Type 1 neovascularization with polypoidal lesions complicating dome shaped macula

Similar documents
Spectral domain OCT used to view and quantify choroidal vascular congestion in new subretinal fluid following scleral buckling.

ICG IMAGING FOR EXUDATIVE ARMD

CLINICAL SCIENCES. Enhanced Depth Imaging Optical Coherence Tomography of Small Choroidal Melanoma

EFFECT OF MYOPIC LASIK ON RETINAL NERVE FIBER LAYER THICKNESS- IS IT SAFE OR UNSAFE?

Optic Nerve Imaging. Management of Glaucoma

Introduction Houston Retina Associates

Title:Clinical and Optic Coherence Tomography Findings of Focal Choroidal Excavation in Chinese Patients

INFORMATION ON DARC: THE DIGITAL ANGIOGRAPHY READING CENTER

Visual Disorders in Middle-Age and Elderly Patients with Diabetic Retinopathy

APRIL 8th 2016 Therapy

Retinal Imaging Biomarkers for Early Diagnosis of Alzheimer s Disease

Ophthalmic Consultants Northwest, Seattle, Washington Retinal and vitreous consultation and surgery

Quantitative analysis of macular contraction in idiopathic epiretinal membrane

Trends in Ophthalmology a Market Perspective. Matthias Karl, Michael Kempe

Principles of Diagnosis MEDICAL DECISION-MAKING IN OPTOMETRIC PRACTICE. Medical Decision-Making. Medical Decision-Making.

THE EYES IN MARFAN SYNDROME

MASTER OCT LECTURE OUTLINE Ophthalmic Photographers Society November 16, 2013 New Orleans, LA

NC DIVISION OF SERVICES FOR THE BLIND POLICIES AND PROCEDURES VOCATIONAL REHABILITATION

Adult and Paediatric Retina (Vitreo-Retinal Surgery, Laser and Intravitreal Injection)

ICOP 2011 OXFORD UK REPORT ON THE INTERNATIONAL CONFERENCE ON OPHTHALMIC PHOTOGRAPHY 2011

Photographic Assessment of Baseline Fundus Morphologic Features in the Comparison of Age-Related Macular Degeneration Treatments Trials

Charles C Wykoff, David M Brown, Maria E Maldonado, Daniel E Croft. Clinical science

Clinical Applications of Optical Coherence Tomography in Ophthalmology

NEW. CIRRUS HD-OCT 5000/500 Advancing Smart OCT. Imaging Applications: Anterior Segment Glaucoma Retina. International Version

The Nurse/Technician Role Within the Emerging Ophthalmic Technology - OCTs/B-Scan

Radiation Therapy for Small Choroidal Neovascularization in Age-related Macular Degeneration

iocutouchtm for ipad Contents of Videos and Still Images Anatomy 906. Normal Eye and Orbit - no labels 907. Normal Eye and Orbit - with labels

Applications in Dermatology, Dentistry and LASIK Eye Surgery using LASERs

Optical Coherence Tomography Imaging and Quantitative Assessment for Monitoring Dry Age-related Macular Degeneration.

Customized corneal ablation can be designed. Slit Skiascopic-guided Ablation Using the Nidek Laser. Scott MacRae, MD; Masanao Fujieda

Retinal Update: November March 2010

Measure of Confidence. Glaucoma Module Premium Edition

Comparison of corneal epithelial and stromal thickness distribution between eyes with keratoconus and healthy eyes with corneal astigmatism >2.

Principles of Ophthalmic Nursing Unit Outline

Eye Department Baden-Baden. Prof. Dr. med. Frank Faude Dr. med. Susanne Faude Oxana Bräunlich. Ophthalmology specialists

Age- Related Macular Degeneration

Customized corneal ablation and super vision. Customized Corneal Ablation and Super Vision

Fundus Photograph Reading Center

Olga Golubnitschaja 1,2. Abstract

Facts about diabetic macular oedema

An Informational Guide to CENTRAL RETINAL VEIN OCCLUSION

Avastin (Bevacizumab) Intravitreal Injection

Why Does Anti VEGF Treatment Fail in Age Related Macular Degeneration (AMD)

A Modified Semiautomatic Method for Measurement of Hyperfluorescence Area in Fluorescein Angiography

Alexandria Fairfax Sterling Leesburg

Case Report Laser Vision Correction on Patients with Sick Optic Nerve: A Case Report

Vitreo-Retinal and Macular Degeneration Frequently Asked Questions

This newest generation laser offers specific technological features and treatment options designed to substantially improve the retina laser therapy:

