Thomas C. Spence* Donald R. Stickle Flowserve Corporation Dayton, Ohio

Similar documents
Durcomet 100 CD4MCuN. Bulletin A/7l

ALLOY 2205 DATA SHEET

Rely on Our Material Competence for Your Demanding Industrial Processes

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

Start the Design Study!

Stainless steel grade chart

ALLOY C276 DATA SHEET

Section 4: NiResist Iron

North American Stainless

ASTM A860/A860M-09 Standard Specification for Wrought High Strength. Ferritic Steel Butt Welding Fittings. 1. Scope :- 2. Reference Documents :-

Urea and Nitric Acid Plants: Improvement of Shut-Down, Revamping, Debottlenecking and Refurbishment

Technical Data BLUE SHEET. Martensitic. stainless steels. Types 410, 420, 425 Mod, and 440A GENERAL PROPERTIES APPLICATIONS PRODUCT FORM

GENERAL PROPERTIES //////////////////////////////////////////////////////

WJM Technologies excellence in material joining

LASER CUTTING OF STAINLESS STEEL

TABLE OF CONTENT

Weld Cracking. An Excerpt from The Fabricators' and Erectors' Guide to Welded Steel Construction. The James F. Lincoln Arc Welding Foundation

North American Stainless

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association

North American Stainless

Sandvik SAF 2707 HD (UNS S32707) a hyper-duplex stainless steel for severe chloride containing environments

AUSTENITIC STAINLESS DAMASCENE STEEL

ALLOY 6022 SHEET. Higher Strength with Improved Formability SUPPLYING THE WORLD S BEST

North American Stainless

Problems in Welding of High Strength Aluminium Alloys

Chapter 5 - Aircraft Welding

North American Stainless

Products Alloys Cast Titanium Alloys

Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 1

Standard Specification for Stainless Steel Bars and Shapes 1

The mechanical properties of metal affected by heat treatment are:

North American Stainless

Drill Pipe Hard-facing

Alloys & Their Phase Diagrams

North American Stainless

Hyper duplex stainless steel for deep subsea applications

North American Stainless

DX2202 Duplex stainless steel

EML 2322L MAE Design and Manufacturing Laboratory. Welding

Caps STANDARD WEIGHT Inches / Pounds

Duplex Stainless Steel

Austenitic Stainless Steels

MATERIAL SAFETY DATA SHEET SECTION 1 CHEMICAL PRODUCT AND COMPANY INFORMATION SECTION 2 COMPOSITION/INFORMATION ON INGREDIENTS

Simulations of the Effect of Section Size and Cooling on Sigma Phase Formation in Duplex Stainless Steels

SPECIFICATIONS FOR STEEL PIPE

Localised corrosion of stainless steels depending on chlorine dosage in chlorinated water

MATERIAL SPECIFICATIONS CATALOGUE

North American Stainless

Products. EschmannStahlGrades Plastic Mould Steel Hot Work Tool Steel Cold Work Tool Steel Overview

Gas Turbine Metallurgy, Coatings and Repair Technology Workshop May 2 nd, 2010

Enhanced version of 316/316L austenitic stainless steel. Better material performance at a lower cost. Juha Kela Juha Kela / 316plus

STAINLESS STEEL AISI GRADES FOR PM APPLICATIONS

BUMAX. REYHER your partner for the BUMAX range

TABLE OF CONTENTS 2 Heavy-Wall Seamless & Welded Carbon Steel Pipe. 4 Alloy Pipe & Tube. 6 Chrome-Moly Pipe. 7 Low-Temp Pipe

High-Strength Low-Alloy Steels

About Sintered Products. Products for: - Resistance Welding Electrodes - Electrical Contact Materials. Product Definition & Uses.

X15TN TM. A high hardness, corrosion and fatigue resistance martensitic grade CONTINUOUS INNOVATION RESEARCH SERVICE.

Development of a High Performance Nickel-Free P/M Steel. Bruce Lindsley. Senior Materials Engineer, Hoeganaes Corporation, Cinnaminson, NJ 08077, USA

Evaluation of the Susceptibility of Simulated Welds In HSLA-100 and HY-100 Steels to Hydrogen Induced Cracking

Copper Alloys for Injection, Thermoform and Blow Molds

Sandvik duplex stainless steels

Martin RICHEZ. Franck ZANONCELLI

Copper Alloys COPPER ALLOYS. Weld Tech News VOL 1. NO. 8

High Alloyed Austenitic Stainless Steel 904L, 254 SMO, 654 SMO

Seamless stainless tubes for hydraulic and instrumentation systems

Module 3 Machinability. Version 2 ME, IIT Kharagpur

Submerged Arc Wires & Fluxes

Standard Specification for Seamless Ferritic and Austenitic Alloy-Steel Boiler, Superheater, and Heat-Exchanger Tubes 1

Corrosion Resistant Alloys (CRAs) in the oil and gas industry selection guidelines update

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077

Appendice Caratteristiche Dettagliate dei Materiali Utilizzati

CENTRIFUGAL CASTING.

