Al-Anbar University /College of Computer Lecture Eight / Virtual Memory

Similar documents
OPERATING SYSTEM - VIRTUAL MEMORY

Memory unit sees only the addresses, and not how they are generated (instruction counter, indexing, direct)

Operating Systems. Virtual Memory

Chapter 12. Paging an Virtual Memory Systems

Memory Management 1. Memory Management. Multitasking without memory management is like having a party in a closet.

Virtual Memory Paging

& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen

Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging

Chapter 7 Memory Management

Virtual Memory. Virtual Memory. Paging. CSE 380 Computer Operating Systems. Paging (1)

Operating Systems, 6 th ed. Test Bank Chapter 7

Chapter 6, The Operating System Machine Level

Virtual vs Physical Addresses

Computer Architecture

Lecture 17: Virtual Memory II. Goals of virtual memory

HY345 Operating Systems

Chapter 11 I/O Management and Disk Scheduling

OPERATING SYSTEM - MEMORY MANAGEMENT

Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems

OS OBJECTIVE QUESTIONS

Chapter 11 I/O Management and Disk Scheduling

Memory Management CS 217. Two programs can t control all of memory simultaneously

The Deadlock Problem. Deadlocks. Deadlocks. Bridge Crossing Example

The Classical Architecture. Storage 1 / 36

Storage in Database Systems. CMPSCI 445 Fall 2010

Kernel Optimizations for KVM. Rik van Riel Senior Software Engineer, Red Hat June

Chapter 1 13 Essay Question Review

I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1

Operating System Tutorial

Virtual Memory. How is it possible for each process to have contiguous addresses and so many of them? A System Using Virtual Addressing

Computer-System Architecture

CS162 Operating Systems and Systems Programming Lecture 15. Page Allocation and Replacement

Buffer Management 5. Buffer Management

File Management. Chapter 12

Two Parts. Filesystem Interface. Filesystem design. Interface the user sees. Implementing the interface

Memory Allocation. Static Allocation. Dynamic Allocation. Memory Management. Dynamic Allocation. Dynamic Storage Allocation

Operating Systems. Lecture 03. February 11, 2013

Operating Systems. Steven Hand. Michaelmas / Lent Term 2008/ lectures for CST IA. Handout 3. Operating Systems N/H/MWF@12

OPERATING SYSTEMS MEMORY MANAGEMENT

Midterm Exam #2 Solutions November 10, 1999 CS162 Operating Systems

361 Computer Architecture Lecture 14: Cache Memory

1. Computer System Structure and Components

Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering

COS 318: Operating Systems

1 File Management. 1.1 Naming. COMP 242 Class Notes Section 6: File Management

Performance Comparison of RTOS

Linux Process Scheduling Policy

Chapter 12 File Management

Chapter 12 File Management. Roadmap

How To Write A Virtual Machine (Or \"Virtual Machine\") On A Microsoft Linux Operating System (Or Microsoft) (Or Linux) ( Or Microsoft Microsoft Operating System) (For A Non-Power Os) (On A

Java Interview Questions and Answers

Amazon Web Services Primer. William Strickland COP 6938 Fall 2012 University of Central Florida

Virtualization. Explain how today s virtualization movement is actually a reinvention

Chapter 11: File System Implementation. Operating System Concepts with Java 8 th Edition

W4118 Operating Systems. Instructor: Junfeng Yang

Board Notes on Virtual Memory

Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems

Thomas Fahrig Senior Developer Hypervisor Team. Hypervisor Architecture Terminology Goals Basics Details

Chapter 12 File Management

Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine

Comparison of Memory Management Systems of BSD, Windows, and Linux

Why Computers Are Getting Slower (and what we can do about it) Rik van Riel Sr. Software Engineer, Red Hat

System Virtual Machines

An Implementation Of Multiprocessor Linux

Last Class: OS and Computer Architecture. Last Class: OS and Computer Architecture

Operating Systems CSE 410, Spring File Management. Stephen Wagner Michigan State University

File System Management

Hypervisor: Requirement Document (Version 3)

Virtual Memory Behavior in Red Hat Linux Advanced Server 2.1

Peter J. Denning, Naval Postgraduate School, Monterey, California

Chapter 1 Computer System Overview

Storing Data: Disks and Files. Disks and Files. Why Not Store Everything in Main Memory? Chapter 7

CS 61C: Great Ideas in Computer Architecture Virtual Memory Cont.

