUNK THE SOLAR SYSTEM

Planets beyond the solar system

LER Ages. Grades. Solar System. A fun game of thinking & linking!

1 A Solar System Is Born

Solar System Facts & Fun

The Big Bang A Community in the Classroom Presentation for Grade 5

Class 2 Solar System Characteristics Formation Exosolar Planets

The facts we know today will be the same tomorrow but today s theories may tomorrow be obsolete.

4 HOW OUR SOLAR SYSTEM FORMED 750L

The sun and planets. On this picture, the sizes of the sun and 8 planets are to scale. Their positions relative to each other are not to scale.

Name: Earth 110 Exploration of the Solar System Assignment 1: Celestial Motions and Forces Due in class Tuesday, Jan. 20, 2015

Astronomy Notes for Educators

Scientists often deal with

THE SOLAR SYSTEM. Worksheets UNIT 1. Raül Martínez Verdún

Welcome to Physics 40!

Voyage: A Journey through our Solar System. Grades Lesson 1: A Scale Model Solar System

The Solar System: Cosmic encounter with Pluto

Study Guide: Solar System

XXX Background information

Discover the Universe AST-1002 Section 0427, Spring 2016

Science Standard 4 Earth in Space Grade Level Expectations

galaxy solar system supernova (noun) (noun) (noun)

The University of Texas at Austin. Gravity and Orbits

Please be sure to save a copy of this activity to your computer!

The scale of the Universe, and an inventory

NOTES: GEORGIA HIGH SCHOOL SCIENCE TEST THE SOLAR SYSTEM

NASA Explorer Schools Pre-Algebra Unit Lesson 2 Student Workbook. Solar System Math. Comparing Mass, Gravity, Composition, & Density

The Earth, Sun, and Moon

The Solar System. Olivia Paquette

A SOLAR SYSTEM COLORING BOOK

Perspective and Scale Size in Our Solar System

AP Environmental Science Graph Prep

Activity 3: Observing the Moon

Unit 1.8: Earth and Space Science Planets & Stars

Look at Our Galaxy. by Eve Beck. Space and Technology. Scott Foresman Reading Street 2.1.2

Exam # 1 Thu 10/06/2010 Astronomy 100/190Y Exploring the Universe Fall 11 Instructor: Daniela Calzetti

Study Guide due Friday, 1/29

A Solar System Coloring Book

The Universe is a BIG Place

Exercise: Estimating the Mass of Jupiter Difficulty: Medium

Week 1-2: Overview of the Universe & the View from the Earth

Douglas Adams The Hitchhikers Guide to the Galaxy

The Hidden Lives of Galaxies. Jim Lochner, USRA & NASA/GSFC

Is Pluto a planet? Historical overview. Personal anecdotes. Launch of the Hubble Space Telescope April 24, 1990

Outdoor Exploration Guide. A Journey Through Our Solar System. A Journey Through Our Solar System

Name Class Date. true

Scale of the Solar System. Sizes and Distances: How Big is Big? Sizes and Distances: How Big is Big? (Cont.)

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY l0595. l. Course #:PHYSC NAME OF ORIGINATOR /REVISOR: PAUL ROBINSON

Astronomy 110 Homework #04 Assigned: 02/06/2007 Due: 02/13/2007. Name:

Beginning of the Universe Classwork 6 th Grade PSI Science

Science Lesson Plan: Our Solar System: I Wonder? (I 1- D- R)

Journey to other celestial objects. learning outcomes

UC Irvine FOCUS! 5 E Lesson Plan

Vocabulary - Understanding Revolution in. our Solar System

Astronomy 1140 Quiz 1 Review

The Solar System. A Collaborative Science Activity for Key Stage 2. Teacher s Notes. Procedure

Lecture 12: The Solar System Briefly

The Solar System. Unit 4 covers the following framework standards: ES 10 and PS 11. Content was adapted the following:

Asteroids. Earth. Asteroids. Earth Distance from sun: 149,600,000 kilometers (92,960,000 miles) Diameter: 12,756 kilometers (7,926 miles) dotted line

Once in a Blue Moon (Number Systems and Number Theory)

RETURN TO THE MOON. Lesson Plan

Chapter 25.1: Models of our Solar System

Page. ASTRONOMICAL OBJECTS (Page 4).

Once you have assembled the cards, they can be used either as fact cards or for a variety of activities in the classroom including:

Newton s Law of Gravity

4 HOW OUR SOLAR SYSTEM FORMED 890L

KINDERGARTEN 1 WEEK LESSON PLANS AND ACTIVITIES

Probing for Information

Explain the Big Bang Theory and give two pieces of evidence which support it.

