White Paper. Dichroic Glass in Architecture. The use of colour-effect glass in the design of exterior facades and interior spaces

Similar documents
Chapter 6 Metal Films and Filters

Waves Sound and Light

Solar control right for you!

1. Three-Color Light. Introduction to Three-Color Light. Chapter 1. Adding Color Pigments. Difference Between Pigments and Light. Adding Color Light

Self-Cleaning. The forecast will always be clear and cool. Pilkington Activ Range Self-cleaning and solar control glass for conservatories.

Important Notes Color

Pilkington Activ. The forecast will always be clear and cool. Pilkington Activ Range Self-cleaning and solar control glass for conservatories.

Experiment #5: Qualitative Absorption Spectroscopy

AP Physics B Ch. 23 and Ch. 24 Geometric Optics and Wave Nature of Light

Laboratory #3 Guide: Optical and Electrical Properties of Transparent Conductors -- September 23, 2014

Light Architecture. Colors Sweden. Light

The Industry s Most Advanced Sun-Sensing, Adaptive-Tinting Technology For Dynamic Windows

High performance. Architectural glazings utilise thin. low-emissivity coating. Coating technology

INFITEC - A NEW STEREOSCOPIC VISUALISATION TOOL BY WAVELENGTH MULTIPLEX IMAGING

Name Class Date. spectrum. White is not a color, but is a combination of all colors. Black is not a color; it is the absence of all light.

Specifying Plasma Deposited Hard Coated Optical Thin Film Filters. Alluxa Engineering Staff

Interference. Physics 102 Workshop #3. General Instructions

PYRAN PYRANOVA. Special-purpose glass products for fire resistant glazing

Physical Science Study Guide Unit 7 Wave properties and behaviors, electromagnetic spectrum, Doppler Effect

CONSERVATION AND LIGHTING

Paint it cool! Pigments for solar heat management in paints

Light management for photovoltaics. Ando Kuypers, TNO Program manager Solar

Applications. Blue IF 039, Green IF 062, Yellow IF 022, Orange IF 041, Red IF 090,Dark Red IF 091 IR pass IF 092, IF098, IF 093 Surface 1 5/2 0.

Technical Information DF30

LOW-E PHOTOVOLTAIC GLASS TECHNICAL GUIDE

THE NATURE OF LIGHT AND COLOR

Science In Action 8 Unit C - Light and Optical Systems. 1.1 The Challenge of light

ENERGY SMARTS: ENERGY EFFICIENT WINDOWS

The Three Heat Transfer Modes in Reflow Soldering

Realization of a UV fisheye hyperspectral camera

Crystal Optics of Visible Light

Despite spending many thousands of pounds on a beautiful new conservatory, it is a sad fact that many suffer from intolerable heat and glare problems

Laserwelding of plastics Ir. Luc Janssen 2008

Spandrel Glass Types and Recommendations

Chapter 4 COATINGS Full Reflective Coatings:

Surface treatment of aluminium extrusions

Windows are one of the most important components of a

Hello and Welcome to this presentation on LED Basics. In this presentation we will look at a few topics in semiconductor lighting such as light

ILLUSTRATIVE EXAMPLE: Given: A = 3 and B = 4 if we now want the value of C=? C = = = 25 or 2

Translucent Facades. Express your creativity start planning with Rodeca. Aesthetics Functionality Efficiency

6) How wide must a narrow slit be if the first diffraction minimum occurs at ±12 with laser light of 633 nm?

OWAplan1. The seamless acoustic ceiling. Pure acoustics. Pure design.

Light Waves and Matter

Good Boards = Results

Computer Vision: Machine Vision Filters. Computer Vision. Optical Filters. 25 August 2014

A concise guide to Safety Glasses, the different standards and the effects of light on the eye. Contents. Links. Year of publication: 2010

Epson 3LCD Technology A Technical Analysis and Comparison against 1-Chip DLP Technology

Pilkington Activ self-cleaning glass. The clear choice for your conservatory.

