Comment: Basic Strategy for Card Counters



Similar documents
Double Deck Blackjack

The Ben Franklin Count

Introduction to the Rebate on Loss Analyzer Contact:

THE 101 CASINO BLACKJACK X with BUSTER BLACKJACK BONUS BET v1.2

Black Jack. and how to win

Index. Hard, 7 Hermite polynomials, 72 Hi-Lo, 17 Hi-Opt, 17 Hit, 7 HJY, 24 Hole card, 6 House, 5. Ace adjustment, 32

Commission-Free. Baccarat Dragon Bonus

The following words and terms, when used in this subchapter, shall have the following meanings unless the context clearly indicates otherwise.

How to Play Blackjack Alex Powell, Jayden Dodson, Triston Williams, Michael DuVall University of North Texas TECM /27/2014

SPANISH Player blackjack always beats a dealer blackjack and is paid 3 to 2.

Worldwide Casino Consulting Inc.

Phantom bonuses. November 22, 2004

Blackjack Counter database Omega II Count System

13:69E-1.10 Blackjack table; card reader device; physical characteristics; inspections

A Markov Chain Analysis of Blackjack Strategy

Intelligent Agent for Playing Casino Card Games

A UNIQUE COMBINATION OF CHANCE & SKILL

Object of the Game The object of the game is for each player to form a five-card hand that ranks higher than the player-dealer s hand.

Ultimate Texas Hold'em features head-to-head play against the player/dealer and an optional bonus bet.

The History of the Mathematics of Card Counting Peter Woerde

players on one side of the table and a place for the dealer on the opposite side.

EZ BACCARAT PANDA 8. Natural 9. Natural 8. Seven through Zero

2urbo Blackjack Hold their face value

Optimal Play. Stewart N. Ethier William R. Eadington editors. Mathematical Studies of Games and Gambling

EZ BACCARAT SUMMARY OF GAME

Loss rebates. December 27, 2004

Introduction to Discrete Probability. Terminology. Probability definition. 22c:19, section 6.x Hantao Zhang

How to Beat Online Roulette!

There are a number of superb online resources as well that provide excellent blackjack information as well. We recommend the following web sites:

How to Play. Player vs. Dealer

Blackjack Vérité - Games

1. Shuffling Machine: Cards used to play Casino War shall be dealt from an automatic card shuffling device ( shuffler ).

Applying the Kelly criterion to lawsuits

Introduction to Gaming Mathematics Eliot Jacobson, Ph.D.

Learn How to Use The Roulette Layout To Calculate Winning Payoffs For All Straight-up Winning Bets

Video Poker in South Carolina: A Mathematical Study

The game of roulette is played by throwing a small ball onto a rotating wheel with thirty seven numbered sectors.

GAMING MANAGEMENT SEMINAR SERIES. Prices of Casino Games. Jason Zhicheng Gao 高 志 成

CAN YOU STILL BEAT THE DEALER?

Champion Poker Texas Hold em

The cloth covering a Three Card Poker 6 Card Bonus table (the layout) shall have wagering areas for eight players.

ACEY DEUCEY-21 Copyright 2007 Warren Montney WAR ACEY DEUCEY

Mathematical Analysis Of Packs Poker. September 22, Prepared For John Feola New Vision Gaming 5 Samuel Phelps Way North Reading, MA 01864

PLACE BETS (E) win each time a number is thrown and lose if the dice ODDS AND LAYS HARDWAYS (F) BUY & LAY BETS (G&H)

on a table having positions for six players on one side of the table 1. A true to scale rendering and a color photograph of the

The game also features three optional bonus bets.