Transcription:

Stars, Galaxies, and the Universe Instructor: Prof. Kaaret 702 Van Allen Hall philip-kaaret@uiowa.edu Lectures: MW 3:30 pm 4:45 pm Lecture Room 1 Van Allen Hall Textbook: Investigating Astronomy by Slater and Freedman Clicker: Need to buy and register

Looking for Volunteers Prof. Mutel is modifying the laboratories to be web-based. He is looking for volunteers from those enrolled in the laboratory to test out the new labs. The volunteers will likely be paid and should do very well in the laboratory part of the course. If interested, see Prof. Kaaret after class or e-mail Prof. Mutel robert-mutel@uiowa.edu

Why study Astronomy? From modern astronomy, we have our best answers, so far, to questions such as: How and where are the atoms in our bodies formed? Is there life anywhere else than on Earth? What is the history of the Universe and what will eventually happen to the Universe?

Why study Astronomy? Astronomy allows us to understand our place in the cosmos. Astronomy also reveals objects that stretch the imagination such as black holes, exploding stars, and giant jets of matter larger than a galaxy but moving at the speed of light. Astronomy shows us that the Universe is comprehensible.

How empty is the solar system? What fraction of the volume in the solar system (which we will take to be a sphere enclosing the orbit of Neptune) is taken up with solid stuff (the Sun, planets, asteroids, )? Any guesses?

Scale model solar system To try to address this question, we are going to build a scale model of the solar system. So, what is a scale model?

A scale model A) B) C) D) is made out of plastic? corresponds to a real object? is a World War II airplane? has the same proportions as a real object? E) has the same colors as a real object?

Scale models A scale model is a representation of a real object or set of objects in which all of the different parts of the model have sizes in the correct proportions to the real thing.

Scale models For scale factor s, real dimension D then model dimension d = sd For example, with a scale factor s = 1:160 = 1/160 = 0.00625, an airplane with length D = 12 meters becomes a model with length d = 0.00625*12 meters = 0.075 m = 7.5 cm.

Scale model solar system We need the measurements of the real solar system. For our purposes, we will limit this to the diameter and distance from the Sun for each planet.

Planets Gas giants Rocky planets

Is Pluto a Planet? During the 1990s more than 1000 objects orbiting beyond Neptune, thetrans-neptunian Objects (TNO), were discovered. In 2003, Eris, a TNO was found that is larger than Pluto and has its own moon. So, add Eris as a planet or dump Pluto? The International Astronomical Union (IAU) made a new definition of a planet: A celestial body that (a) is in orbit around the Sun, (b) has sufficient mass for its self-gravity to overcome rigid body forces so that it assumes a hydrostatic equilibrium (nearly round) shape, and (c) has cleared the neighborhood around its orbit. So Pluto and Eris are not real planets, they are dwarf planets.

Eris Orbit of Neptune

Solar system data Sun Diameter Distance from Sun [meters] [meters] 1,392,700,000 0 4,878,000 57,900,000,000 Venus 12,104,000 108,200,000,000 Earth 12,756,000 149,600,000,000 Mars 6,787,000 227,900,000,000 Jupiter 142,980,000 778,300,000,000 Saturn 120,540,000 1,427,000,000,000 Uranus 51,120,000 2,870,000,000,000 Neptune 49,530,000 4,497,000,000,000 Mercury

Scale model of solar system Scale factor s = 4:1,000,000,000,000 = 0.000000000004 Sun Distance from Sun Scaled distance meters meters 0 0.0 57,900,000,000 0.232 Venus 108,200,000,000 0.433 Earth 149,600,000,000 0.598 Mars 227,900,000,000 0.912 Jupiter 778,300,000,000 3.113 Saturn 1,427,000,000,000 5.708 Uranus 2,870,000,000,000 11.480 Neptune 4,497,000,000,000 17.988 Mercury

Scale model of solar system Scale factor s = 4:1,000,000,000,000 = 0.000000000004 Sun Diameter Scaled diameter meters meters 1,392,700,000 0.005571 4,878,000 0.000020 Venus 12,104,000 0.000048 Earth 12,756,000 0.000051 Mars 6,787,000 0.000027 Jupiter 142,980,000 0.000572 Saturn 120,540,000 0.000482 Uranus 51,120,000 0.000204 Neptune 49,530,000 0.000198 Mercury

Scale model of solar system To fit the solar system into the classroom, we scaled the radius of the orbit of Neptune to be about 18 meters (59 feet) Sun is the size of a match head Jupiter is smaller than a grain of salt Earth has the diameter of a strand of hair

How far is the Moon from the Earth in our Model? Moon is 384,400,000 m from Earth. A) Strand of hair B) Size of grain of salt (0.1 mm) C) Thickness of paper clip (1 mm) D) Width of nail on pinky (1 cm)