Radiographic Image Production. Radiographic Image Production. Principles of Imaging Science I (RAD 119) Film, Screens, and Cassettes

Electromagnetic Radiation (EMR) and Remote Sensing

How to Build a Printed Circuit Board. Advanced Circuits Inc 2004

Measuring of optical output and attenuation

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

Filters for Digital Photography

Color and Light. DELTA SCIENCE READER Overview Before Reading Guide the Reading After Reading

TECHNICAL BULLETIN TECHNICAL DESCRIPTION DESCRIPTION OVERVIEW PROGRAMS. Data Sheet. Pilkington Toughened Safety Glass

What is Solar Control?

Pilkington Activ self-cleaning glass. The clear choice for your conservatory.

GREEN NANOTECHNOLOGY. Geoffrey. Energy in the Built Environment. Solutions for Sustainability and. B. Smith Claes G. Granqvist.

Unbeatable energy efficient glass curtain wall system

ATOMIC SPECTRA. Apparatus: Optical spectrometer, spectral tubes, power supply, incandescent lamp, bottles of dyed water, elevating jack or block.

ENERGY SAVING WINDOW FILMS S LAR CONTROL

NEW CEILING MODULE DS-W1 WAVE : SUBSTANTIALLY HIGHER CAPACITY AND ENERGY EFFICIENCY

Theremino System Theremino Spectrometer Technology

Electroluminescent Materials

SCENIC VIEW SV 10 SECTION SOLAR CONTROL FILMS

Computer Vision. Color image processing. 25 August 2014

The Anatomy of a Label

Coating Technology: Evaporation Vs Sputtering

Review Questions Photosynthesis

After a wave passes through a medium, how does the position of that medium compare to its original position?

Overview. What is EMR? Electromagnetic Radiation (EMR) LA502 Special Studies Remote Sensing

EXPERIMENT O-6. Michelson Interferometer. Abstract. References. Pre-Lab

INTERFERENCE OBJECTIVES PRE-LECTURE. Aims

DETECTION OF COATINGS ON PAPER USING INFRA RED SPECTROSCOPY

Automatic and Objective Measurement of Residual Stress and Cord in Glass

Light management for photovoltaics using surface nanostructures

Radiation Transfer in Environmental Science

1. Introduction to image processing

Common Defects in Digital Printing. Paul Geldenhuys & Amir Shapira January, 2009

2 Absorbing Solar Energy

Adaptive strategies for office spaces in the UK climate

Measurement of Enhanced Specular Reflector (ESR) Films Using a LAMBDA 1050 UV/Vis/NIR Spectrometer and URA Accessory

Zero Width Glass Cutting with CO 2 Laser

The Influence Of Window Type And Orientation On Energy-Saving In Buildings Application To A Single Family Dwelling

Comparative Analysis of Retrofit Window Film to Replacement with High Performance Windows

PYROSWISS VETROFLAM CONTRAFLAM

X-ray Production. Target Interactions. Principles of Imaging Science I (RAD119) X-ray Production & Emission

Tech Bulletin. Understanding Solar Performance

Graphical displays are generally of two types: vector displays and raster displays. Vector displays

Chapter 17: Light and Image Formation

Light Transmission and Reflectance

ANALYSIS OF ASPIRIN INFRARED (IR) SPECTROSCOPY AND MELTING POINT DETERMINATION

Heat-treated Glass. GUARDIAN A Company of Vision PATTERNED GLASS HORTICULTURAL GLASS SUN PERFORMANCE GLASS VISION GLASS SILKSCREENED GLASS THIN GLASS

Strategy for Functional Material Development in FUJIFILM

Measuring index of refraction

The Warm Edge for insulating glass

INTRODUCTION FIGURE 1 1. Cosmic Rays. Gamma Rays. X-Rays. Ultraviolet Violet Blue Green Yellow Orange Red Infrared. Ultraviolet.