Clinical Study The Incidence of Central Serous Chorioretinopathy after Photorefractive Keratectomy and Laser In Situ Keratomileusis

Eye Diseases , The Patient Education Institute, Inc. otf30101 Last reviewed: 05/21/2014 1

Literature Search on The Prevalence of Visual Disorders by Age Group in Older People

Surgical Advances in Keratoconus. Keratoconus. Innovations in Ophthalmology. New Surgical Advances. Diagnosis of Keratoconus. Scheimpflug imaging

OCT-based IOL power calculation for eyes with previous myopic and hyperopic laser vision correction

CR-2 AF and CR-2 PLUS AF Non-Mydriatic cameras. Designed for the highest possible image quality. See the smallest details, don t miss pathology.

Diabetic Eye Screening Revised Grading Definitions

Age-Related Macular Degeneration. K. Bailey Freund, M.D. James M. Klancnik, Jr., M.D. Lawrence A. Yannuzzi, M.D. Bruce Rosenthal, O.D.

DIABETIC RETINOPATHY. Diabetes mellitus is an abnormality of the blood glucose metabolism due to altered

NEW YORK UNIVERSITY SCHOOL OF MEDICINE DEPARTMENT OF OPHTHALMOLOGY SUPERVISION OF RESIDENTS POLICY

Ophthalmology Grand Rounds Case Presentation

Vision Glossary of Terms

Optic Disc Drusen. Normal Enlarged view of Optic Disc. Lumpy Appearance of Optic Disc. Optic Disc Drusen With Drusen

MODERN CLINICAL OPTOMETRY BILLING & CODING THE MEDICAL EYE EXAMINATION. Definitions of Eye Examinations. Federal Government Definition

Macular translocation surgery was first reported by Machemer. Strabological Findings after Macular Translocation Surgery with 360 Retinotomy

Angiogenesis, Exudation, and Degeneration February 6, 2016 Mandarin Oriental, Miami, FL

The Eye Care Center of New Jersey 108 Broughton Avenue Bloomfield, NJ 07003

Boomers and Disease Detection with OCT: Catalyst for Optometric Practice Growth

ERRORS OF REFRACTION ACCOMMODATION

Top Medicare Audit problems. Retinal Imaging Technology. Optometric Medical Coding. Unilateral codes. Modifiers

MAZAHERI LASIK METHOD FOR VISUAL ENHANCEMENT TECHNICAL FIELD OF THE INVENTION. [0001] The present invention is directed, in general, to

Ectasia after laser in-situ keratomileusis (LASIK)

Angiogenesis, Exudation, and Degeneration February 7, 2015 Mandarin Oriental, Miami, Florida

Macular Hole. James L. Combs, M.D. Eleanore M. Ebert, M.D. Byron S. Ladd, M.D. George E. Sanborn, M.D. Jeffrey H. Slott, M.D.

Descemet s Stripping Endothelial Keratoplasty (DSEK)

MAke A difference in someone s life

The Visual Cortex February 2013

Rodney Coe, MD, MS SUNY Downstate Medical Center December 3, 2009

Completed Clinical Research Trials Prema Abraham, M.D.

Comparison of Residual Stromal Bed Thickness and Flap Thickness at LASIK and Post-LASIK Enhancement in Femtosecond Laser-Created Flaps

Educational Goals & Objectives for Ophthalmology Residents at Parkland Memorial Hospital (PMH)

Cataract Testing. What a Patient undergoes prior to surgery

How To Understand The Current Of An Optic Nerve Fiber Layer

FDA approves Lucentis (ranibizumab injection) for treatment of diabetic macular edema

THE BEST OF BOTH WORLDS Dual-Scheimpflug and Placido Reaching a new level in refractive screening

Retinal assessment using optical coherence tomography $

Retinal Detachments Mark E. Hammer, M.D. Ivan J. Suñer, M.D. Marc C. Peden, M.D.

Guide to Eye Surgery and Eye-related Claims

Post LASIK Ectasia. Examination: Gina M. Rogers, MD and Kenneth M. Goins, MD

We are on WHAT ARE THE RISK FACTORS FOR MACULAR DEGENERATION?

Review of Biomedical Image Processing

BSM Connection elearning Course

To: all optometrists and billing staff

NAVILAS Laser System Focal Laser Treatment for Diabetic Macular Edema - One Year Results of a Case Series

TABLE OF CONTENTS: LASER EYE SURGERY CONSENT FORM

Research Article Evaluation of Agreement between HRT III and ivue OCT in Glaucoma and Ocular Hypertension Patients


PERIOCULAR (SUBTENON) STEROID INJECTION ERIC S. MANN M.D.,Ph.D.

