THE DIFFERENCE BETWEEN HIGHER AND LOWER FLAP SETTING CONFIGURATIONS MAY SEEM SMALL, BUT AT TODAY'S FUEL PRICES THE SAVINGS CAN BE SUBSTANTIAL.

Similar documents
Mathematically Modeling Aircraft Fuel Consumption

AIRCRAFT PERFORMANCE Pressure Altitude And Density Altitude

Flight path optimization for an airplane

ENGINE FIRE / SEVERE DAMAGE / SEPARATION ON TAKEOFF

Data Review and Analysis Program (DRAP) Flight Data Visualization Program for Enhancement of FOQA

Best Practices for Fuel Economy

Multi-Engine Training And The PTS

Compiled by Matt Zagoren

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 4.2 Energy Management

Light Sport West Standard Flight Training Procedures for N110GX (Remos GX, 100 H.P.)

Cessna 172SP & NAV III Maneuvers Checklist

While flight plan calculations are necessary for safety and regulatory compliance, they also provide airlines with an opportunity for cost

This section includes performance data on the King Air B200. Information consists of:

Oral Preparation Questions

This is the fourth of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.

BE76 Beechcraft Duchess Maneuvers Checklist

OPERATIONS CIRCULAR. OC NO 2 OF 2014 Date: 1 st May Continuous Descent Final Approach (CDFA) 1. PURPOSE

CAAP 89W-1(0) Guidelines on provision of obstacle information for take-off flight planning purposes

ABOUT US VISION AND MISSION

qtr_04 03 Aviation and the Environment 07 Airplane Recycling 15 Economic Impact of Airplane Turn Times 21 Improving Airplane Turn-Time Operations

Wildlife Hazard Mitigation Strategies for Pilots

General Characteristics

This is the third of a series of Atlantic Sun Airways CAT B pilot procedures and checklists for our fleet. Use them with good judgment.

Aircraft Noise Control at London Luton Airport. August 2015

OPERATING MINIMA FOR AEROPLANES AND HELICOPTER OPERATIONS PURPOSE REFERENCE 4.0 DEFINITION

Beechcraft 1900D: Fuel, Emissions & Cost Savings Operational Analysis

Chapter 2. Basic Airplane Anatomy Delmar, Cengage Learning

MALAYSIA REQUIREMENT FOR THE ESTABLISHMENT OF FLIGHT DATA ANALYSIS (FDA) PROGRAM

Airspace Change Communications and Consultation Protocol Protocol

SYSTEM GLOBAL NAVIGATION SATELLITE SYSTEM LANDING TECHNOLOGY/PRODUCT DEVELOPMENT

Direct Approach Consulting Inc.

TAXI, TAKEOFF, CLIMB, CRUISE, DESCENT & LANDING

Phenom Hours/Annually

AN AIRCRAFT TAXI SIMULATION MODEL FOR THE UNITED PARCEL SERVICE LOUISVILLE AIR PARK. W. Swain Ottman Angela C. Ford Gregory R.

FLYBLOCKTIME PA /160 Aircraft Type Checkout and Currency Quiz. NOTE: There may be one or more correct answers to each question.

Block 0: Capabilities within our Grasp

AVIATION OCCURRENCE REPORT A98W0192 ENGINE FAILURE

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 3.1 Barometric Altimeter and Radio Altimeter

Analysing the options for 757 replacement The 757 has been in operation

ADS-B is intended to transform air traffic control by providing more accurate and reliable tracking of airplanes in flight and on the ground.

2014 NIFA CRM Contestant Briefing Guide San Diego, California

Flight Operations Support & Line Assistance. getting to grips with. fuel economy

FINAL INVESTIGATION REPORT Loss of Altitude during cruise of M/s Jet Airways B ER aircraft VT-JEL on

Fuel Efficiency Board & Event Measurement System

09 FLIGHT MANAGEMENT, NAVIGATION

Takeoff & Landing Data (TOLD) Software and Training for C-130J

ICAO Safety Management Systems (SMS) Course Handout N 5 Cuzco International Airport operation

General aviation & Business System Level Applications and Requirements Electrical Technologies for the Aviation of the Future Europe-Japan Symposium

