Satellite-UMTS - Specification of Protocols and Traffic Performance Analysis Von der Fakultat fur Elektrotechnik und Informationstechnik der Rheinisch-Westfalichen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Dipl.-Ing Seoung-Hoon Oh aus Seoul, Korea Berichter: Universitatsprofessor Dr.-Ing Bernhard Walke Universitatsprofessor Dr. Petri Mahonen Tag der miindlichen Priifung: 21. Mi 2005
CONTENTS Abstract Zusammenfassung iii v 1 Introduction 1 1.1 Motivation and contribution of the thesis 1 1.2 Organization of the thesis 4 2 Satellite UMTS 7 2.1 Network architecture of UMTS 7 2.2 Integration scenarios for S-UMTS 8 2.2.1 Transparent satellite scenario 9 2.2.1.1 Integration at J u j (/ (, ) interface (Scenario BP NodeB )... 9 2.2.1.2 Integration at Iu interface {BPRSC) 9 2.2.2 Regenerative satellite scenarios 10 2.2.2.1 Node B on Satellite (OBP NodeB ) 11 2.2.2.2 RNC on Satellite (0BP RNC ) 11 2.2.2.3 GSN on Satellite {0BP GS N) 13 2.2.3 The referenced integration scenario 13 2.2.4 Selection of satellite constellations for S-UMTS 13 2.3 Radio interface protocols of S-UMTS 14 2.3.1 Physical layer 15 2.3.1.1 Power control in S-UMTS 16 2.3.2 Medium Access Control (MAC) layer 18 2.3.2.1 Random Access Channel (RACH) in S-UMTS 19 2.3.3 Radio Link Control (RLC) layer 20 2.3.3.1 AM data transfer service 21 2.3.4 Radio Resource Control (RRC) layer 23 3 Services and QoS requirements of S-UMTS 25 3.1 Service requirements of S-UMTS 25 3.2 QoS requirements of S-UMTS 26 3.2.1 QoS parameters and System performance metrics 26 3.2.2 End-user performance expectation 28 4 Characteristic of radio channel in satellite system 31 4.1 Introduction 31 4.2 Two-State Channel Model 31 4.2.1 Fading 31 4.2.2 Transition probability of channel state 33 4.3 Link Budget 36 4.4 Error Rate for AWGN, Rayleigh and Rice channel models 39
Medium Access Protocol for the S-UMTS 41 5.1 Introduction 41 5.2 Description of the FAUSCH operation 41 5.2.1 Selection of code sequence for FAUSCH 43 5.3 Channel access throughput 44 5.3.1 FAUSCH 44 5.3.2 RACH 45 5.4 Channel access delay 46 5.4.1 FAUSCH 47 5.4.2 RACH 48 5.5 Required transmission power 51 5.6 Receiver Detection Performance 53 5.7 Further alternatives for the RACH operation 53 Radio Link Control protocol in S-UMTS 57 6.1 Introduction 57 6.2 Condition of analysis 57 6.3 Go-Back-N ARQ 60 6.4 Selective repeat ARQ 60 6.5 Protocol overhead 62 6.6 Impact of the on-board processing type of satellite on the ARQ performance 62 6.6.1 Satellite with error correction capability on the sender side 63 6.6.2 Satellite with error correction capability on both sides 65 6.7 Comparison of performance between satellite processing types 67 6.8 Effort for the reassembling 68 6.9 Conclusion 70 Non-Access Stratum aspect in S-UMTS 71 7.1 Introduction 71 7.2 Inter-Segment Mobility Management 71 7.2.1 System requirements for providing Inter-Segment MM 72 7.2.1.1 Multi-mode User Equipment (UE) 72 7.2.1.2 Core Network 74 7.2.2 Mapping function of the measurements 74 7.2.3 Specification of the Inter-Segment Roaming protocol 75 7.3 SIP enhancement for the optimization of the NAS control signaling 78 Investigation tools for performance analysis of S-UMTS 83 8.1 Introduction 83 8.2 Physical test-bed for performance analysis of S-UMTS 84 8.3 Simulator for performance analysis of FAUSCH in S-UMTS 86 8.3.1 Modeling the timely fluctuation of the FAUSCH request 87 8.4 Simulation tool for performance analysis of S-UMTS AN protocol 89 8.4.1 Radio interface implementation in S-URIS 90 8.4.2 On-board processing 92 Performance analysis of S-UMTS protocols 95 9.1 Performance analysis of FAUSCH in S-UMTS 95 9.2 Performance analysis of SR-ARQ in S-UMTS 99 9.2.1 Simulation environment 100
9.2.2 Results 101 9.3 Performance analysis of the SIPRAN concept 106 9.3.1 Simulation environment 107 9.3.2 Results 108 9.4 Performance analysis of Inter-Segment Roaming Ill 9.4.1 Test environment Ill 9.4.2 Results 112 9.5 Performance analysis of End-User Service over S-UMTS 114 9.5.1 Investigation environments 114 9.5.2 VoIP over S-UMTS 115 9.5.2.1 Results 116 9.5.3 Web browsing over S-UMTS 119 9.5.3.1 Results 119 9.5.4 File transfer over S-UMTS 121 9.5.4.1 Results 121 9.5.5 Impact of interference condition on traffic performance 123 9.5.5.1 Investigation scenarios 123 9.5.5.2 Results 126 9.5.6 Conclusion 127 10 Conclusions 129 10.1 Achievements 129 10.2 Outlook 130 A Satellite communication system 133 A.I Satellite Systems: an overview 134 A.2 Coordinates for a satellite system 135 A.3 Approximated constellation parameters 135 A.4 Typical frequency bands in the satellite communication 137 A.5 Constant values applied for the satellite communication 137 A.6 Coverage Area 138 A.7 Orbit and altitude of satellite system 139 A.7.1 GEO based Mobile Satellite Systems 141 A.7.2 MEO based Mobile Satellite Systems 142 A.7.3 LEO based Mobile Satellite Systems 142 A.7.4 HEO based Mobile Satellite Systems 143 A.7.5 Summary of orbit characteristics 144 A.8 Classification of satellite according to the operational area 144 B Derivation of delay and throughput in ARQ 147 B.I Go-Back-N ARQ 147 B.2 Selective-Repeat ARQ 147 B.3 Satellite with error correction capability on the sender side 148 C Investigation tools used in the thesis 149 C.I Physical test-bed used for performance analysis of S-UMTS 149 C.I.I Multi-mode UE 149 C.1.2 Physical emulator 149 C.1.3 Radio Access Network 149 C.1.4 Core network 151
C.2 Simulation parameter in FAst Uplink Signalling CHannel (FAUSCH) simulator 151 C.3 Protocol stacks implemented in S-URIS 153 D Internet application and traffic models 157 D.I Typical internet application and protocols 157 D.I.I Session Initiation Protocol 157 D.l.1.1 User Agent - User Agent Call Flow 157 D.l.1.2 SIP Message Syntax 158 D.1.2 File transfer application 160 D.1.3 WWW application 161 D.2 Implemented traffic models in S-URIS 161 D.2.1 WWW "traffic 161 D.2.2 FTP 162 D.2.3 Speech 162 Acronym 165 Bibliography 171 Resume 177