Operating Systems Overview

Presentation of Diagnosing performance overheads in the Xen virtual machine environment

COS 318: Operating Systems. Virtual Memory and Address Translation

Snapshot Technology: Improving Data Availability and Redundancy

COS 318: Operating Systems

CS104: Data Structures and Object-Oriented Design (Fall 2013) October 24, 2013: Priority Queues Scribes: CS 104 Teaching Team

13 File Output and Input

Memory Management under Linux: Issues in Linux VM development

Chapter 13 File and Database Systems

Chapter 13 File and Database Systems

CSC 2405: Computer Systems II

find model parameters, to validate models, and to develop inputs for models. c 1994 Raj Jain 7.1

Chapter 3 Operating-System Structures

ELEC 377. Operating Systems. Week 1 Class 3

Far-western University Central Office, Mahendranagar Operating System

File System & Device Drive. Overview of Mass Storage Structure. Moving head Disk Mechanism. HDD Pictures 11/13/2014. CS341: Operating System

Lecture 11 Doubly Linked Lists & Array of Linked Lists. Doubly Linked Lists

Real-Time Systems Prof. Dr. Rajib Mall Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

OPERATING SYSTEM SERVICES

Supplementing Windows 95 and Windows 98 Performance Data for Remote Measurement and Capacity Planning

Garbage Collection in the Java HotSpot Virtual Machine

Operating Systems 4 th Class

C++ INTERVIEW QUESTIONS

Performance Management in the Virtual Data Center, Part II Memory Management

Lesson Objectives. To provide a grand tour of the major operating systems components To provide coverage of basic computer system organization

Chapter 10: Virtual Memory. Lesson 08: Demand Paging and Page Swapping

Transcription:

8. Virtual Memory 8.1 Background 8.2 Demand Paging 8.3 Process Creation 8.4 Page Replacement 8.5 Allocation of Frames 8.6 Thrashing 8.7 Demand Segmentation 8.8 Examples 8.1 Background Virtual memory is a technique that allows the execution of processes that may not be completely in memory. The main visible advantage of this scheme is that programs can be larger than physical memory. Further, it abstracts main memory into an extremely large, uniform array of storage, separating logical memory as viewed by the user from physical memory. This technique frees programmers from concern over memory storage limitations. Virtual memory is not easy to implement, however, and may substantially decrease performance if it is used carelessly. In this chapter, we discuss virtual memory in the form of demand paging, and examine its complexity and cost. Virtual memory separation of user logical memory from physical memory. Only part of the program needs to be in memory for execution. Logical address space can therefore be much larger than physical address space. Allows address spaces to be shared by several processes. Allows for more efficient process creation. Virtual memory can be implemented via: Demand paging: It can also be implemented in a segmentation system. Several systems provide a paged segmentation scheme, where segments are broken into Page 1 of 20

pages. Thus, the user view is segmentation, but the operating system can implement this view with demand paging. Demand segmentation: can also be used to provide virtual memory. Burroughs' computer systems have used demand segmentation. The IBM OS/2 operating system also uses demand segmentation. However, segment-replacement algorithms are more complex than are page-replacement algorithms because the segments have variable sizes. Virtual Memory That is Larger Than Physical Memory Virtual-address Space Shared Library Using Virtual Memory Page 2 of 20

8.2 Demand Paging Bring a page into memory only when it is needed Less I/O needed Less memory needed Faster response More users Page is needed reference to it invalid reference abort not-in-memory bring to memory Transfer of a Paged Memory to Contiguous Disk Space Valid-Invalid Bit With each page table entry a valid invalid bit is Associated (1 in-memory, 0 not-in-memory) Initially valid invalid but is set to 0 on all entries Example of a page table snapshot: During address translation, if valid invalid bit in page table entry is 0 page fault Page 3 of 20

Page Table When Some Pages Are Not in Main Memory Page Fault If there is ever a reference to a page, first reference will trap to OS page fault OS looks at another table to decide: Invalid reference abort. Just not in memory. Get empty frame. Swap page into frame. Reset tables, validation bit = 1. Restart instruction: Least Recently Used block move auto increment/decrement location Steps in Handling a Page Fault Page 4 of 20

What happens if there is no free frame? Page replacement find some page in memory, but not really in use, swap it out algorithm performance want an algorithm which will result in minimum number of page faults Same page may be brought into memory several times Performance of Demand Paging Page Fault Rate 0 p 1.0 if p = 0 no page faults if p = 1, every reference is a fault Effective Access Time (EAT) EAT = (1 p) x memory access + p (page fault overhead + [swap page out ] + swap page in + restart overhead) Demand Paging Example Memory access time = 1 microsecond 50% of the time the page that is being replaced has been modified and therefore needs to be swapped out Swap Page Time = 10 msec = 10,000 msec EAT = (1 p) x 1 + p (15000) 1 + 15000P (in msec) Page 5 of 20