REVIEW OF NOISE ABATEMENT PROCEDURE RESEARCH & DEVELOPMENT AND IMPLEMENTATION RESULTS DISCUSSION OF SURVEY RESULTS

AIRCRAFT NOISE ABATEMENT OPERATING PROCEDURES AND RESTRICTIONS

SPORT PILOT TRAINING SYLLABUS

AVIATION INVESTIGATION REPORT A07A0025 LOSS OF SEPARATION

FLIGHT TRAINING (AEROPLANE) BASED ON JAR FCL - PPL(A) FLIGHT INSTRUCTION Syllabus

DIRECCION DE PERSONAL AERONAUTICO DPTO. DE INSTRUCCION PREGUNTAS Y OPCIONES POR TEMA

Our story. GENEX Ltd. Along with scheduled operations the company has a broad geography of charter flights (Western Europe, Russia, Turkey etc.).

OM in Action Today s Speaker: Mr. David Brown Manager, Operations Services Cathay Pacific Airways

787 Training for Pilots and Mechanics

NAMIBIAN RADIO LICENSE VALIDATION

VFR Regulations Summary

SERIOUS INCIDENT. Aircraft Type and Registration: No & Type of Engines: 2 SNECMA CFM 56-7B turbofan engines. Year of Manufacture: 1999

Flight Safety Foundation. Approach-and-landing Accident Reduction. Tool Kit. FSF ALAR Briefing Note 8.3 Landing Distances

Annual & Hourly Cost Detail

Understanding the altimeter

Training Pilot & Technician Outlook Pilot & Technician Outlook 1

How To Calculate The Cost Of Atc Zero At Chicago Airport

June 22, 2011 Exemption No Regulatory Docket No. FAA

PF3 ATC at its best Version History

European Aviation Safety Agency

Pilot Briefing Stockholm/Arlanda

Exemption No A Regulatory Docket No. FAA

Background on Airspace

Introduction. The Normal Takeoff. The Critical Engine. Flying Light Twins Safely

CHAPTER 7. AIRSPACE 7.1 AFFECTED ENVIRONMENT

ILS Replacement. ACI World Safety Seminar November 2008 Kempinski Hotel Beijing Lufthansa Centre

Corporate Social Responsibility (CSR)

BOMBARDIER CRJ700. Bombardier CRJ700 Aircraft Reference

Benefits of Highly Predictable Flight Trajectories in Performing Routine Optimized Profile Descents: Current and Recommended Research

WHICH AIR TRAFFIC CONTROLLER TO CONTACT

Título ponencia: Helicopter IFP. Point-in-Space (PinS)

ICAO Standard Phraseology A Quick Reference Guide for Commercial Air Transport Pilots

parts of an airplane Getting on an Airplane BOX Museum Aeronautics Research Mission Directorate in a Series


Part 135. Air Operations Helicopters and Small Aeroplanes. CAA Consolidation. 24 September 2015

Using Tactical Unmanned Aerial Systems to Monitor and Map Wildfires

Software Centre 4 th June 2015

Decision Making Under Extreme Pressure

Annual & Hourly Cost Detail

WHAT PILOTS LEARN ABOUT AUTOFLIGHT WHILE FLYING ON THE LINE. Barbara Holder Edwin Hutchins University of California, San Diego

DeHavilland Twin Otter

Science in. Wind WHAT S GOING ON? In the Terminal or in the Airplane. Try This:

Performance-based Navigation and Data Quality

A Look into the Future of Airport Planning, Design, and Construction by Analyzing Current Issues

Airline Fleet Planning Models J/1.234J Airline Management Dr. Peter P. Belobaba April 10, 2006

Michael Harrison Aviation Management Associates Alternative PNT Public Meeting Stanford University August Federal Aviation Administration

Backgrounder. Boeing Commercial Airplanes

Training Pilot & Technician Outlook Pilot & Technician Outlook 1

The Future of Commercial Pilot Training. Ramsey Pedersen Special Assistant for Program Development Honolulu Community College

INITIAL TEST RESULTS OF PATHPROX A RUNWAY INCURSION ALERTING SYSTEM

How to configure a new airplane for FSCaptain Configuration files, load maps, and gauges

Transcription:

THE DIFFERENCE BETWEEN HIGHER AND LOWER FLAP SETTING CONFIGURATIONS MAY SEEM SMALL, BUT AT TODAY'S FUEL PRICES THE SAVINGS CAN BE SUBSTANTIAL. 24