1. General Black Jack Double Deck Black Jack Free Bet Black Jack Craps Craps Free Craps...

THREE CARD BRAG (FLASH)

WHAT ARE THE ODDS? The Wizard of Odds Analyzes the New Casino Games

The Rational Gambler

Texas Hold em. From highest to lowest, the possible five card hands in poker are ranked as follows:

Casino Control (3 Card Poker) Approval 2006 (No 1)

Betting systems: how not to lose your money gambling

Training Manual. Shuffle Master Gaming Three Card Poker Training Manual R

Rules of core casino games in Great Britain

1 Bet Threat Texas Hold Em Gaming Equipment Rules of the Games Temporary Amendments: N.J.A.C. 19:40-1.2; and 19: , 1.18 and 1.

Betting with the Kelly Criterion

Optimal Betting Spreads

Math 728 Lesson Plan

arxiv: v1 [math.pr] 5 Dec 2011

Diamond Games Premium III Game Description Revision 1.0

Slots seven card stud...22

TABLE GAME PRODUCTS CATALOGUE - ASIA 2013

Know it all. Table Gaming Guide

cachecreek.com Highway 16 Brooks, CA CACHE

Quick Guide to Slot Machines

UNDERGROUND TONK LEAGUE

The Game of Blackjack and Analysis of Counting Cards

game on ARIA Resort & Casino

HOW THE GAME IS PLAYED

PENNSYLVANIA GAMING CONTROL BOARD REMAINING TEMPORARY TABLE GAMES REGULATIONS TITLE 58. RECREATION CHAPTERS: 581, 583, 585, 587, 588, 589,

Ready, Set, Go! Math Games for Serious Minds

Week 5: Expected value and Betting systems

Mus is the most popular Spanish game, due to its attractiveness and characteristics. This game was born in Basque Country

Probabilities of Poker Hands with Variations

GLOSSARY ADR. cage. a secured area within a casino where records of transactions are kept, money is counted and chips can be exchanged for cash CAGR

RULES FOR TEXAS HOLD EM POKER

Game Theory and Poker

Contents. Appendix B Blackjack Basic Strategies. Spanish 21 Basic Strategies

An Unconvered Roulette Secret designed to expose any Casino and make YOU MONEY spin after spin! Even in the LONG Run...

The Ultimate Blackjack System

The Best Online Roulette Games

Using Generalized Forecasts for Online Currency Conversion

REWARD System For Even Money Bet in Roulette By Izak Matatya

A GUIDE FOR YOUR GAMBLING TRIP

Optional 6 Card Bonus Wager In Three Card Poker Gaming Equipment Rules of the Games Proposed Amendments: N.J.A.C. 19: A; 19: , 20.

Many recent studies of Internet gambling particularly

What is Domino and How to Play it?

Acing Math (One Deck At A Time!): A Collection of Math Games. Table of Contents

MAKING MATH MORE FUN BRINGS YOU FUN MATH GAME PRINTABLES FOR HOME OR SCHOOL

Casino Gaming Amendment Rule (No. 1) 2006

The Effects of Informed Bettors on Bookmaker Behavior

EQUITY OPTIMIZATION ISSUES IV: THE FUNDAMENTAL LAW OF MISMANAGEMENT* By Richard Michaud and Robert Michaud New Frontier Advisors, LLC July 2005

Lecture 25: Money Management Steven Skiena. skiena

FOUR CARD POKER EXPERIENCEEVERYTHING. 24/7 ACTION SilverReefCasino.com (866)

YOUR FREE GUIDE TO PLAYING EXCHANGE BLACKJACK

Probability Models.S1 Introduction to Probability

How To Play Classic Slots

Greg Fletcher. Sharpshooter Roulette. Video Guide. Russell Hunter Publishing, Inc.