Introduction to 3D Imaging

Transcription:

Dichroic Glass in Architecture White Paper The use of colour-effect glass in the design of exterior facades and interior spaces Dichroic glass opens up to architects and designers new opportunities to link the functionality of glass with the aesthetic of colour. This non-coloured glass, also called colour-effect glass or an interference filter, transmits light unrestrictedly yet is seen in colour. October 2015

Obtaining colour from light With dichroic glass (from the Greek dichroos = bicoloured), almost every colour of the spectrum can be generated, both additive (red, green and blue) and subtractive colours (yellow, magenta and cyan). This effect is based on the interference of light waves by thin, optically transparent coatings that split white light into colours. The colours are produced by the superposition of light waves that are reflected both at the surface of a particular layer and at its lower interface. If two wave crests are superposed, the waves are intensified (constructive interference). However, if a wave crest meets a wave trough, each radiation cancels the other out (destructive interference). For example, if there is destructive interference in blue light, the irradiated white light is reflected without its blue fraction. So yellow light, the complementary colour to blue, is visible when reflected. At the same time, blue can be seen when looking through the glass. In principle, the visibility of interference colours and gradients is dependent on the respective incident light radiation and the viewing angle. Colours on request With VarioTrans glass from PRINZ OPTICS, it is possible to select the colour effect. The required colour is generated by appropriate interference coatings applied to the glass surface. The incident light is not absorbed by this and then converted to thermal radiation. In contrast, the effect of standard colour filters is based on the absorption of complete spectral regions. This can lead to serious heating, such as in lighting technology (colour filters in front of halogen spot lights). Coating 3 Coating 2 Coating 1 Glass How it works in principle: Superposition of light rays

The colours that dichroic filters can make visible include the whole visible spectrum. Both the additive (red - green - blue) and subtractive colours (yellow - magenta - cyan) can be generated, as well as any colour combination. All colours look brilliant and radiant. The colour that appears when looking down on the filter glass is always the complementary colour to that which is produced when looking through it. Both colours are perceived in a lively play of colour. (Fig. Blue, yellow, green and pink filters)

The colour gradients always consist of the colours of the subtractive YMC colour space. It is either fully or partially visible, e. g. from magenta through dark blue to blue. The scope of the colour gradients, as well as the length over which they extend, can be selected. (Fig. Gradients) The day/night effects of the filters depend on the respective illumination. In daylight, there is a dramatic superposition of the colours when looking both down on, and through, the glass. Without daylight, the colour perceived depends on the position of both the light source and the observer. If both are in front of the filter, then the view from above will dominate; if both are separated by the filter, the colours seen when looking through the glass will dominate. (Fig. day/night effect)

Dichroic glass is produced by the application of several thin, dielectric (optically transparent) coatings on the glass. They consist of materials such as SiO 2, TiO 2, ZrO 2 and Ta 2 O 5. The respective coating thickness is typically one quarter of the length of a light wave, i. e. about 100 nm. Transmission and reflection ranges are separated more sharply from one another with an increase in the number of coatings. This increases the transmission and reflection values, and thus increases both the contrast between transmission and blocking, as well as the colour saturation. (Fig. 2 Curve charts) The coating can be applied physically or chemically. In the physical procedure, the relevant metal oxides are released in a vacuum (by evaporation/pvd or atomization/sputtering) and deposited on the substrate. In the chemical procedure, the coating is either generated through a reaction in the gas phase (CVD, vacuum procedure) or it occurs using the Sol-Gel procedure where a liquid reacts to the glass surface. VarioTrans glass is produced using the Sol-Gel procedure. Here the cleaned substrate - only white glass is used due to its optimal colour reproduction for architectural applications - is evenly coated by being dipped into and extracted from Sol dipping baths. Metal alcohol solutions are used for the coatings, which, in a subsequent thermal process, are converted into adhesive metal-oxide coatings and fired into the glass surface.