Conservation Strategies: and Climb By William Roberson, Senior Safety Pilot, Flight Operations; and James A. Johns, Flight Operations Engineer, Flight Operations Engineering This article is the third in a series exploring fuel conservation strategies. Every takeoff is an opportunity to save fuel. If each takeoff and climb is performed efficiently, an airline can realize significant savings over time. But what constitutes an efficient takeoff? How should a climb be executed for maximum fuel savings? The most efficient flights actually begin long before the airplane is cleared for takeoff. This article discusses strategies for fuel savings during the takeoff and climb phases of flight. Subse quent articles in this series will deal with the descent, approach, and landing phases of flight, as well as auxiliary-power-unit usage strategies. The first article in this series, Cost Index Explained, appeared in the second-quarter 2007 AERO. It was followed by Cruise Flight in the fourth-quarter 2007 issue. and climb fuel conservation strategies In the past, when the price of jet fuel increased by 20 to 30 cents per U.S. gallon, airlines did not concern themselves with fuel conservation in the takeoff and climb segment of the flight because it represents only 8 to percent of the total time of a medium- to long-range flight. But times have clearly changed. Jet fuel prices have increased over five times from 990 to 2008. At this time, fuel is about 40 percent of a typical airline s total operating cost. As a result, airlines are reviewing all phases of flight to determine how fuel burn savings can be gained in each phase and in total. This article examines the takeoff and climb phase for four types of commercial airplanes to illustrate various takeoff and climb scenarios and how they impact fuel usage. These analyses look at short-range (e.g., 77), medium-range (e.g., 737-800 with winglets), and long-range (e.g., 777-200 Extended Range and 747-400) airplanes. An important consideration when seeking fuel savings in the takeoff and climb phase of flight is the takeoff flap setting. The lower the flap setting, the lower the drag, resulting in less fuel burned. Figure shows the effect of takeoff flap setting on fuel burn from brake release to a pressure altitude of 0,000 feet (3,048 meters), assuming an acceleration altitude of 3,000 feet (94 meters) above ground level (AGL). In all cases, however, the flap setting must be appropriate for the situation to ensure airplane safety. Higher flap setting configurations use more fuel than lower flap configurations. The difference is small, but at today s prices the savings can be sub stantial especially for airplanes that fly a high number of cycles each day. For example, an operator with a small fleet of 77s which flies approximately 0 total cycles per day could save 320 pounds (4 kilograms) of fuel per day by changing its normal takeoff flaps setting from 8 to degrees. With a fuel price of US$3.70 per U.S. gallon, this would be approximately US$7 per day. Assuming each airplane WWW.boeing.com/commercial/aeromagazine 2

The role of the flight crew in fuel conservation Every area of an airline has a part to play in reducing the cost of the operation. But the flight crew has the most direct role in cutting the amount of fuel used on any given flight. The flight crew has opportunities to affect the amount of fuel used in every phase of flight without compromising safety. These phases include planning, ground operations, taxi out, takeoff, climb, cruise, descent, approach, landing, taxi in, and maintenance debrief. Top fuel conservation strategies for flight crews include: n Take only the fuel you need. n Minimize the use of the auxiliary power unit. n Taxi as efficiently as possible. n Take off and climb efficiently. n Fly the airplane with minimal drag. n Choose routing carefully. n Strive to maintain optimum altitude. n Fly the proper cruise speed. n Descend at the appropriate point. n Configure in a timely manner. is flown 30 days per year, the airline could save approxi mately US$6,000 a year. If an airline makes this change to a fleet of 77 airplanes that averages 200 cycles a day, it could save more than US$ million per year in fuel costs. Using these same assumptions on fuel price, the potential fuel savings for an operator of a small fleet of 747-400s whose airplanes average a total of three cycles per day would be approximately 420 U.S. pounds (9 kilograms) of fuel per day, or approximately US$230. During a year, the operator could save approximately US$84,000. These savings are not as dramatic as the shortrange transport airplane, but clearly they increase as the fleet size or number of cycles grows. Operators need to determine whether their fleet size and cycles are such that the savings would make it worthwhile to change procedures and pilot training. Other important factors that determine whether or not it is advisable to change standard takeoff settings include obstacles clearance, runway length, airport noise, and departure procedures. Another area in the takeoff and climb phase where airlines can reduce fuel burn is in the climb out and cleanup operation. If the flight crew per forms acceleration and flap retraction at a lower altitude than the typical 3,000 feet (94 meters), the fuel burn is reduced because the drag is being reduced earlier in the climbout phase. Comparing the fuel usage of two standard climb profiles Figure 2 shows two standard climb profiles for each airplane. These simplified profiles are based on the International Civil Aviation Organization (ICAO) Procedures for Air Navigation Services Aircraft Operations (PANS-OPS) Noise Abatement Departure Procedures (NADP) NADP and NADP 2 profiles. Profile is a climb with acceleration and flap retraction beginning at 3,000 feet (94 meters) AGL, which is the noise climb-out procedure for close-in noise monitors. Profile 2 is a climb with accelera tion to flap retraction speed beginning at,000 feet (30 meters) AGL, which is the noise climb-out proce dure for far-out noise monitors. As a general rule, when airplanes fly Profile 2, 26