Transcription:

Comment: Basic Strategy for Card Counters R. Michael Canjar Department of Mathematics and Computer Science, University of Detroit Mercy Abstract. We raise questions about the finding in Werthamer s Basic strategy for card counters: An analytic approach that CBS outperforms count-dependent strategies under certain conditions. 1 Counter Basic Strategy We have two papers in this collection that deal with the topic of Counter Basic Strategy (CBS). The Marcus paper (2007, this volume, pp. 35 46) uses simulation to determine the CBS for various games, while the Werthamer paper (2007, this volume, pp. 47 57) takes a more analytic approach. I will assume that the reader has read those papers, and is familiar with the concepts and definitions contained in them. The Werthamer paper uses an effective true count γ to determine the counter basic strategy. Basically, a play whose index number exceeds γ is included in the CBS. We can come up with a simple formula for estimating this γ. Let us say that we are considering a specific play, such as standing on 15 vs. 10. We start by assuming that the relative gain in expectation for standing is approximately a linear function of the true count γ of the form E(γ) = K(γ γ c ), (1) where K is a positive constant, and γ c is the critical index for this play. That is, we would stand when γ > γ c and hit when γ < γ c. Note that the specific values of K and γ c vary from play to play; however we are assuming that each play does admit a linear approximation of the form above. Now suppose we are playing a specific game of blackjack, with a specific betting ramp. That is, we encounter a series of true counts γ j, each occurring with probability p j. At each true count we place a bet b j. We consider a specific play, such as standing on 15 vs. 10, and wish to determine if our basic strategy should be always stand or always hit.

60 R. Michael Canjar The total gain G from the strategy always stand will be approximately G j p j b j E(γ j ) = K j p j b j (γ j γ c ). (2) We would adopt this strategy if G is positive, which occurs when γ c j < p jb j γ j j p. (3) jb j The expression on the right side of the last inequality is our estimate of γ. This is simply a weighted average of the true counts γ j, weighted by the total amount of money we wager at that level. This clearly depends on the betting ramp; a stronger betting ramp with a wider spread will produce a higher γ and lead to more plays being included in our CBS. This result is borne out in the Marcus paper, where we see plays with higher index numbers becoming included in the CBS. There are two assumptions made in the previous derivation. One is that the expectation is a linear function of true count. Griffin made extensive use of this assumption in his work, and it is reasonably accurate for the modest true counts that are involved in typical blackjack play. However, there is another assumption that is more problematic. We have been implicitly assuming that the true count at the time we make our playing decision is the same as the true count when we place our bets. I will refer to the latter as the pre-deal count, and to the former as the playing count. To illustrate the effects of this assumption, let us consider a specific playing decision: whether or not to double 8 vs. 6. We have seen (at least) three cards since we have made our bet: the two cards in our 8, and the dealer s 6. These cards are all low cards, and in any reasonable count system our running count would have increased several points. With the High-Low system, it would have gone up 3 points. The effect this has on the true count depends on how many cards remain unseen. If we are half way through a 6-deck shoe, then our true count would have gone up 1 point per deck. If we have 1 deck remaining, it would be 3 points per deck. If we are in a deeply-dealt single-deck game and only a quarter-deck is left, then our true count would have risen by 12 points per deck! Obviously the assumption that the pre-deal and playing counts are the same becomes more problematic with deeper penetration. Werthamer used this assumption to produce his count-dependent strategy (CDS), and he does note that it results in an under-estimation of the gain from CDS. Werthamer makes a rather astonishing claim on behalf of his CBS. He states that his CBS outperforms the CDS in the games that he analyzed. On its face, this result does not seem possible. Any fixed strategy, such as CBS is a particular Count-Dependent system, with indices equal to the extreme values. For example, in the count system used here, the true count is always in the interval of [ 1.52, 1.28] points per card, or [ 67, 80] points per deck. His

