SOME IMPORTANT NAVAL ARCHITECTURAL TERMS February 2009

Similar documents
A MATTER OF STABILITY AND TRIM By Samuel Halpern

CH-01.qxd 4~6~04 11:22 AM Page 1. Part 1 Ship Design

VOLUME 5 DAMAGE STABILITY

GAS FLAWLESS - FORM C

GUIDELINES FOR FLOODING DETECTION SYSTEMS ON PASSENGER SHIPS

Leaflet for damage stability calculation according to SOLAS 2009

The Effects of Length on the Powering of Large Slender Hull Forms

Trends in the Development of Container Vessels

Module Title: General Ship Knowledge

IMO. MSC/Circ October Ref. T1/2.04 GUIDANCE TO THE MASTER FOR AVOIDING DANGEROUS SITUATIONS IN FOLLOWING AND QUARTERING SEAS

Safety of Life at Sea, 1974 (SOLAS)

INTEGRATED SYSTEM FOR DATA ACQUISITION AND NUMERICAL ANALYSIS OF THE SHIP RESISTANCE PERFORMANCE IN THE TOWING TANK OF GALAÞI UNIVERSITY

GUIDELINES FOR THE DRAINAGE OF FIRE-FIGHTING WATER FROM CLOSED VEHICLE AND RO-RO SPACES AND SPECIAL CATEGORY SPACES OF PASSENGER AND CARGO SHIPS

M/V TAMARITA/FERMITA/ ROSITA/FAVORITA

Emission support system for calculation of energy demand and emissions of ships. Hans Otto Kristensen

The influence of ship operational parameters on fuel consumption

CLASSIFICATION NOTES

How To Optimise A Boat'S Hull

COMPUTER MODEL TIL BEREGNING AF EEDI OG RØGGASEMISSIONER FOR FORSKELLIGE SKIBSTYPER

Rules for Classification and Construction Additional Rules and Guidelines

Bollard Pull. Bollard Pull is, the tractive force of a tug, expressed in metric tonnes (t) or kn.

Multipurpose Offshore Construction Vessel

U. S. Department of Homeland Security United States Coast Guard. Second Edition

GENERAL HULL FORM EQUATIONS

OFFSHORE WIND Peter Robert

New Ferries for Gedser - Rostock. Development of a transport concept GR12. Ferry Conference in Copenhagen 22 nd November 2010

Meyer Turku Shipyard. Vard Group Aalto Passenger Ship Architecture Creativity in Ship Design. Kai Levander SeaKey Naval Architecture

ANNEX 10. RESOLUTION MEPC.214(63) Adopted on 2 March GUIDELINES ON SURVEY AND CERTIFICATION OF THE ENERGY EFFICIENCY DESIGN INDEX (EEDI)

Floating. Diesel power stations

How To Design A Semidisplacement Yacht

Laws and price drive interest in LNG as marine fuel

Dry Bulk Carriers Vessel: Bulk Americas

CODES OF PRACTICE. What one needs to know concerning regulations REGULATION

How To Reduce Energy Efficiency On Ships

STABILITY WHAT IS IT AND HOW DOES IT WORK?

SIMON STEVIN. 24,350kw Diesel-Electric Propulsion 19,500m 3 Capacity of Rock Storage Dynamic Positioning System DP-2

THE NEXT REVOLT 18 BATTERY COASTAL TRAFFIC REVOLT IN BRIEF

A.1 Obligations and reporting of the gaining Society. Plans to be Submitted by the Owner to the Gaining Society

of Presentation Performance Management

Stena S ,200 DWT Product/Chemical Tanker CONQUEST CONQUEROR CONCORD CONCEPT CONSUL CONTEST

Niels Hjørnet Yacht Design Yacht Design. Niels Hjørnet Yacht Design

Design and Operation of Fuel Efficient Ships. Jan de Kat Director, Energy Efficiency Operational and Environmental Performance Copenhagen

Classification of Compressed Natural Gas Carriers

Propulsion Trends in LNG Carriers

LNG as Ship Fuel. Effects on Ship Design, Operations and Supporting Infrastructure

Ship Structure Committee Case Study. BULK CARRIERS: Design, Operation, and Maintenance Concerns for Structural Safety of Bulk Carriers