Handling Corrosive or Abrasive Liquids

ASME Section IX, 2007 Edition, 2009 Addenda. As published in the Welding Journal, October, Prepared by

Lead & Magnet Wire Connection Methods Using the Tin Fusing Method Joyal A Division of AWE, Inc.

TABLE OF CONTENT

BODY OF KNOWLEDGE API-570 AUTHORIZED PIPING INSPECTOR CERTIFICATION EXAMINATION

Welding. ArcelorMittal Europe Flat Products. Definitions of welding and weldability. Consequences of welding

Estimating Welding Preheat Requirements for Unknown Grades of Carbon and Low-Alloy Steels

APPLYING DATA MINING METHODS TO PREDICT DEFECTS ON STEEL SURFACE

Stainless Steel Pipe The Clear Choice for Pure and Reliable Water Systems

FEATURES AND BENEFITS OF DIFFERENT PLATINUM ALLOYS. Kris Vaithinathan and Richard Lanam Engelhard Corporation

MIT Manufacturing Processes and Systems. Homework 6 Solutions. Casting. October 15, Figure 1: Casting defects

Transcription:

Development of corrosion-resistant casting alloys depends on a variety of factors, and the process may be assisted by rapid prototyping and other new technologies. Thomas C. Spence* Donald R. Stickle Flowserve Corporation Dayton, Ohio ADVANCED MATERIALS & PROCESSES/JANUARY 2002 This corroded nickel impeller was in concentrated sulfuric acid for one day. any significant strides have been made over the past quarter century in developing new corrosion-resistant casting alloys such as the super austenitics and super duplex stainless steels, but it is unlikely that such breakthroughs will continue in the future. The reasons for this are many. For example, fewer R&D departments in captive foundries can be supported by the parent company. Another reason is that independent foundries do not have the resources for R&D, or the money to promote a new alloy. Therefore, any new alloy is more likely to come from the wrought producers than from foundries. Furthermore, the fact that a wrought alloy exists does not mean that it will automatically or easily become a cast alloy. Finally, alloy developers in general have pushed the limits of existing corrosion resistant alloys to the edge of their ability to be manufactured without adverse effects. It is therefore more likely that any improvements will be limited to minor enhancements or variations of existing alloys. This article discusses the five factors that are critical to production of corrosion-resistant castings; issues important to the development of cast alloys from wrought compositions; and technologies that speed casting development, including rapid prototyping and solidification modeling.

Casting corrosion-resistant alloys The ability of a foundry to make good corrosion resistant castings depends on its ability to adhere closely to appropriate processing parameters. This capability is certainly within the reach of many foundries, but only if the economic drive exists to support their efforts. Five basic properties and/or capabilities must be developed to produce quality, corrosion resistant castings. These five factors include good alloy castability, good weldability, good corrosion resistance, the ability to accurately analyze the alloy, and the economic incentive to produce parts. Good alloy castability To develop a good casting alloy from a wrought alloy usually requires a modification of the wrought alloy chemistry. It might seem unusual to discuss this variable first rather than good corrosion resistance, but it does neither the foundry nor the ultimate user little good to develop a material of outstanding corrosion resistance if it cannot be produced in a consistent manner as a cast shape. Nevertheless, many alloys are commercially cast even though they have less than ideal castability. For example, CN7M or UNS N08007, commonly referred to as Alloy 20, has exceptional corrosion resistance. In sulfuric acid applications, few materials can match its broad chemical resistance. It was developed as a cast alloy in the late 1930 s, and was quickly introduced into a wide range of parts. However, as castings of this alloy entered service, it quickly became evident that the material had poor resistance to cracking and tearing. Twenty to thirty years passed before the foundry industry fully understood why this material was so susceptible to cracking and tearing, and determined what needed to be done to avoid these problems. A second example is CD4MCuN or UNS J93372, one of the earliest cast duplex stainless alloys, developed in the early 1960 s. In addition to good corrosion resistance, it has exceptional strength. However, early castings of this alloy were inferior. They exhibited delayed brittle fractures, and were very difficult to produce with consistent dimensional properties. As with CN7M, the foundry industry eventually learned how to resolve these problems, but only after 15 to 20 years of on-and-off difficulties. Similar problems still exist today for the newer duplex and high moly austenitic stainless steels. These stainless steels have been alloyed to the practical limits of current foundry technology, and as a result many foundries are experiencing difficulty in producing castings with acceptable quality and with the expected corrosion resistance. Therefore, it is important when purchasing these newer stainless steels and higher alloys in general, that purchasers choose foundries that are known to have the expertise to cast them successfully the first time.