COS Statement on Values for Uninsured Services in Canada

OCT-guided Femtosecond Laser for LASIK and Presbyopia Treatment

Cataracts. Cataract and Primary Eye Care Service Main Number Physician Referral AT-WILLS

82 Gilbert Street, Adelaide, SA, Gilbert Street, Adelaide, SA, 5000 W M W M

Transcription:

DOI 10.1186/s40942-015-0008-5 CASE REPORT Open Access Type 1 neovascularization with polypoidal lesions complicating dome shaped macula Jonathan Naysan 1,2,3,4, Kunal K Dansingani 1,2,5, Chandrakumar Balaratnasingam 1,2,6 and K Bailey Freund 1,2,3,4* Abstract Dome-shaped macula is described as an inward bulge of the macula within a posterior staphyloma in highly myopic eyes. Choroidal neovascularization is a known complication that can cause visual loss in dome-shaped macula. Herein, we describe a patient who presented with features of polypoidal choroidal neovascularization that developed on a background of high myopia with dome-shaped macula. Keywords: Dome-shaped macula, Polypoidal, Polypoidal choroidal vasculopathy, Polypoidal choroidal neovascularization, High myopia, Neovascularization, Imaging Background Dome-shaped macula (DSM) is an inward bulge of the macula within a posterior staphyloma in highly myopic patients [1]. Recently, Imamura et al. [2] utilized enhanced depth optical coherence tomography (EDI- OCT) to demonstrate that the anterior bulge was consequent to relative increases in scleral thickness beneath the macula. Gaucher et al. [1] reported that the prevalence of dome-shaped macula was approximately 10.7% in highly myopic eyes. However, recent reports have utilized multimodal imaging to show that the rate of DSM is higher and in the range between 15 and 20% [3, 4]. Choroidal neovascularization (CNV) is a known complication of DSM and occurs at a rate of approximately 20% [4, 5]. Deobhakta et al. [6] recently demonstrated that some eyes with DSM will manifest a shallow pigment epithelial detachment (PED) overlying an area of abrupt change in choroidal thickness typically occurring at the edge of the dome. They hypothesized that some of these flat irregular PEDs might harbor type 1 neovascularization. Herein, we describe the multimodal imaging findings in a patient with DSM who presented with *Correspondence: kbfnyf@aol.com 1 Vitreous Retina Macula Consultants of New York, 460 Park Avenue, Fifth Floor, New York, NY 10022, USA Full list of author information is available at the end of the article type 1 neovascularization with polypidal lesions. To our knowledge, polypoidal type 1 neovascularization has not been documented in the setting of DSM. Case presentation A 50-year-old white female with a history of high myopia presented with metamorphopsia and visual deterioration in her left eye that had developed gradually over many months. She had previously been diagnosed with central serous chorioretinopathy and had received photodynamic therapy to the left eye after which two intravitreal injections of bevacizumab were administered (last treatment was over 1 year previously). She was taking metformin for glucose intolerance and was otherwise healthy. Visual acuities were 20 / 250 in the right eye, improving to 20 / 100 with pinhole and 20 / 800 in the left eye, improving to 20 / 100 with pinhole. Her refractive error was 7.5 and 9.0 diopters right and left, respectively. The anterior segments were unremarkable and intraocular pressures were 15 mmhg in both eyes. Ophthalmoscopic examination showed peripapillary atrophy and retinal pigment epithelial changes that were consistent with myopic degeneration (Figure 1). There was no hemorrhage. Horizontal OCT (Heidelberg Spectralis, Heidelberg Engineering, Germany) raster scans did not overtly 2015 Naysan et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/ publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Page 2 of 5 illustrate any dome configuration of the patient s macula. However, a combination of horizontal and vertical raster scans enabled a radially asymmetric three-dimensional dome-shaped configuration to be appreciated (Figure 2). Spectral domain OCT showed thin choroids in both eyes with subfoveal choroidal thickness of 98 and 95 um, Figure 1 Color photograph and fundus autofluorescence images of the posterior pole of the left eye show a rectangular area of mottled retinal pigment epithelial atrophy arranged with its long axis aligned horizontally. Figure 2 Topological representations of the posterior pole. Vertical and horizontal raster spectral domain optical coherence tomography line scans show that the long axis of the elliptical dome lies in the horizontal meridian, as demonstrated also by a quad-mesh projection onto an elevationmapped near-infrared image plane. The region of atrophy lies at the inferior border of the crest of the elliptical dome, where the choroid is thinnest.