Comment: Basic Strategy for Card Counters 61 strategy of never taking insurance is equivalent to a count-dependent player using an index of +80. Similarly his strategy of always doubling A9 vs. 5 is equivalent to using an index of 67 for this play. The optimal count-dependent system must necessarily be better. This may suggest that the author has done a poor job of computing the indices for his count-dependent system; it does not show the superiority of his CBS. Werthamer attempts to explain this paradox by stating: One explanation for this paradox is that Count-Dependent maximizes the expected return at each true count, but at zero depth; it is not recalculated for each separate depth value. In contrast, CBS maximizes the yield, the dominant contributions to which come from sizable depths, where the true count is more likely to take on large, positive values and the expected returns and bet sizes are correspondingly larger. The depth dependence of the expected return and play strategy, although almost always ignored in the blackjack literature, is a significant influence on our computational results. I do not agree with this. First, modern techniques for generating playing indices for Count-Dependent systems do use simulated data taken throughout the entire shoe, and not just from the first round. Second, the fact that high true counts occur deep in the deck does nothing to suggest that 67 would be the best possible index. An index of 0 would play those large positive counts as well as 67, and play some other hands better. Also, the effect of depth on strategy has been studied and it has not been found to be significant, for true-counted systems. This may be one of the reasons why the effect is largely ignored. I will stipulate that a CDS for an 80% single-deck game will be different than the CDS for a 20% game, However, the differences will be minor, with some indices moving by a point or so. Using a system where the index numbers are off by a point is not nearly as costly as using no index number. That is, a CDS that is tailored to a different level is going to be better than using a CBS. 2 Simulation results In order to further examine this issue, I asked Norm Wattenberger to carry out simulations of it. Wattenberger is the author and producer of the Casino Vérité line of blackjack software products, which enjoy a well-deserved reputation with the card-counting community as representing the gold standard in blackjack software. The count system that Werthamer used in his paper was an ultimate point count using decimal values. It is equivalent to a 128-level integer system. There are practical problems in simulating this system. However, there is a 4-level system listed on page 45 of Griffin (1999) that has a 99.6% correlation

62 R. Michael Canjar with this ultimate count. We decided to use this system. It has tag values 4, 2, 3, 3, 4, 3, 2, 0, 1, 3. First, Wattenberger generated a set of single-deck index numbers for this system for the Sweet 16 plays. These are the same plays that are in the Illustrious 18, except that the two ten-splits are not included. That is, it will perform somewhat worse than the full I-18. This comprised our CDS. Then he produced a battery of simulations comparing the CDS, the Werthamer CBS, and conventional BS with various bet spreads. He used the widely accepted SCORE parameter to measure the effectiveness of each system. (SCORE is an acronym for Systematic Comparison of Risk and Expectation. It measures the total return for each system with the risk of ruin held constant.) In each case, the betting schedule was optimized for each particular system, so as to produce the highest possible SCORE. The rules are the same as in the paper: single deck, S17, no doubling after split, and no re-splitting of pairs. Spreads of 1 4, 1 8, and 1 12 were employed. For each spread, there was a simulation with 1 player and with 4 players. The results of the simulations are shown in Figures 1 3. 180 160 140 SCORE 120 100 80 60 1 player, Sweet 16 1 player, CBS 1 player, Basic 4 players, Sweet 16 4 players, CBS 4 players, Basic 40 20 0 26 25 24 23 22 21 20 19 18 17 16 15 14 13 shuffle point (cards) Fig. 1. SCORE as a function of shuffle point when the spread is 1 4. For the 1 4 spread, the CBS is actually worse than BS. This should not be surprising because the CBS was constructed for a much wider spread (1 10). However, even at the wider spreads we see that it under-performs relative to our simple CDS. In the 1 8 games it only achieved 62% of the CDS SCORE in the head-on game, and a little less in the 4-player one. Even in the 1 12 game, it never gets more than 68%. In short, it isn t even close.

Comment: Basic Strategy for Card Counters 63 300 250 SCORE 200 150 100 1 player, Sweet 16 1 player, CBS 1 player, Basic 4 players, Sweet 16 4 players, CBS 4 players, Basic 4 players, betting TC 50 0 26 25 24 23 22 21 20 19 18 17 16 15 14 13 shuffle point (cards) Fig. 2. SCORE as a function of shuffle point when the spread is 1 8. 300 250 SCORE 200 150 100 1 player, Sweet 16 1 player, CBS 1 player, Basic 4 players, Sweet 16 4 players, CBS 4 players, Basic 50 0 26 25 24 23 22 21 20 19 18 17 16 15 14 13 shuffle point (cards) Fig. 3. SCORE as a function of shuffle point when the spread is 1 12.