Ease of weldability Weldability is also absolutely essential to casting manufacture. Although some casting techniques minimize the need for weld repairs in some configurations, many of the castings that end up in pumps and valves are either weld-repaired or weld-fabricated at some stage of their manufacture. To have good weldability, the alloy must have good resistance to cracking and tearing during welding, and must be able to be welded with filler materials that match the mechanical and corrosion properties of the base metal. Equally important for most commercial applications is the ability to qualify weld procedures to ASME Section IX requirements. Because shielded metal arc (SMAW) and gas tungsten arc-welding (GTAW) are the most common processes, it is critical that welding procedures be developed in at least one and preferably both of these practices. Good resistance to chemical attack is a given requirement for corrosion-resistant castings. In general, the cast alloy must exhibit corrosion resistance comparable to the wrought product that it is complementing. To develop this corrosion resistance, the cast producer must understand the interaction between chemical composition, thermal history, and corrosion resistance. Such interactions will likely be different for the cast alloy than the wrought alloy. For example, a wrought alloy was developed that exhibited excellent resistance to 98% nitric acid. This wrought alloy was optimized as a wholly austenitic alloy with a nominal 4% silicon level. To produce a cast alloy with equivalent corrosion resistance, the silicon level had to be increased to 5% and the chemistry balance had to be altered so that the alloy contained several percent ferrite in its microstructure. If the wrought chemistry had simply been duplicated, the cast material would have had inferior corrosion resistance and would have been extremely susceptible to cracking and tearing during casting and welding. Accurate chemical analysis Good castability, weldability, and corrosion resistance all depend on control of chemistry in a fairly narrow range. Therefore, the ability to accurately analyze alloy chemistry is critical. To generate reliable chemical analyses, reference standards must be available, preferably eight to ten at a minimum. These standards must bracket the expected control limits for the alloy for each element considered critical. The standards should include not only the major alloying additions such as chromium, nickel, copper, and molybdenum, but also trace elements such as sulfur, phosphorus, and carbon. Attempts to rely on a single reference standard to analyze chemical composition can result in significant errors if the chemistry deviates only a slight amount from that of the single reference standard. Too many interactions are possible between alloying elements in corrosion-resistant castings to depend on a single sample to control alloy chemistry in a narrow range.

Economic viability The final factor and probably the greatest incentive needed to produce a quality corrosion resistant casting is economic viability. As noted earlier, considerable up-front effort must be made to produce a quality corrosion-resistant casting. To support this up-front effort, some payback must be possible to the casting producer. A single order for a few castings might satisfy the customer, but the producer cannot come close to covering his up-front costs with a single order. Repeat business is needed to justify the investment in engineering and sampling time. It also will enable the foundry to recycle melt stock. For every pound of metal poured, only 0.4 to 0.6 pounds of usable casting are produced. The balance of the material must either be sold for scrap or recycled back into more castings. For a single order, the volume generally does not permit material recycling during this limited window. The foundry must either raise the price to compensate for excess material, or recycle it into other cast alloys. However, recycling is not always a straightforward process. Corrosion-resistant cast alloys contain additives such as copper or tungsten, which enhance corrosion resistance of the alloy to which they are deliberately added, but they can have disastrous effects on the ability to recycle excess material. For example, copper is added to cobalt-base alloys to enhance corrosion resistance. Several corrosion resistant cast alloys contain this element, yet the vast majority of cobalt alloys produced do not contain copper, and many have fairly low permissible residual levels. If the foundry produces a corrosion resistant cobalt alloy with copper added to enhance corrosion resistance, it must either be able to count on repeat business in this alloy to enable recycling, or lose $10 or more per pound selling in a scrap market where no buyers exist.

After corrosion-resistant wrought alloys have been designed, complementary casting alloys must be developed to produce parts such as joints, pumps, and valves. Foundries must typically make large investments of time and money to acquire accurate data for casting alloy development. Cast alloys based on wrought Most new corrosion-resistant casting alloys are developed by wrought producers, many times in conjunction with the ultimate customer. This is certainly the appropriate starting place, since the bulk of the product sold will be in the form of plate, sheet, tube, and bar. Research and evaluation of the wrought alloy may proceed for several months up to several years, and certainly costs the wrought producer a considerable investment in time and resources. The end result is a proprietary, if not patented, alloy with chemistry optimized to produce high quality, low-cost wrought products. When the new alloy becomes successful in corrosion applications, an immediate need is created for equivalent cast products to produce parts such as pumps and valves. Basic data available to produce these castings include general chemistry limits for wrought alloys; basic properties of the new wrought grade, including corrosion resistance and mechanical data; limited data on weldability of the wrought grade; and a proprietary alloy name.