impact of takeoff flaps selection on fuel burn Figure 77-200 737-800 Winglets 777-200 Extended Range 747-400 747-400 Freighter 933 (423) 3 3,000 (,26) 90 (43) 7 (8) 8 96 (438) 32 (),274 (78) 0 60,000 (72,7),29 (86) 7 (8),297 (88) 23 (0) 3,60 (,63) 0,000 (249,476) 3,677 (,668) 72 (33) 20 3,730 (,692) 2 (7) 0,633 (2,) 72,000 (328,8) 20,772 (2,68) 39 (63) 0 6,389 (2,898) 790,000 (38,338) 20 6,39 (2,966) 0 (68) fuel-saving potential of two climb profiles Figure 2 Profile Type 77-200 3,000 (,26) 737-800 Winglets 60,000 (72,7) 777-200 Extended Range,000 (249,476) 747-400 72,000 (328,8) 747-400 Freighter 790,000 (38,338) 4,02 (,826) 3 2 3,880 (,760) 4 (66),234 (2,374) 0 2,086 (2,307) 48 (67) 4,3 (6,83) 2 4,078 (6,386) 43 (97) 2,02 (9,49) 0 2 20,32 (9,33) 20 (236) 23,08 (0,469) 0 2 22,472 (0,93) 609 (276) WWW.boeing.com/commercial/aeromagazine 27

EFFECT OF COMBINING takeoff and climb STRATEGIES Figure 3 Profile Type 77-200 3,000 (,26) 737-800 Winglets 60,000 (72,7) 777-200 Extended Range,000 (249,476) 747-400 72,000 (328,8) 747-400 Freighter 790,000 (38,338) 8 4,06 (,842) 2 3,89 (,70) 202 (92),273 (2,392) 2,069 (2,299) 204 (93) 20 4,70 (6,672) 2 4,08 (6,38) 692 (34) 20 2,49 (9,7) 2 0 20,32 (9,33) 887 (403) 20 23,8 (0,686) 2 0 22,472 (0,93),086 (493) they use 3 to 4 percent less fuel than when flying Profile. Figure 3 shows the combined effect of using a lower takeoff flap setting and flying Profile 2, compared to using a higher takeoff flap setting and flying Profile. Combining a lower takeoff flap setting with Profile 2 saves approximately 4 to percent fuel compared to the higher takeoff flap setting and Profile. Once the flaps are retracted, the crew should accelerate to maximum rate of climb speed. The 737s with flight management computers (FMC) provide this speed directly via the FMC control display unit. All Boeing flight crew training manuals provide guidance for maximum rate of climb speed. It can also be achieved by entering a cost index of zero in the FMC. (See Cost Index Explained in the second-quarter 2007 AERO.) Other considerations From a fuel consumption perspective, a full-thrust takeoff and a full-thrust climb profile offer the most fuel economy for an unrestricted climb. However, from an airline s cost perspective, this must be balanced with engine degradation and time between overhauls, as well as guidance from the engine manufacturer. The airline s engineering department must perform the analysis and provide direction to flight crews to minimize overall cost of operation when using takeoff derates or assumed temperature takeoffs and climbs. Summary In a time when airlines are scrutinizing every aspect of flight to locate possible opportunities to save fuel, the takeoff and climb phases of flight should be considered as part of an overall fuel savings effort. The impact of incorporating fuel saving strategies into every phase of the operation can result in considerable cost reductions. Boeing Flight Operations Engineering assists airlines flight operations departments in deter mining appropriate takeoff and climb profiles specific to their airplane models. For more infor mation, please contact FlightOps.Engineering@boeing.com 28