Prepare well for this topic!!

Similar documents
CHEMISTRY BONDING REVIEW

Which substance contains positive ions immersed in a sea of mobile electrons? A) O2(s) B) Cu(s) C) CuO(s) D) SiO2(s)

SOME TOUGH COLLEGE PROBLEMS! .. : 4. How many electrons should be shown in the Lewis dot structure for carbon monoxide? N O O

Bonding Practice Problems

CHAPTER 6 Chemical Bonding

A mutual electrical attraction between the nuclei and valence electrons of different atoms that binds the atoms together is called a(n)

Questions on Chapter 8 Basic Concepts of Chemical Bonding

Question 4.2: Write Lewis dot symbols for atoms of the following elements: Mg, Na, B, O, N, Br.

3/5/2014. iclicker Participation Question: A. MgS < AlP < NaCl B. MgS < NaCl < AlP C. NaCl < AlP < MgS D. NaCl < MgS < AlP

ch9 and 10 practice test

In the box below, draw the Lewis electron-dot structure for the compound formed from magnesium and oxygen. [Include any charges or partial charges.

CHAPTER 12: CHEMICAL BONDING

Chapter 7. Comparing Ionic and Covalent Bonds. Ionic Bonds. Types of Bonds. Quick Review of Bond Types. Covalent Bonds

AP Chemistry A. Allan Chapter 8 Notes - Bonding: General Concepts

Chapter 8 Basic Concepts of the Chemical Bonding

Chemistry 1050 Chapter 13 LIQUIDS AND SOLIDS 1. Exercises: 25, 27, 33, 39, 41, 43, 51, 53, 57, 61, 63, 67, 69, 71(a), 73, 75, 79

Self Assessment_Ochem I

Chapter 6 Assessment. Name: Class: Date: ID: A. Multiple Choice Identify the choice that best completes the statement or answers the question.

CHAPTER 6 REVIEW. Chemical Bonding. Answer the following questions in the space provided.

Sample Exercise 8.1 Magnitudes of Lattice Energies

A pure covalent bond is an equal sharing of shared electron pair(s) in a bond. A polar covalent bond is an unequal sharing.

EXPERIMENT 17 : Lewis Dot Structure / VSEPR Theory

Bonding & Molecular Shape Ron Robertson

Name: Class: Date: 3) The bond angles marked a, b, and c in the molecule below are about,, and, respectively.

Sample Exercise 8.1 Magnitudes of Lattice Energies

Bonding in Elements and Compounds. Covalent

CHEMISTRY Practice Exam #5 - SPRING 2014 (KATZ)

Chemistry Workbook 2: Problems For Exam 2

Molecular Geometry and VSEPR We gratefully acknowledge Portland Community College for the use of this experiment.

5. Structure, Geometry, and Polarity of Molecules

Unit 3: Quantum Theory, Periodicity and Chemical Bonding. Chapter 10: Chemical Bonding II Molecular Geometry & Intermolecular Forces

EXPERIMENT 9 Dot Structures and Geometries of Molecules

H 2O gas: molecules are very far apart

CHAPTER 10: INTERMOLECULAR FORCES: THE UNIQUENESS OF WATER Problems: 10.2, 10.6, , , ,

Theme 3: Bonding and Molecular Structure. (Chapter 8)

Molecular Geometry and Chemical Bonding Theory

AP CHEMISTRY 2009 SCORING GUIDELINES

SHAPES OF MOLECULES (VSEPR MODEL)

B) atomic number C) both the solid and the liquid phase D) Au C) Sn, Si, C A) metal C) O, S, Se C) In D) tin D) methane D) bismuth B) Group 2 metal

Ionic and Covalent Bonds

(b) Formation of calcium chloride:

Covalent Bonding & Molecular Compounds Multiple Choice Review PSI Chemistry

Chapter 10 Molecular Geometry and Chemical Bonding Theory

ACE PRACTICE TEST Chapter 8, Quiz 3

3) Of the following, radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared Answer: A

Chapter 4: Structure and Properties of Ionic and Covalent Compounds

Chemistry 151 Final Exam

Name period AP chemistry Unit 2 worksheet Practice problems

Unit 3: Quantum Theory, Periodicity and Chemical Bonding

Health Science Chemistry I CHEM-1180 Experiment No. 15 Molecular Models (Revised 05/22/2015)

VSEPR Model. The Valence-Shell Electron Pair Repulsion Model. Predicting Molecular Geometry

CHEM 1301 SECOND TEST REVIEW. Covalent bonds are sharing of electrons (ALWAYS valence electrons). Use Lewis structures to show this sharing.