However, little data is available that is considered essential to the manufacture of quality castings. The foundry or foundries asked to produce cast products in these new alloys must develop much of the same data that the wrought manufacturers needed. Such data includes basic alloy chemistry to make the alloy castable, maintain levels of corrosion resistance, and meet some reasonable mechanical property requirements. Weldability must also be established, and weld procedures developed to meet ASME requirements. Standards required for chemical analysis must be custom made, since at best one or two standards might be available commercially. The shrinkage rate for the material as it solidifies and cools to ambient temperature must be determined, to decide if near net shape dimensional requirements may demand new or modified tooling. Although thermal requirements for wrought products could be known, no data will be available about whether the cast product will respond to these same thermal treatments in an equivalent manner. These and other questions lead to a series of investments for the cast producer that must be made if a high quality cast part is to be produced. Advanced technology Several new technological developments can allow foundries to shorten their development time. Such technologies as stereolithography, solidification modeling, and computational systems design can shorten the development time and reduce the cost of developing new alloys significantly over traditional empirical methods. Stereolithography is a means of rapid prototyping polymeric replicas that can then serve as an investment casting pattern to produce the final metallic part. Rapid prototyping is also suitable for making tooling for investment castings in a much shorter time, so that multiple samples can be made without having to make each directly from the rapid prototyping equipment. This technology has greatly improved a foundry s ability to produce and test new casting designs in a much shorter time frame. Solidification modeling programs allow a foundry to take a CAD drawing of a part and, through modeling of shrinkage characteristics, determine the optimum gating and risering system for that part. Solidification modeling allows foundries to produce castings with the minimum number of gates and risers, yet produce a sound, quality part, usually on the first attempt, and at a lower cost. Material development also benefits greatly from advances in computer technology. Better computers and computerized instrumentation enable research on a molecular and even atomic level. This nanotechnology, and computerized instruments such as the scanning probe microscope, allow observation and manipulation of atoms and molecules to make new or existing materials with enhanced properties. Today, this technology is already moving from the universities into commercial reality. Computational systems design can shorten the development time and reduce the cost of developing new materials significantly over the traditional empirical method. This can

allow for the development of custom materials for low volume applications for which empirical methods would have been too costly and impractical. Soon, foundries may be able to use this technology to shorten the development time when designing complementary cast alloys from wrought alloys. This article is based on Castings for the New Millennium, a paper presented at the 2001 NACE conference in Houston last March. Computational systems design can shorten development time. Table 1 - Composition of selected Ni-Cr-Mo alloys* C Cr Fe Mo Si Mn W Cb Al Cu N26625 0.06 20-23 5.0 8-10 1.0 1.0-3.15-4.5 - - N26455 0.02 15-17.5 2.0 15-17.5 0.8 1.0 1.0 - - - N10276 0.02 14.5-16.5 4-7 15-17 0.08 1.0 3-4.5 - - - N26022 0.02 20-22.5 2-6 12.5-14.5 0.8 1.0 2.5-3.5 N06059 0.01 22-24 1.5 15-16.5 0.10 0.5 - - 0.1-0.4 0.5 N30107 0.07 17-20 3.0 17-20 1.0 1.0 - - - - N06200 0.01 22-24 3.0 15-17 0.08 0.5 - - 0.5 1.3-1.9 *Individual values are maximums Table 2 - Corrosion test rates in mils per year of selected Ni-Cr-Mo alloys UNS 20%, 225 F (107 C) Sulfuric acid 50%, 202 F (94 C) Conc., 230 F (110 C) Hydrochloric acid 5% 175 F (79 C) 20% 148 F (64 C) N30107 31 16 11 13 11 N26455 82 17 42 21 13 N26022 116 52 77 43 20 N10276 54 13 13 28 14 N06455 62 13 56 21 11 N06022 54 16 62 46 23

N06200 5 6.4 17 22 28 Table 3 - Crevice corrosion temperature* UNS CCT, C ( F) N06200 95 (203) N06022 83 (181) N10276 69 (156) N26022 67 (153) N30107 62 (144) N06455 36 (97) N26455 30 (86) *MTI critical crevice corrosion temperature above which crevice corrosion is observed in 6% FeCl3,