(Fig. Dipping procedure) At the end of this procedure, the next respective coating can be applied. In order to guarantee a consistent quality in the coatings, optical measurements are continually taken during the process. The photometer used, specially modified by PRINZ OPTICS, allows transmission and reflection measurements of 250 to 1100 nm, as well as the calculation of colour values, coating thicknesses and refractive indices.

The properties of dichroic glass are primarily determined by the purely inorganic nature of the coating: Heat and UV radiation cannot affect the filter properties. Unlike glass that is coloured throughout, it is not subject to any ageing process. There is no bleaching of the filters. Thanks to its high durability and long service life, VarioTrans glass can be finished using almost every standard glass-finishing method (cutting, grinding, drilling, bevelling, etc.). On the other hand, bending is only possible for bend radii > 1 m due to restrictions regarding the process design and possible colour shifts. Tighter bend radii can lead to tears in the coating. The aesthetic effect of the colour-effect filters is based on the simultaneous real perception of colour and an associated emotional sensation. The beauty of a successful colour-light design is not just an end in itself. Rather, it excites attention and notice, generates interest and appeal, and thus triggers a sense of wellbeing. Outside on streets and squares, as well as in prestigious interiors, surfaces that were crystal clear at one moment appear at the next glance to be a changing play of light and colour when seen from a different perspective. (Fig. Multiple colour effect)

VarioTrans glass, with its impressive interplay of transmission and reflection, is destined for architectural applications. Due to its unrestricted transparency in association with a mix of subtractive light, colour-effect glass is equally suitable for the design of both interiors and facades. For interiors, dichroic glass offers a broad spectrum of creative opportunities. Optically weightless, yet at the same time highly stable, this material is destined for room divisions and realizing room-in-room concepts. Doors, in particular, made from colour-effect filter glass provide a surprising feature. Depending on the coating, the incident light and the viewing perspective, they can be transparent or multi-coloured with gradated and fluctuating colours. Doors are made from laminated safety glass and can be delivered readymade. (Fig. International airport, Zurich) In interiors, dichroic glass is generally used as a double-laminate safety glass with an uncoated protective glass sheet, or as a single sheet of glass. Filters with paler colours can also be finished into single-sheet safety glass. However, slight changes in colour can occur here during the necessary hardening process.

For exteriors, (Fig. Harpa facade, Reykjavik) dichroic glass has to be used as a triple-laminate safety glass. The thickness of the uncoated cover sheets applied to both sides should be at least 3 mm to prevent environmental damage and for safe cleaning. However, at the end of the day this is dependent on structural conditions. Its thermal insulation properties meet all the standards due to its ability to be processed (workability) into insulated glass. It is quite possible to combine different colours in one sheet, such as in the form of a mosaic, as well as to join it to half-silvered mirrors and clear glass through butt-joint assembly. (Fig. Butt joint)

Instead of a summary evaluation: From the jury s reasons for awarding the 1st Prize for Innovation in Architecture and Glass (Glasstec Düsseldorf 2006): The VarioTrans product meets the expectations of architects for whom the sensory quality of their projects is of prime importance. Further properties have been added to the well-known qualities that are perceived in glass, such as transparency and reflection. Changing colours, multifaceted views and coloured shades allow a simple, well-known object - a sheet of glass in the light - to be read in an inexhaustibly complex manner. With all the force of its effect, the VarioTrans pane of glass is captivating due to properties that are rare today: it keeps its distance, remains secretive, and makes a contribution to elegance in architecture. Examples of the aesthetically impressive yet economical and functional application of this innovative material in architecture can be seen around the world today. PRINZ OPTICS is happy to provide interested parties with documentation on projects that have been carried out.

Point of contact Mr. Peter Röhlen Email: peter.roehlen@prinzoptics.de Phone: +49 6724 60193-16 Imprint Editor: PRINZ OPTICS GmbH Simmerner Strasse 7 D-55442 Stromberg Person responsible under press law Mr. Horst Poscharsky E-mail: hijposcharsky@t-online.de A white paper issued by PRINZ OPTICS GmbH PRINZ OPTICS. All rights reserved.