8.3 Process Creation Virtual memory allows other benefits during process creation: - Copy-on-Write - Memory-Mapped Files (later) Copy-on-Write Copy-on-Write (COW) allows both parent and child processes to initially share the same pages in memory If either process modifies a shared page, only then is the page copied COW allows more efficient process creation as only modified pages are copied Free pages are allocated from a pool of zeroed-out pages 8.4 Page Replacement Prevent over-allocation of memory by modifying page-fault service routine to include page replacement Use modify (dirty) bit to reduce overhead of page transfers only modified pages are written to disk Page replacement completes separation between logical memory and physical memory large virtual memory can be provided on a smaller physical memory Need For Page Replacement Page 6 of 20

Basic Page Replacement 1. Find the location of the desired page on disk 2. Find a free frame: - If there is a free frame, use it - If there is no free frame, use a page replacement algorithm to select a victim frame 3. Read the desired page into the (newly) free frame. Update the page and frame tables. 4. Restart the process Page Replacement Page Replacement Algorithms Want lowest page-fault rate Evaluate algorithm by running it on a particular string of memory references (reference string) and computing the number of page faults on that string In all our examples, the reference string is 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 Graph of Page Faults Versus The Number of Frames Page 7 of 20

v First-In-First-Out (FIFO) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 3 frames (3 pages can be in memory at a time per process) 4 frames FIFO Replacement Belady s Anomaly more frames more page faults FIFO Page Replacement FIFO Illustrating Belady s Anomaly Page 8 of 20

v Optimal Algorithm Replace page that will not be used for longest period of time 4 frames example 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 How do you know this? Used for measuring how well your algorithm performs Optimal Page Replacement v Least Recently Used (LRU) Algorithm Reference string: 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5 Counter implementation Every page entry has a counter; every time page is referenced through this entry, copy the clock into the counter When a page needs to be changed, look at the counters to determine which are to change LRU Page Replacement Page 9 of 20

Stack implementation keep a stack of page numbers in a double link form: Page referenced: - move it to the top - requires 6 pointers to be changed No search for replacement Use Of A Stack to Record The Most Recent Page References LRU Approximation Algorithms Reference bit With each page associate a bit, initially = 0 When page is referenced bit set to 1 Replace the one which is 0 (if one exists). We do not know the order, however. Second chance Need reference bit Clock replacement If page to be replaced (in clock order) has reference bit = 1 then: - set reference bit 0 - leave page in memory - replace next page (in clock order), subject to same rules Page 10 of 20

v Second-Chance (clock) Page-Replacement Algorithm v Counting Algorithms Keep a counter of the number of references that have been made to each page LFU Algorithm: replaces page with smallest count MFU Algorithm: based on the argument that the page with the smallest count was probably just brought in and has yet to be used 8.5 Allocation of Frames Each process needs minimum number of pages Example: IBM 370 6 pages to handle SS MOVE instruction: instruction is 6 bytes, might span 2 pages 2 pages to handle from 2 pages to handle to Two major allocation schemes fixed allocation priority allocation Page 11 of 20

Fixed Allocation Equal allocation For example, if there are 100 frames and 5 processes, give each process 20 frames. Proportional allocation Allocate according to the size of process s = sizeof processp i S = s m= totalnumber of frames si ai = allocation for pi = m m = 64 S 10 a 1 = 137 127 a 2 = 137 Priority Allocation Use a proportional allocation scheme using priorities rather than size If process P i generates a page fault, select for replacement one of its frames select for replacement a frame from a process with lower priority number Global vs. Local Allocation Global replacement process selects a replacement frame from the set of all frames; one process can take a frame from another Local replacement each process selects from only its own set of allocated frames 8.6 Thrashing i If a process does not have enough pages, the page-fault rate is very high. This leads to: low CPU utilization s s i 2 i = 10 = 127 64 64 5 59 operating system thinks that it needs to increase the degree of multiprogramming Page 12 of 20

another process added to the system Thrashing a process is busy swapping pages in and out Demand Paging and Thrashing Why does demand paging work? Locality model Process migrates from one locality to another Localities may overlap Why does thrashing occur? Σ size of locality > total memory size Locality In A Memory-Reference Pattern Working-Set Model working-set window a fixed number of page references Example: 10,000 instruction WSS i (working set of Process P i ) = total number of pages referenced in the most recent (varies in time) Page 13 of 20