How far is the closest star in our Model? Proxima Centauri is 39,900,000,000,000,000 m from Earth. A) Old Capitol Building B) Field House C) Des Moines D) New York E) Beijing

Powers of ten are shorthand for writing very large numbers 100 = 1 One 101 = 10 Ten (deca) 102 = 100 Hundred (centa) 103 = 1,000 Thousand (kilo) 106 = 1,000,000 Million (mega) 109 = 1,000,000,000 Billion (giga) 1012 = 1,000,000,000,000 Trillion (tera) 1015 = Quadrillion (peta) 1054 = Septendecillion

They also work for very small numbers 100 = 1 One 10-1 = 0.1 One tenth (deci) 10-2 = 0.01 One hundredth (centi) 10-3 = 0.001 One thousandth (milli) 10-6 = 0.000,001 One millionth (micro) 10-9 = 0.000,000,001 One billionth (nano) 10-12 = 0.000,000,000,001 One trillionth (pico) 10-15 = One quadrillionth (femto) 10-54 = One septendecillionth

Scale model of solar system Scale factor s = 4:1012 = 4 10-12 Sun Distance from Sun Scaled distance meters meters 0 0.0 5.79 1010 0.232 Venus 1.082 1011 0.433 Earth 1.496 1011 0.598 Mars 2.279 1011 0.912 Jupiter 7.783 1011 3.113 Saturn 1.427 1012 5.708 Uranus 2.870 1012 11.480 Neptune 4.497 1012 17.988 Mercury

Back to the solar system Volume of solar system taken up by stuff = (volume of Sun) / (volume of solar system) = (4/3) (radius of Sun)3 / (4/3) (radius of Neptune s orbit)3 = (radius of Sun)3 / (radius of Neptune s orbit)3 = (7 108)3 / (4.5 1012)3 = (73 108 3) / (4.53 1012 3) = (7/4.5)3 (108 3-12 3) = 3.8 10-12 = a few millionths of a millionth Volume of a sphere = (4/3) R3

Sizes are in meters

People Height of (small) person is about 1.1 m

Earth Radius of earth or R is 6.4 106 m

Sun Radius of Sun or R is 7 108 m

Earth to Sun Distance from Earth to Sun is 1.5 1011 m This is one Astronomical Unit = 1 A.U.

Sun to Nearest Star Distance from Sun to nearest star is 4.1 1016 m Define light-year = ly = 9.46 1015 m Distance from Sun to nearest star is 4.3 ly

to Center of Milky Way Distance to Center of our galaxy is 2.6 1020 m or 28,000 ly

to Nearest (big) Galaxy Distance to nearest (big) galaxy is 2.4 1022 m or 2.6 106 ly

to edge of Observable Universe Distance to edge of observable universe is 1.3 1026 m or 1.4 1010 ly

Course information Website: http://astro.physics.uiowa.edu/~kaaret/f11 Survey of modern astronomy, conceptual approach Course covers Night sky, moon, eclipses Search for extra-solar planets, life Sun, stars Black holes, neutron stars Galaxies Cosmology Does not cover solar system, extraterrestrial life in detail. Other classes are available for these topics.

Course information Some math will be needed Simple algebraic equations Plugging numbers into equations Understanding powers of ten Simple geometry

Course information Laboratory If you are registered for 4 s.h., you are already assigned to a weekly laboratory section. Laboratory sessions start next week. Observing with a research-grade optical telescope in Arizona (Rigel telescope). You will be using this facility for a research project in the second half of the semester. Students in the lab must pass the lab to pass the course.

Grading The course grade (letter grade will include +/- grading) will be determined by the sum of points accumulated during the semester. The total possible points are given in the table below. Questions during class 80 Homework 80 In-class exams 3 80 Final exam 160 Total 480, drop worst of questions, HW, or in-class exams

Questions will be asked during class and reponses made using clickers We will be using clickers for in-class questions. Every student must bring a clicker to class every day. Every student must register their clicker. Information about UI clickers at http://its.uiowa.edu/support/srs/student_faqs.shtml Questions will be graded as 1 point for a correct answer and 0.5 points for an incorrect answer. Total score will be normalized to 100 points with a maximum of 80 points awarded. We will have small group discussions between questions, so sit with a small group of about 4 friends.

Homework and Exams Homework will be assigned each week and due Tuesdays at midnight, starting next week. Homework will be turned in via ICON. There will be three in-class exams, all on Wednesdays. Questions will be multiple choice, matching, or true/false. There will be a final exam.

Extra Credit It will be possible to obtain extra credit by attending a public observing event at the Eastern Iowa Observatory and Learning Center. Students must look through a telescope at an astronomical object. Students earn 10 points per event for a maximum of two events. There is one event per month, starting Saturday, August 27. The schedule is at: http://www.cedar-astronomers.org/events.htm

How to do well in the class... Do the homework