Emergency Response Plan. at sea also valid in case of Flooding, where applicable

ANNEX 5 RESOLUTION MEPC.127(53) Adopted on 22 July 2005 GUIDELINES FOR BALLAST WATER MANAGEMENT AND DEVELOPMENT OF BALLAST WATER MANAGEMENT PLANS (G4)

lng conversion (General)

Minimum Propulsion Power for ship safe Operation under adverse Weather Conditions

Part 0 - Classification and Surveys Classification and Surveys I

3. Resistance of a Ship 3.2 Estimates based on statistical methods

24 th ITTC Benchmark Study on Numerical Prediction of Damage Ship Stability in Waves Preliminary Analysis of Results

5.2. Vaporizers - Types and Usage

Building an LNG driven vessel. LNG developments at Meyer Werft Viking Grace 18_09_2013

MAN Diesel & Turbo. Frederik Carstens Head of Offshore Sales Marine Medium Speed. Frederik Carstens & Karsten Borneman

12 November 2008 *** I:\CIRC\MEPC\01\642.DOC INTERNATIONAL MARITIME ORGANIZATION 4 ALBERT EMBANKMENT LONDON SE1 7SR

Safety of Life at Sea, 1974 (SOLAS)

SURVEY and CERTIFICATION RULES on ENERGY EFFICIENCY of SHIPS (MARPOL 73/78 ANNEX VI, CHAPTER 4) SEPTEMBER 2015

Viking Grace 20 months' experience of Ship to Ship LNG bunkering

FIREFIGHTING AND DAMAGE CONTROL

BALLAST WATER EXCHANGE

Energy Efficiency of Ships: what are we talking about?

Case Study 10 R/V WESTERN FLYER Chronic Cracking in an Aluminum SWATH Research Vessel

Comparison of Spherical and Membrane Large LNG. Carriers in Terms of Cargo Handling

Economic and Social Council

Azimuth thrusters. propulsors

Diesel-electric Drives

SOLAS CONSOLIDATED EDITION Supplement December 2015

M/S Color Magic and M/S SuperSpeed 1.

VESSEL S TECHNICAL SPECIFICATION

GENERAL OCEAN TOW RECOMMENDATIONS FOR JACKUP DRILLING UNITS International Association of Drilling Contractors (I.A.D.C.) February 13, 1991

REVISED GUIDELINES FOR THE PREPARATION OF THE CARGO SECURING MANUAL

Super Fuel Efficient Long Range Motoryachts

Discharge of Water & Waste from Marine Vessels Standards & Regulations (MARPOL Convention)

CODE OF SAFETY FOR CARIBBEAN CARGO SHIPS CCSS CODE

Retrofit Opportunities for Existing Fleet

New marine propulsion concept with booster motor

Fuel Treatment and Conditioning Systems

GOLIATH DPIII OFFSHORE SUPPORT VESSEL. Vessel Specification - December 2011

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Safe carriage of oil in extreme environments

INTERNATIONAL ASSOCIATION OF CLASSIFICATION SOCIETIES. Interpretations of the FTP

IPS Inboard performance system. Volvo Penta IPS, the future for fast vessels

Ontario Fire Code SECTION 5.13 DIP TANKS. Illustrated Commentary. Office of the Ontario Fire Marshal

Drettmann Explorer Yacht DEY 32

Simple Damage Control Aboard

INTERNATIONAL REGULATIONS FOR HIGH-SPEED CRAFT AN OVERVIEW *

SIMPLIFIED MEASUREMENT

Use of Steel Grades for Various Hull Members - Ships of 90 m in Length and Above

innovation quality reliability

MINISTRY OF TRANSPORTATION OF THE REPUBLIC OF LITHUANIA MARINE SHIP ACCIDENT AND INCIDENT INVESTIGATION MANAGER

Green Ship of the Future

COMDTPUB P NVIC 11-93, CH-3 NAVIGATION AND VESSEL INSPECTION CIRCULAR NO , CHANGE 3

Offshore Platform Powered With New Electrical Motor Drive System

11.6 Formulas to be used when changing atmosphere in an tank

Car Passenger Ferry Portugal

SOx - FUEL CHANGE MANUAL. Manual No. 01

CFD Modelling and Real-time testing of the Wave Surface Glider (WSG) Robot

DOCKMASTER TRAINING MANUAL

Transcription:

Page 1(6) SOME IMPORTANT NAVAL ARCHITECTURAL TERMS February 2009 ITEM A-, B- and C-class divisions EXPLANATION SOLAS has tables for structural fire protection requirement of bulkheads and decks. The requirements depend on the spaces in question, and are different for passenger ships and cargo ships. A-0, A-15, A-30, A-60: Shall be constructed of steel or equivalent material, shall be constructed to prevent passage of smoke and flame for 1 h in Standard Fire Test, shall be insulated so that the average temperature of the unexposed side does not rise more than 140C (any point no more than 180C) above the original temperature within 0, 15, 30 or 60 minutes. B-0, B-15: Shall be constructed to prevent passage of flame for 0.5 h in Standard Fire Test, shall be insulated so that the average temperature of the unexposed side does not rise more than 140C (any point no more than 225C) above the original temperature within 0 or 15 minutes. Shall be constructed of approved non-combustible materials (However, combustible veneer may be used). Alternative Design, Alternative Arrangements Attained Subdivision Index, A C: Shall be constructed of approved non-combustible materials (However, combustible veneer may be used). Regulation allows for designs and arrangements which are not according to SOLAS requirements, providing an analysis is made that shows the proposed alternative design or arrangement is, with regards to safety, at the same or better level than the SOLAS requirement. Example of an alternative design are lifeboats with a higher than 150 person capacity. According to probabilistic damage stability rules the vessel s probability to survive a flooding damage (collision, grounding) is calculated with formula: = i represents each compartment or group of compartments under consideration. p i is the probability that only the compartment or group of compartments under consideration may be flooded. s i is the probability of survivability after flooding of the compartment or group of compartments under consideration. Ballast Water Convention, Ballast Water Treatment, BWT B/5, Breadth divided by 5, B/5-line Block Coefficient, C B The A is calculated for three different drafts and summarized with a weighted formula. If the A R (R=required subdivision index), the vessel fulfills the requirement. Typically the vessel s GM-limits for damage stability are adjusted so that A = R. New regulation requiring ballast water treatment systems on all ships (new and old), in order to avoid harmful organisms spreading from one location to another. Typically the treatment is by filtering and UVlight. Imaginary line used in ship design and damage stability calculations: according to old rules, no damage extends inside the B/5-line (e.g. on a vessel with breadth of 32.2 m, maximum extent of any damage is 6.44 m from ship s shell). Due to this, bilge main lines, fuel tanks, etc. are normally located inside this B/5. New probabilistic rules have made this rule obsolete on new ships. Important coefficient which describes the fullness of the hull: a lower coefficient means typically lower resistance. C B = Displacement Volume / (L x B x T). A typical figure for a cruise vessel is e.g. 0.65. Other often used coefficient is C M, Midship Section Coefficient, which describes the fullness of Midship Section.