if too small will not encompass entire locality if too large will encompass several localities if = will encompass entire program D = Σ WSS i total demand frames if D > m Thrashing Policy if D > m, then suspend one of the processes Working-set model Keeping Track of the Working Set Approximate with interval timer + a reference bit Example: = 10,000 Timer interrupts after every 5000 time units Keep in memory 2 bits for each page Whenever a timer interrupts copy and sets the values of all reference bits to 0 If one of the bits in memory = 1 page in working set Why is this not completely accurate? Improvement = 10 bits and interrupt every 1000 time units Page-Fault Frequency Scheme Establish acceptable page-fault rate If actual rate too low, process loses frame If actual rate too high, process gains frame Page 14 of 20

Memory-Mapped Files Memory-mapped file I/O allows file I/O to be treated as routine memory access by mapping a disk block to a page in memory A file is initially read using demand paging. A page-sized portion of the file is read from the file system into a physical page. Subsequent reads/writes to/from the file are treated as ordinary memory accesses. Simplifies file access by treating file I/O through memory rather than read() write() system calls Also allows several processes to map the same file allowing the pages in memory to be shared Page 15 of 20

Memory-Mapped Files in Java import java.io.*; import java.nio.*; import java.nio.channels.*; public class MemoryMapReadOnly { // Assume the page size is 4 KB public static final int PAGE SIZE = 4096; public static void main(string args[]) throws IOException { RandomAccessFile infile = new RandomAccessFile(args[0],"r"); FileChannel in = infile.getchannel(); MappedByteBuffer mappedbuffer = in.map(filechannel.mapmode.read ONLY, 0, in.size()); long numpages = in.size() / (long)page SIZE; if (in.size() % PAGE SIZE > 0) ++numpages; // we will "touch" the first byte of every page int position = 0; for (long i = 0; i < numpages; i++) { byte item = mappedbuffer.get(position); position += PAGE SIZE; } in.close(); infile.close(); } } The API for the map() method is as follows: map(mode, position, size) Page 16 of 20

Other Issues -- Prepaging Prepaging To reduce the large number of page faults that occurs at process startup Prepage all or some of the pages a process will need, before they are referenced But if prepaged pages are unused, I/O and memory was wasted Assume s pages are prepaged and α of the pages is used - Is cost of s * α save pages faults > or < than the cost of prepaging s * (1- α) unnecessary pages? - α near zero prepaging loses Other Issues Page Size Page size selection must take into consideration: fragmentation table size I/O overhead locality Other Issues TLB Reach TLB Reach - The amount of memory accessible from the TLB TLB Reach = (TLB Size) X (Page Size) Ideally, the working set of each process is stored in the TLB. Otherwise there is a high degree of page faults. Increase the Page Size. This may lead to an increase in fragmentation as not all applications require a large page size Provide Multiple Page Sizes. This allows applications that require larger page sizes the opportunity to use them without an increase in fragmentation. Page 17 of 20

Other Issues Program Structure Program structure Int[128,128] data; Each row is stored in one page Program 1 for (j = 0; j <128; j++) for (i = 0; i < 128; i++) data[i,j] = 0; 128 x 128 = 16,384 page faults Program 2 for (i = 0; i < 128; i++) for (j = 0; j < 128; j++) data[i,j] = 0; 128 page faults Other Issues I/O interlock I/O Interlock Pages must sometimes be locked into memory Consider I/O. Pages that are used for copying a file from a device must be locked from being selected for eviction by a page replacement algorithm. Reason Why Frames Used For I/O Must Be In Memory Page 18 of 20

8.6 Examples Windows XP Solaris Windows XP Uses demand paging with clustering. Clustering brings in pages surrounding the faulting page. Processes are assigned working set minimum and working set maximum Working set minimum is the minimum number of pages the process is guaranteed to have in memory A process may be assigned as many pages up to its working set maximum When the amount of free memory in the system falls below a threshold, automatic working set trimming is performed to restore the amount of free memory Working set trimming removes pages from processes that have pages in excess of their working set minimum Solaris Maintains a list of free pages to assign faulting processes Lotsfree threshold parameter (amount of free memory) to begin paging Desfree threshold parameter to increasing paging Minfree threshold parameter to being swapping Paging is performed by pageout process Pageout scans pages using modified clock algorithm Scanrate is the rate at which pages are scanned. This ranges from slowscan to fastscan Pageout is called more frequently depending upon the amount of free memory available Solaris 2 Page Scanner Page 19 of 20

Page 20 of 20