Page 3 of 5 respectively. The vertically oriented OCT line scans showed an abrupt change in choroidal thickness occurring at the inferior edge of the dome (Figure 3). EDI-OCT confirmed an increase in scleral thickness beneath the site of the macular dome. A complex irregular pigment epithelial detachment was noted at the left macula consistent with a polypoidal lesion and its associated type 1 branching vascular network (BVN) (Figures 2, 3). Shallow subretinal fluid was also seen on these scans. Indocyanine green angiography (TRC-50FX, Topcon Corporation, Tokyo, Japan) and split spectrum amplitude decorrelation angiography (Avanti, Optovue, Fremont, CA, USA) demonstrated the polypoidal lesion and its corresponding feeding vessels (Figure 3). The Figure 3 Multimodal imaging findings of choroidal neovascularization. Early and transit phase indocyanine green angiographic frames demonstrate perfusion of a choroidal vascular loop at the fovea (green arrowhead) followed by hyperfluorescence of at least three polypoidal lesions (red arrowheads) and their feeding network (yellow arrowhead). Magnified horizontal and vertical raster enhanced depth spectral domain optical coherence tomographic (OCT) line scans through these areas show the polypoidal lesions as peaked pigment epithelial detachments (PEDs) and the feeding network as an adjacent shallow irregular PED. The presence of pathologically dilated choroidal vessels is noted with overlying loss of choriocapillaris tissue, especially at the crest of the dome. En face OCT (3 3 mm) through the shallow PED reveals the spherical morphology of at least three polypoidal lesions. En face OCT angiography (3 3 mm) through the PED isolates the type 1 neovascular tissue from the rest of the choroid and shows significant flow through the feeder vessels and within the polypoidal lesions.