64 R. Michael Canjar I originally thought that Werthamer s CDS performed so poorly because it was based on the pre-deal count, and not on the playing count. However, Wattenberger did one more sim to consider this effect. Here the same CDS was used, but the decision had to be made without considering the cards seen during the round. As expected, it did perform worse than the full CDS but was still significantly better than the CBS. Apparently, there must be other features in the software that Werthamer used that led to his conclusion. This is just one set of simulations comparing one CDS with one CBS. However, I would strongly urge any player who is considering scrapping his/her CDS in favor of some new CBS, to perform his/her own simulation under his/her own conditions and compare the results. If the CDS does perform worse than the CBS, then I would suggest looking for errors in that CDS. Having just said that a CBS cannot outperform a reasonable CDS, let me add that there are other good reasons to consider CBS. Let me conclude by discussing some positive applications for it. Many counters use only a limited number of index numbers, such as the I-18, and employ a fixed strategy for the other plays. Typically, they use the standard BS for this, but I will suggest that they would do better to use a CBS for those plays. One problem with the CBS is that it varies depending on the bet ramp; this is seen in the Marcus data and in our discussion of γ. However, it is very hard to construct a reasonable bet spread that has a γ less than 2 High-Low points per deck, or its equivalent. This suggests that those plays would be CBS for any reasonable ramp. These would include standing on 16 vs. 10, 12 vs. 3, A7 vs. A, and doubling 9 vs. 2, 11 vs. A, A8 vs. 5 or 6, and A3 vs. 4. (Some of these plays are already BS in single-deck games, but none of them are BS in S17 6-deck games.) What about players who do not want to learn 18 indices, but are willing to learn a few? Conventional wisdom might suggest that they learn such plays as 16 vs. 10, 12 vs. 3, and 9 vs. 2. I am suggesting instead that they use a CBS for those plays, and instead focus the index numbers for insurance, 15 vs. 10, 12 vs. 2, 12 vs. 2, 9 vs. 7, and 10 vs. A. Finally there is the issue of special rules and promotions. Occasionally a casino will offer a nonstandard rule, sometimes as a special promotion and sometimes on a regular basis. For example, I have seen jokers used with various rules in some circumstances; special payouts on some 5-card hands, even a bonus for breaking with 26. Some of the tribal casinos in the Midwest have a special rule that allow a player to draw a third card to split Aces by doubling down. Sometimes these rules result in strategy changes. Typically, we compute the strategy for the full 52-card or 312-card pack. That is, a Basic Strategy. Some of these plays have index numbers, but it may not be practical to memorize a whole set of numbers for a promotion that will last only a limited time. I am suggesting that if index numbers are not going to be used, then the strategy developed should be a CBS, with more weight given to the higher true counts where more money will be bet.

Comment: Basic Strategy for Card Counters 65 References 1. Griffin, Peter A. (1999) Theory of Blackjack: The Compleat Card Counter s Guide to the Casino Game of 21, 6th edition. Huntington Press, Las Vegas. 2. Marcus, Hal I. (2007) New blackjack strategy for players who modify their bets based on the count. In: Ethier, Stewart N. and Eadington, William R. (eds.) Optimal Play: Mathematical Studies of Games and Gambling. Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, 35 46. 3. Werthamer, N. Richard (2007) Basic strategy for card counters: An analytic approach. In: Ethier, Stewart N. and Eadington, William R. (eds.) Optimal Play: Mathematical Studies of Games and Gambling. Institute for the Study of Gambling and Commercial Gaming, University of Nevada, Reno, 47 57.