AS Chemistry Revision Notes Unit 1 Atomic Structure, Bonding And Periodicity

Bonds. Bond Length. Forces that hold groups of atoms together and make them function as a unit. Bond Energy. Chapter 8. Bonding: General Concepts

2. Atoms with very similar electronegativity values are expected to form

Chem 121 Problem Set V Lewis Structures, VSEPR and Polarity

Chapter 9 - Covalent Bonding: Orbitals

Laboratory 11: Molecular Compounds and Lewis Structures

Chapter 2 The Chemical Context of Life

7) How many electrons are in the second energy level for an atom of N? A) 5 B) 6 C) 4 D) 8

Candidate Style Answer

Exercises Topic 2: Molecules

3. What would you predict for the intensity and binding energy for the 3p orbital for that of sulfur?

CHAPTER 10 THE SHAPES OF MOLECULES

Structures and Properties of Substances. Introducing Valence-Shell Electron- Pair Repulsion (VSEPR) Theory

AP* Bonding & Molecular Structure Free Response Questions page 1

Ionic and Metallic Bonding

Exam 2 Chemistry 65 Summer Score:

Chapter10 Tro. 4. Based on the Lewis structure, the number of electron domains in the valence shell of the CO molecule is A) 1 B) 2 C) 3 D) 4 E) 5

Type of Chemical Bonds

CHEM 101 Exam 4. Page 1

Vocabulary: VSEPR. 3 domains on central atom. 2 domains on central atom. 3 domains on central atom NOTE: Valence Shell Electron Pair Repulsion Theory

CHAPTER 10 THE SHAPES OF MOLECULES

Periodic Table Questions

We will not be doing these type of calculations however, if interested then can read on your own

Section Activity #1: Fill out the following table for biology s most common elements assuming that each atom is neutrally charged.

5. Which of the following is the correct Lewis structure for SOCl 2

Chapter 2 Polar Covalent Bonds; Acids and Bases

Unit 2 Periodic Behavior and Ionic Bonding

POLAR COVALENT BONDS Ionic compounds form repeating. Covalent compounds form distinct. Consider adding to NaCl(s) vs. H 2 O(s):

A REVIEW OF GENERAL CHEMISTRY: ELECTRONS, BONDS AND MOLECULAR PROPERTIES

List the 3 main types of subatomic particles and indicate the mass and electrical charge of each.

Chapter 10 Liquids & Solids

WRITING CHEMICAL FORMULA

Chapter 8 Concepts of Chemical Bonding

Chapter 5 Chemical Compounds

O P O O. This structure puts the negative charges on the more electronegative element which is preferred. Molecular Geometry: O Xe O

CH101/105, GENERAL CHEMISTRY LABORATORY

SCPS Chemistry Worksheet Periodicity A. Periodic table 1. Which are metals? Circle your answers: C, Na, F, Cs, Ba, Ni

Name period Unit 3 worksheet

CHEMISTRY II FINAL EXAM REVIEW

CHEMISTRY 113 EXAM 4(A)

Molecular Structures. Chapter 9 Molecular Structures. Using Molecular Models. Using Molecular Models. C 2 H 6 O structural isomers: .. H C C O..

7.4. Using the Bohr Theory KNOW? Using the Bohr Theory to Describe Atoms and Ions

CHAPTER 10 THE SHAPES OF MOLECULES

Chem 112 Intermolecular Forces Chang From the book (10, 12, 14, 16, 18, 20,84,92,94,102,104, 108, 112, 114, 118 and 134)

Chapter 13 - LIQUIDS AND SOLIDS

Name Class Date. What is ionic bonding? What happens to atoms that gain or lose electrons? What kinds of solids are formed from ionic bonds?