Page 4 of 5 ICGA also showed relatively larger caliber choroidal vessels in the thicker choroid at the superior edge of the dome. DSM is associated with high myopia [1] and previous reports have shown that this diagnosis can be missed if the macula is evaluated with a single OCT scan orientation. Liang et al. [4] reported that vertical and horizontal OCT scans are necessary to achieve diagnostic sensitivity for DSM. In their paper, they showed that of those eyes with DSM, the diagnosis could be made using only the vertical section in 77% of cases and using only the horizontal section in 2% of cases. These findings are reflected in our patient in whom the diagnosis of DSM was confirmed only after integration of vertical and horizontal OCT scans to construct a three-dimensional structure. Vision loss from DSM can be consequent to serous neurosensory detachment masquerading as central serous chorioretinopathy [5]. Foveal retinoschisis [4, 7] and choroidal neovascularization [1, 7] are other known complications that can arise during the natural course of DSM. The rate of CNV in DSM is approximately 20%, however, little information is available concerning the morphology of these lesions. Utilizing OCT angiography and other imaging modalities, we show that CNV in DSM can manifest a polypoidal configuration. Polypoidal neovascular changes have also been described in central serous chorioretinopathy [8, 9], choroidal nevi [10, 11], peripheral exudative hemorrhagic chorioretinopathy [12] and optic nerve melanocytoma [13]. Conclusion Scleral thickness at the site of DSM is increased in contradiction to what is usually found in high myopia [14]. Previous authors used this observation to postulate that control of ocular expansion in myopia may be more complex than initially proposed [2]. Polypoidal changes to type 1 neovascularization in the setting of DSM may reflect the unique stretch and mechanical forces being applied to the macula and choroid in this condition. It will be important to study other cases of CNV in DSM to validate this hypothesis. Consent Written informed consent was obtained from the patient for publication of this Case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal. Abbreviations DSM: dome-shaped macula; EDI-OCT: enhanced depth imaging optical coherence tomography; CNV: choroidal neovascularization; PED: pigment epithelial detachment; OCT: optical coherence tomography; BVN: branching vascular network. Authors contributions JN acquisition of data, conceptualization of manuscript, review of literature, drafting/editing of the report. KD acquisition of data, conceptualization of manuscript, editing the report, preparation of image panels. CB conceptualization of manuscript, editing the report, review of literature. KBF design of project, conceptualization of manuscript, editing the report, analysis and interpretation of data, final approval of manuscript. All authors have contributed significantly. All authors read and approved the final manuscript. Author details 1 Vitreous Retina Macula Consultants of New York, 460 Park Avenue, Fifth Floor, New York, NY 10022, USA. 2 The LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY, USA. 3 Department of Ophthalmology, New York University School of Medicine, New York, NY, USA. 4 Department of Ophthalmology, North Shore-Long Island Jewish Health System, New York, NY, USA. 5 Moorfields Eye Hospital, London, UK. 6 Department of Physiology and Pharmacology, Lions Eye Institute, University of Western Australia, Crawley, Australia. Compliance with ethical guidelines Competing interests K. Bailey Freund: is a consultant to Genentech, ThromboGenics, Ohr Pharmaceutical, Optos, Optovue, and Heidelberg Engineering (honorarium for each). The other authors have no conflicting interests to disclose. Financial support The LuEsther T. Mertz Retinal Research Center and The Macula Foundation, New York. The funding bodies had no role in the design or conduct of this research or the decision to publish. Statement of originality The work submitted here is original and has not been presented or published elsewhere. Received: 24 June 2015 Accepted: 29 June 2015 References 1. Gaucher D, Erginay A, Lecleire-Collet A, Haouchine B, Puech M, Cohen SY et al (2008) Dome-shaped macula in eyes with myopic posterior staphyloma. Am J Ophthalmol 145(5):909 914 2. Imamura Y, Iida T, Maruko I, Zweifel SA, Spaide RF (2011) Enhanced depth imaging optical coherence tomography of the sclera in dome-shaped macula. Am J Ophthalmol 151(2):297 302 3. Chebil A, Ben Achour B, Chaker N, Jedidi L, Mghaieth F, El Matri L (2014) Choroidal thickness assessment with SD-OCT in high myopia with domeshaped macula. J francais d ophtalmologie. 37(3):237 241 4. Liang IC, Shimada N, Tanaka Y, Nagaoka N, Moriyama M, Yoshida T et al (2015) Comparison of clinical features in highly myopic eyes with and without a dome-shaped macula. Ophthalmology. doi:10.1016/j. ophtha.2015.04.012 5. Viola F, Dell Arti L, Benatti E, Invernizzi A, Mapelli C, Ferrari F et al (2015) Choroidal findings in dome-shaped macula in highly myopic eyes: a longitudinal study. Am J Ophthalmol 159(1):44 52 6. Deobhakta A, Ross AH, Helal J, Maia A, Freund KB (2015) Localized choroidal thickness variation and pigment epithelial detachment in domeshaped macula with subretinal fluid. Ophthalmic Surg Lasers Imag Retina 46(3):391 392 7. Ellabban AA, Tsujikawa A, Matsumoto A, Yamashiro K, Oishi A, Ooto S et al (2013) Three-dimensional tomographic features of dome-shaped macula by swept-source optical coherence tomography. Am J Ophthalmol 155(2):320 328 8. Toyama T, Ohtomo K, Noda Y, Ueta T (2014) Polypoidal choroidal vasculopathy and history of central serous chorioretinopathy. Eye 28(8):992 997

Page 5 of 5 9. Yang LH, Jonas JB, Wei WB (2015) Conversion of central serous chorioretinopathy to polypoidal choroidal vasculopathy. Acta Ophthalmol. doi:10.1111/aos.12606 10. Asao K, Hashida N, Nishida K (2014) Choroidal nevus in an eye with polypoidal choroidal vasculopathy. Case Rep Ophthalmol 5(3):463 467 11. Peiretti E, Pozzoni MC, Fossarello M, Spaide RF (2009) Polypoidal choroidal vasculopathy in association with choroidal nevus. Retinal Cases Brief Rep 3(1):12 14 12. Goldman DR, Freund KB, McCannel CA, Sarraf D (2013) Peripheral polypoidal choroidal vasculopathy as a cause of peripheral exudative hemorrhagic chorioretinopathy: a report of 10 eyes. Retina 33(1):48 55 13. Bartlett HM, Willoughby B, Mandava N (2001) Polypoidal choroidal vasculopathy in a patient with melanocytoma of the optic nerve. Retina 21(4):396 399 14. Hayashi M, Ito Y, Takahashi A, Kawano K, Terasaki H (2013) Scleral thickness in highly myopic eyes measured by enhanced depth imaging optical coherence tomography. Eye 27(3):410 417 Submit your next manuscript to BioMed Central and take full advantage of: Convenient online submission Thorough peer review No space constraints or color figure charges Immediate publication on acceptance Inclusion in PubMed, CAS, Scopus and Google Scholar Research which is freely available for redistribution Submit your manuscript at www.biomedcentral.com/submit