Page 2(6) Center of Gravity, Vertical Center of Gravity (VCG), Longitudinal Center of Gravity (LCG), KG Center of Gravity is used especially in connection with lightweight, deadweight and displacement. VCG is the vertical distance between center of gravity and keel, LCG is the longitudinal distance between center of gravity and frame #0. Lower VCG means more stability and LCG affects vessel s trim. Typical VCG figures for a Panamax cruise ship are, for example: Item Weight VCG Lightweight 39,000t 17.8m Deadweight 8,000t 6.8m Displacement 47,000t 15.9m CFD, Computation Fluid Dynamics COP, Coefficient of Performance Damage Length Damage Stability Deadweight, DWT Design Draught, T DESIGN Displacement, Displacement weight Displacement volume () Ducktail Froude Number, F n As this example shows, deadweight has a lower VCG than lightweight and thus reduces the VCG of displacement (and improves stability). The situation is kept like this by replacing used fuel with ballast water. KG is the same than VCG. See also GM. Calculation method or software which enables hydrodynamic optimization of hull form. Has lately enabled fast development of efficient hull forms. RANSE in connection with CFD denotes Reynolds Averaged Navier Stokes Equation, and means simulation of the viscous flow. In future CFD calculations can likely replace model tests. Describes the efficiency of AC-cooling compressors (chillers). For example, COP of 4.0 indicates that for a 4,000 kw cooling power, the chiller requires 1,000 kw of electric power. The length of damage used in damage stability calculations. For passenger ship the old (pre 2009) rules defined this length to be 3m + 3% of Lpp or 11 m, whichever is less. In new probabilistic rules the calculated damage lengths are based on probabilistic distribution, and the calculation can include much longer damages than was required in old rules. The vessel s stability characteristics in damaged condition. Big cruise ships can float with several flooded watertight compartments. Old (pre 2009) rules required the ships to withstand a damage of any two adjacent watertight compartments, but in new regulations the calculation method and requirement is much more complex. Weight (and center of gravity) of vessel s cargo, stores, fuel, fresh water, passengers, crew, liquids in tanks, etc. Deadweight of a Panamax cruise vessel is typically around 8,000 t. See also lightweight and displacement. The draft the vessel (and her deadweight, stability, performance, etc.) is designed for. On a Panamax cruise ship design draft is typically ca. 8.0 m. Generally more draft means better seakeeping capabilities, but less draft often means more stability. See also Scantling Draft. The weight (and center of gravity) of the vessel herself and vessel s cargo, stores, passengers, crew, etc. Displacement = Lightweight + Deadweight. Displacement of a Panamax (approximately 90,000 GT) cruise vessel is e.g. ca. 47,000 t. Displacement Force (symbol ) is Displacement Weight x g (g=9.81 m/s 2 ), and is the same as buoyancy. The volume the vessel s hull displaces in water. In seawater with specific gravity of 1.025 kg/m 3, the Displacement Volume for a vessel Displacement of 47,000t is 45,854 m 3. Thus the vessel needs more Displacement Volume (and draft) in fresh water than in sea water for the same Displacement Weight. An extension to ship s stern. On older ships the diminished stability can be regained by adding a ducktail. Ducktail is also used on newbuildings; there the primary purpose is often to reduce the power consumption for propulsion. Froude number describes the vessel s relative speed, which depends on vessel length: [ = ] [ ] [] v is vessel speed in [m/s] (1 knot 0.5 m/s) g is 9.81 m/s 2 L is vessel s waterline length

Page 3(6) Fuel Consumption Free surface correction GM, (transverse) Metacentric Height Growth Margin GT (Gross Tonnage), (formerly GRT) Generally a lower F n means lower resistance (for fast, small vessels the situation can be opposite). Typical figure for a Panamax cruise ship is F n=0.25. Using a typical engine specific fuel oil consumption of 200 g/kwh (when tolerances, heat value corrections, etc. are taken into account, the real heavy fuel oil consumption is seldom below this, and often even above this), this corresponds to a fuel consumption of 0.2 t/h per 1 MW. Thus, a ship using 30 MW for propulsion and hotel load, consumes 6t heavy fuel oil (HFO) per hour. The GM is corrected with free surface correction : i.e. tanks with free surface reduce the stability of the vessel; this correction is e.g. -0.1 m. The more free surfaces (slack tanks, pools, splash areas) there is, the bigger the correction is, and thus more the GM reduces. Describes the righting moment of the vessel: higher GM means better stability (condition for positive stability is that GM>0.). Typical value for GM on a Panamax cruise vessel is ca. 2.0 m. GM = KM KG, where KG is the VCG of the ship (lightweight + deadweight) and KM is the distance from keel to the metacenter (see figure below). KM has to be higher than KG for a ship stay upright (and GM to stay positive). GM can also used for the longitudinal stability of the vessel: then symbol GM L is used. An additional margin added into vessel weight calculation to cover for later weight increases. Practically all ships get heavier when they age; this is due to conversions, modifications, painting, etc. and without preparing for this, the ship can later end up with stability problems, requiring a ducktail or a sponson. Gross Tonnage describes the volume and size of the vessel. GT includes all the enclosed spaces (not balconies, sun decks or similar areas). GT is calculated with a formula: = (0.2 + 0.02 ) where V = vessel s calculated volume in m 3. Heeling, Heeling angle Hotel Load Intact Stability KM, (transverse) Metacentric Height Lightweight, LWT Notes: Earlier 1 GRT was 100 ft 3, or 2.83 m 3 ; thus figures for e.g. Titanic cannot be directly compared with GT figures of today s vessels. For example, if vessel s enclosed volume is 294 000 m 3, the GT is ca. 91,000. GT is often the base for different port and other fees. As GT is logarithmic, it cannot be used for accurate comparison between vessels of different size: for example, on a 10,000 GT ship one GT is 3.44 m 3, but on a 150,000 GT vessel one GT corresponds to 3.19 m 3. The angle vessel is leaning away from upright position. The electric power needed for other ship functions than propulsion, i.e. for AC, lighting, galleys, etc. For a Panamax vessel a typical hotel load is close to 10 MW. The vessel stability in intact (normal, non-damaged) condition. In intact conditions the vessel has to withstand heeling, wind, etc. to fulfill the criteria stated in rules. KM is the distance from Keel to Metacenter, which depends on the vessel draft, displacement and hull form. Typical KM for a Panamax cruise vessel is 18 m. High KM means more stability, but often at the expense of speed and sea keeping capabilities. See figure below. Vessel s empty weight (and center of gravity), i.e. weight of the vessel without fuel, stores, water, cargo, passengers, crew, etc. Needed liquid in ship system piping and system tanks is included, but not liquids in e.g. storage tanks. Typical lightweight for a Panamax cruise ship is ca. 39,000 t. See also displacement and deadweight. Longitudinal Center of Buoyancy (LCB) Longitudinal Center is the longitudinal center of water the vessel s hull displaces. When the vessel floats, LCB and LCG are in same position. Position of LCB is very important for the hull resistance. Typically LCB is located slightly aft of midship (Lpp/2). Main Dimensions The vessel main dimension area:

Page 4(6) Main Fire Zones (MFZ), Main Vertical Zones (MVZ), Main Fire Zone Bulkheads (MFZB) Margin Line MCR, maximum continuous rating Net Tonnage (NT, formerly NRT) Permeability Probabilistic Damage Stability Rules Propeller Pressure Pulses, Propeller Excitation Frequency Pump power demand L OA, Length overall: the vessel s absolute maximum length. L PP, Length between perpendiculars: the distance between rudder shaft (typical) and the point where bow stem enters water at design draft (typical). Basis for many calculations and coefficients. B, Breadth (moulded): The vessel breadth without the shell plating, i.e. the actual breadth of the vessel is slightly more. T, Draft (design): The planned design draft for the vessel. Other typically used dimensions include waterline length, air draft and scantling draft. The vessel has to be divided into vertical fire zones: the basic rule is that maximum length of a fire zone is 40m, which can be in certain situations extended to 48m. Today s practice is to use 48m fire zones where ever possible. The maximum permissible area of one main fire zone on one deck is 1,600 m 2. On some of today s newbuildings these areas are extended beyond the SOLAS maximums, often based on special cases, or on so called Alternative Design Principles. Additional requirement is that the bulkheads between main fire zones should not have steps. Imaginary line that is defined to be 3 inches (76mm) below bulkhead deck: in pre 2009 rules, in damaged condition the Margin Line may not submerge. With new probabilistic stability rules margin line has become obsolete. The rated or maximum continuous power of a diesel engine. In real life this power is never used: on diesel-electric ships 90% of MCR is a typical maximum and on a diesel mechanical ship the typical figure is 85% MCR. Describes vessel s net volume, i.e. is lower than GT. It is calculated with a more complicated formula than for GT: the formula takes into account the volume of cargo spaces, vessel draught and number of passengers. On a ca. 90,000 GT ship NT is typically ca. 54,000, i.e. ca. 60% of GT. Often basis for different port, passage etc. fees. Permeability is the ratio of maximum flooded water (in damaged condition) volume to the space volume. It is used in damage stability calculations. For example, the permeability of stores is 0.6, i.e. when a 100 m 3 store is flooded, 60 m 3 of water is assumed in damage stability calculations. For engine rooms the permeability is 0.85 and for tanks, voids and cofferdams 0.95. New rules in force since 1.1.2009. In these the damage stability requirements are no longer based on simple rules, but on calculation methods where vessel s theoretical and simplified survival probability is calculated. See Attained and Required Subdivision Index. Pressure pulses propeller generates in ship s hull (mainly due to the propeller blade passing near the vessel hull). The higher the pressure pulses are, the higher the probability for vibration problems. A good level for highest pressure pulses is lower than 1.5 kpa. More propeller blades (e.g. 5 instead of 4 - or use of pod propulsion can reduce the pressure pulses). Still, even if the propeller pressure pulses are low, the natural frequency of vessel s structures needs to be designed to be above the propeller blade frequency. Typical blade frequency is, for example, 11 Hz (132 rpm x 5 blades). Electric power demand for a seawater pump can be roughly estimated with a formula: [] = [] [ ] 228 h is pump pressure head flow is pump capacity As an example, a seawater pump with 2.5 bar pressure head (25 m) and capacity of 100 m 3 /h, takes ca. 11 kw of electric power.