The Advanced Placement Examination in Chemistry. Part I Multiple Choice Questions Part II Free Response Questions Selected Questions from1970 to 2010

Chemistry Diagnostic Questions

Transcription:

1 Bonding There is almost always a chemical bonding question. Since this is such an important topic, you should be prepared for any and all bonding questions. Prepare well for this topic!! Some suggestions when answering chemistry essay questions are Keep your answers brief. Remember that they are looking for specific content phrases. Think more about writing short bullet statements rather than lengthy answers. Since you may not know what it is that they are looking for to receive your positive points, then make sure that you do list several ideas when applicable. However remember that you will receive negative points for untrue statements. Something that is true, but doesn t apply to this situation does not count against you. My recommendation is to write out several bullet statements. 2 sp sp 2 3 sp 3 4 Linear Diatomic, Usually nonpolar CO 2, HCN Trigonal Planar BF 3, SO 3 2-, NO 3-120 Bent, 12O Usually polar NO 2 - Remember to count the number of effective pairs of electrons, not the actual number of electrons. A double or triple bond counts as one effective pair. Remember that in molecules where the outside molecules are different, shapes that tend to be nonpolar usually become polar. Also If there ever is a two molecule atom (diatomic) that molecule s polarity depends upon the electronegativity difference of the atoms Tetrahedral; 109 Usually nonpolar CH 4 CF 4 Pyrimidal 107 Usually polar NH 3, PCl 3 Bent 104.5 Usually polar

2 sp 3 d 5 H 2 O, OF 2 sp 3 d 2 6 Trigional bipyrimidal Usually `nonpolar 120 and 90 PCl 5 See-saw Usually polar 120, 90, SeF 4 T-Shaped Usually polar, 90 bond angles Linear Triatomic Usually nonpolar 180, 90 Octahedral Usually nonpolar 90, PCl 6 SbF 6 Square Pyrimidal Usually polar, 90, IF 5 Square Planar Usually nonpolar, 90 XeF 4 T-Shaped Usually polar 90 bond angles Linear Triatomic Usually nonpolar 180, 90 I 3 1-

3 #1 Use simple structure and bonding models to account for each of the following. (a) The bond length between the two carbon atoms is shorter in C 2 H 4 than in C 2 H 6. (b) The H-N-H bond angle is 107.5 in NH 3. (c) The bond lengths in SO 3 are all identical and are shorter than a sulfur-oxygen single bond. (d) The I 3 - ion is linear. #2 Experimental data provide the basis for interpreting differences in properties of substances. TABLE 1 Compound Melting Point ( C) Electrical Conductivity of Molten State (ohm -1 ) BeCl 2 405 0.086 MgCl 2 714 > 20 SiCl 4-70 0 MgF 2 1261 > 20

4 TABLE 2 Substance Bond Length (angstroms) F 2 1.42 Br 2 2.28 N 2 1.09 Account for the differences in properties given in Tables 1 and 2 above in terms of the differences in structure and bonding in each of the following pairs. (a) MgCl 2 and SiCl 4 (c) F 2 and Br 2 (b) MgCl 2 and MgF 2 (d) F 2 and N 2 #3 Explain each of the following in terms of atomic and molecular structures and/or intermolecular forces. (a) Solid K conducts an electric current, whereas solid KNO 3 does not. (b) SbCl 3 has measurable dipole moment, whereas SbCl 5 does not. (c) The normal boiling point of CCl 4 is 77 C, whereas that of CBr 4 is 190 C. (d) NaI(s) is very soluble in water, whereas I 2 (s) has a solubility of only 0.03 gram per 100 grams of water. #4 Use principles of atomic structure and/or chemical bonding to answer each of the following. (a) The radius of the Ca atom is 0.197 nanometer; the radius of the Ca 2+ ion is 0.099 nanometer. Account for this difference. (b) The lattice energy of CaO(s) is -3,460 kilojoules per mole; the lattice energy for K 2 O(s) is -2,240 kilojoules per mole. Account for this difference. Ionization Energy (kj/mol) First Second K 419 3,050 Ca 590 1,140 (c) Explain the difference between Ca and K in regard to (i) their first ionization energies, (ii) their second ionization energies. (d) The first ionization energy of Mg is 738 kilojoules per mole and that of Al is 578 kilojoules per mole. Account for this difference.