Page 5(6) Required Subdivision Index, R In probabilities damage stability rules, if the attained subdivision index A is greater or equal to required subdivision index R, the vessel fulfills stability requirements. For passenger ships, the R is calculated as follows: 5000 =1 +2.5 + 15225 L S is subdivision length in meters (simplified: the length of the watertight part of the hull). N=N 1+2 x N 2 N 1 = number of person who have lifeboat seats N 2 = number of persons without lifeboat seats Resistance Scantling draft (T SCANTLING) Safe Return to Port SECA, SO X Emission Control Area Service Speed Shaft Power, P S Sponson THD, total harmonic distortion Trial Speed Trim The formula means, for example, the fewer passengers there are, the lower R is accepted. Also, increasing the lifeboat capacity from SOLAS minimum (lifeboats for 75% of total number of persons onboard on international voyages) will also reduce the R. Vessel s resistance against moving. This includes, e.g. friction resistance, wave making resistance and wind resistance. For estimating vessel s propulsion power demand these are measured in model tests before finalizing hull form and propulsion power. The draft vessel structures are designed for (hull plating, tank bulkheads, etc.), i.e. the maximum structural draft for the vessel. Typically scantling draft is slightly more, or the same, than design draught. If stability requirements do not require otherwise, the scantling draft is the maximum draft to which the vessel can be loaded. New significant regulation (1 st July 2010). This requires (simplified) that a passenger vessel has to be able to return to nearest port, with required systems working, when: a) any compartment is flooded; or b) any room is lost due to fire Sea areas where there are stricter SO X limits than in other areas. Today, for example, North Sea, English Channel and Baltic Sea are SECAs and require use of low sulfur fuel (or scrubbing systems). Speed the vessel is optimized for in normal operation, or capable to sustain in typical sea conditions. In connection with Service Speed a sea margin is defined, for example service speed to be 22.5 knots with 15% sea margin. This means that the vessel has the power for 22.5 knots in trial conditions + 15% additional power for sea margin. Sea margin compensates for rough weather, hull fouling, etc. The power available at vessel s propeller shaft. On a diesel-electric ship this is typically 0.92 x available diesel engine power due to losses in electric drive and shafting. On a diesel-mechanical ship there are less losses, i.e. shaft power is ca. 0.985 x available diesel engine power. See also MCR: available diesel power is less than MCR. An extension on ship side; this can be required if the vessel faces stability problems in her service life. See also ducktail. Sponson typically increases the resistance. On ships this typically means the distortion in electric distribution network caused by electrical propulsion drive. For example, a specification can require THD to be below 5%. Vessel speed in trial conditions. Trial conditions are typically defined as follows: Vessel at design draft and even keel Clean hull Defined engine / propulsion motor load (e.g. 90% MCR) In deep water, no current, calm weather, no waves Fin stabilizers folded in. Thus in normal operation vessel seldom reaches the Trial Speed. Trial speed is measured during sea trial: due to weather conditions, etc. the measured speed needs often to be corrected. See service speed. When a vessel is not on even keel (i.e. the bow is higher than stern, or vice versa), the vessel is trimmed, or has trim. For example the vessel has 0.5 m stern trim, when her draft in stern is 0.5 m more than draft in foreship.

Page 6(6) Weight Reserve Weight reserve in the vessels weight calculation (both weight and center of gravity). This is e.g. 2% and 0.2 m. This is margin against calculation inaccuracies and changes during design and building stage. See also Growth Margin. Weight reserve is adjusted during the building process as the weight data gets more accurate. Figure: definition of GM, KG and other related terms.