5 #5 The conductivity of several substances was tested. The results of the tests are summarized in the following data table. AgNO 3 Sucrose Na H 2 SO 4 (98%) Key Melting212 185 99 Liquid at Room Temp. Liqu ++ ++ + Wate ++ ++ (1) ++ (2) S ++ Not Tested ++ Good conductor + Poor conductor Nonconductor (1) Dissolves, accompanied by evolution of flammable gas (2) Conduction increases as the acid is added slowly and carefully to water Using models of chemical bonding and atomic or molecular structure, account for the differences in conductivity between the two samples in each of the following pairs. (a) Sucrose solution and silver nitrate solution. (b) Solid silver nitrate and solid sodium metal. (c) Liquid (fused) sucrose and liquid (fused) silver nitrate. (d) Liquid (concentrated) sulfuric acid and sulfuric acid solution. #6 Explain the following in terms of the electronic structure and bonding of the compounds considered. (a) Liquid oxygen is attracted to a strong magnet, whereas liquid nitrogen is not. (b) The SO 2 molecule has a dipole moment, whereas the CO 2 molecule has no dipole moment. Include the Lewis (electron-dot) structures in your explanation. (c) Halides of cobalt(ii) are colored, whereas halides of zinc(ii) are colorless. (d) A crystal of high purity silicon is a poor conductor of electricity; however, the conductivity increases when a small amount of arsenic is incorporated (doped) into the crystal. #7 Use appropriate chemical principles to account for each of the following observations. In each part, your response must include specific information about both substances. (a) At 25 o C and 1 atm, F 2 is a gas, whereas I 2 is a solid. (b) The melting point of NaF is 993 o C, whereas the melting point of CsCl is 645 o C. (c) The shape of the ICl - 4 ion is square planar, whereas the shape of the BF - 4 ion is tetrahedral. (d) Ammonia, NH 3, is very soluble in water, whereas phosphine, PH 3, is only moderately soluble in water.

6 #8 The values of the first three ionization energies (I 1, I 2, I 3 ) for magnesium and argon are as follows I 1 (kj/mol) I 2 (kj/mol) I 3 (kj/mol) Mg 735 1443 7730 Ar 1525 2665 3954 (a) (b) (c) (d) Give the electron configurations for Mg and Ar. In terms of these configurations, explain why the values of the first and second ionization energies of Mg are significantly lower than the values for Ar, whereas the third ionization energy of Mg is much larger than the third ionization energy of Ar. If a sample of Ar in one container and a sample of Mg in another container are heated and chlorine is passed into each container, what compounds, if any, will be formed? Explain in terms of the electronic configurations given in part (a). Element Q has the following first three ionization energies (in kj/mol) I 1 I 2 I 3 Q 496 4658 6920 What is the formula for the most likely compound of element Q with chlorine? Explain the choice of the formula on the basis of the ionization energies.

7 BONDING ANSWERS #1 Answer (a) C 2 H 4 has a multiple bond; C 2 H 6 has a single bond. Multiple bonds are stronger and, therefore, shorter than single bonds. (b) NH 3 has 3 bonding pairs of electrons and 1 lone pair. Bonding pairs are forced together because repulsion between lone pair and bonding pairs is greater than between bonding pairs. (c) The bonding in SO 3 can be described as a combination of 3 resonance forms of 1 double and 2 single bonds. O O O S S S O O O O O O The actual structure is intermediate among the 3 resonance forms, having 3 bonds that are equal and stronger (therefore, shorter) than an S-O single bond. I I I (d) The central I atom has 3 lone pairs and 2 bonding pairs around it. To minimize repulsion, the 3 lone pairs on the central atom are arranged as a triangle in a plane are right angles to the I-I-I- axis. #2 Answer (a) MgCl 2 is IONIC while SiCl 4 is COVALENT. The electrostatic, interionic forces in magnesium chloride are much stronger then the intermolecular (dispersion) forces in SiCl 4 and lead to a higher melting point for MgCl 2. Molten MgCl 2 contains mobile ions that conduct electricity whereas molten SiCl 4 is molecular, not ionic, and has no conductivity. (b) MgF 2 has a higher melting point than MgCl 2 because the smaller F - ions and the smaller interionic distances in MgF 2 cause stronger forces and higher melting point. (c) The bond length in Br 2 is larger than in F 2 because the Br atom is bigger (more shells) than the F atom. (d) The bond length in N 2 is less than in F 2 because the N N bond is triple and the F-F is single. Triple bonds are stronger and therefore shorter than single bonds.

8 #3 Answer (a) K conducts because of its metallic bonding - or - sea of mobile electrons (or free electrons). KNO 3 does not conduct because it is ionically bonded and has immobile ions (or immobile electrons). (b) SbCl 3 has a measurable dipole moment because it has a lone pair of electrons which causes a dipole - or - its dipoles do not cancel - or - it has a trigonal pyramidal structure - or - a clear diagram illustrating any of the above. (c) CBr 4 boils at a higher temperature than CCl 4 because it has stronger intermolecular forces (or van der Waal or dispersion). These stronger forces occur because CBr 4 is larger and/or has more electrons than CCl 4. (d) NaI has greater aqueous solubility than I 2 because NaI is ionic (or polar), whereas I 2 is non-polar (or covalent). Water, being polar, interacts with the ions of NaI but not with I 2. (Like dissolves like accepted if polarity of water is clearly indicated.) #4 Answer (a) The valence electrons in a calcium atom are the 4s 2. In a calcium ion these electrons are absent and the highest energy electrons are 3p, which has a much smaller size because the ( )/(+) charge ratio is less than 1 causing a contraction of the electron shell. (b) Lattice energy can be represented by Coulomb s law lattice energy = k ( Q 1Q 2 ), r where Q 1 and Q 2 are the charges on the ions, in CaO these are +2 and 2 respectively, while in K 2 O they are +1 and 2. The r (the distance between ions) is slightly smaller in CaO, combined with the larger charges, thus accounts for the larger lattice energy. (c) Electron arrangements K = [Ar] 4s 1, Ca = [Ar] 4s 2 (i) Potassium has a single 4s electron that is easily removed to produce an [Ar] core, whereas, calcium has paired 4s electrons which require greater energy to remove one. (ii) a K + ion has a stable [Ar] electron core and requires a large amount of energy to destabilize it and create a K 2+ ion. Ca + has a remaining 4s 1 electron that is more easily removed than a core electron, but not as easily as its first 4s electron. (d) Electron arrangements, Mg = [Ne] 3s 2, Al = [Ne] 3s 2, 3p 1 It is easier to remove a shielded, single, unpaired 3p electron from the aluminum than to remove one electron from a paired 3s orbital in magnesium.

9 #5 Answer (a) Sucrose, composed of all non-metals, is a covalently bonded molecule that does not ionize in water and, therefore, does not produce a conducting solution. Silver nitrate has an ionic bond between the silver cation and the nitrate anion that is hydrated in water producing a conducting ionic solution. (b) Silver nitrate has covalent bonds in the nitrate anion and an ionic bond between the cation and anion but in the solid state these ions are not free to move and conduct an electric current. In sodium, a metal crystal, it has a large number of closely spaced molecular orbitals that form a virtual continuum of levels called bands. Empty molecular orbitals are close in energy to filled molecular orbitals. Mobil electrons are furnished when electrons in filled molecular orbitals are excited into empty ones. These conduction electrons are free to travel throughout the metal crystal (c) Fused sucrose does not contain any ions to carry an electrical charge whereas the ions in silver nitrate are now free to move in the liquid and conduct the charge. (d) Concentrated sulfuric acid has very little water to hydrolyze its ions and is only slightly ionized. As it is added to water, appreciable amounts of ions are present as the molecular H 2 SO 4 is dissociated into hydrogen and sulfate ions. #6 Answer (a) σ 2p* N 2 O 2 π 2p* a a σ2p a _ a _ E π 2p a _ a _ a _ a _ σ2s* a _ a _ σ2s a _ a _ Molecular Orbital Energy Level Diagrams Paramagnetism causes a substance to be attracted into the inducing magnetic field. Paramagnetism is associated with unpaired electrons, as in oxygen but diamagnetism (repelled from the inducing magnetic field) is associated with paired electrons as in nitrogen. Any substance that has both paired and unpaired electrons will exhibit paramagnetism, since that effect is stronger than diamagnetism. O.. S O.. O.... S O.... O = C = O b) There is a dipole moment between the oxygen and the sulfur in sulfur dioxide and a bond angle of 119. This results in a net dipole in the molecule. While there is a dipole in the carbon-oxygen bond, the 180 bond angle cancels the dipole moment in the molecule.

10 (c) A cobalt(ii) ion has the electron configuration of [Ar] 3d 7. It has 2 paired d electrons and 3 unpaired electrons. According to crystal field theory, as the chloride ion approaches the cobalt(ii) ion, repulsion between the chloride lone pairs and the metal electrons affects the metal d orbitals differently (the x 2 -y 2 and z 2 more than the xy, xz, and yz). There is an energy difference between the sets of d orbitals. The energy difference between sets of d orbitals is comparable to the energy of visible light. In zinc ions, all the d orbitals are paired and all the orbitals are degenerate. (d) Arsenic atoms have one more valence electron than silicon atoms and can lose an electron to form As + ions which can occupy some of the lattice points in the silicon crystal. If the amount of arsenic is kept small then these ions don t interact. The extra electrons from the arsenic occupy orbitals in a narrow band of energies that lie between the filled and empty bands of the silicon. This structure decreases the amount of energy required to excite an electron into the lowest-energy empty band in the silicon and increases the number of electrons that have enough energy to cross this gap.