OPERATING SYSTEM - VIRTUAL MEMORY
|
|
|
- Colleen Hines
- 9 years ago
- Views:
Transcription
1 OPERATING SYSTEM - VIRTUAL MEMORY Copyright tutorialspoint.com A computer can address more memory than the amount physically installed on the system. This extra memory is actually called virtual memory and it is a section of a hard that's set up to emulate the computer's RAM. The main visible advantage of this scheme is that programs can be larger than physical memory. Virtual memory serves two purposes. First, it allows us to extend the use of physical memory by using disk. Second, it allows us to have memory protection, because each virtual address is translated to a physical address. Following are the situations, when entire program is not required to be loaded fully in main memory. User written error handling routines are used only when an error occured in the data or computation. Certain options and features of a program may be used rarely. Many tables are assigned a fixed amount of address space even though only a small amount of the table is actually used. The ability to execute a program that is only partially in memory would counter many benefits. Less number of I/O would be needed to load or swap each user program into memory. A program would no longer be constrained by the amount of physical memory that is available. Each user program could take less physical memory, more programs could be run the same time, with a corresponding increase in CPU utilization and throughput. Modern microprocessors intended for general-purpose use, a memory management unit, or MMU, is built into the hardware. The MMU's job is to translate virtual addresses into physical addresses. A basic example is given below:
2 Virtual memory is commonly implemented by demand paging. It can also be implemented in a segmentation system. Demand segmentation can also be used to provide virtual memory. Demand Paging A demand paging system is quite similar to a paging system with swapping where processes reside in secondary memory and pages are loaded only on demand, not in advance. When a context switch occurs, the operating system does not copy any of the old program s pages out to the disk or any of the new program s pages into the main memory Instead, it just begins executing the new program after lading the first page and fetches that program s pages as they are referenced. While executing a program, if program reference a page which is not available in the main memory because it was swapped out a little ago, the processor treats this invalid memory reference as a page fault and transfers control from the program to the operating system to demand the page back into the memory. Advantages Following are the advantages of Demand Paging Large virtual memory. More efficient use of memory. Unconstrained multiprogramming. There is no limit on degree of multiprogramming. Disadvantages Following are the disadvantages of Demand Paging Number of tables and amount of processor overhead for handling page interrupts are greater than in the case of the
3 simple paged management techniques. Due to the lack of an explicit constraints on a jobs address space size. Page Replacement Algorithm Page replacement algorithms are the techniques using which Operating System decides which memory pages to swap out, write to disk when a page of memory needs to be allocated. Paging happens whenever a page fault occurs and a free page cannot be used for allocation purpose accounting to reason that pages are not available or the number of free pages is lower than required pages. When the page that was selected for replacement and was paged out, is referenced again then it has to read in from disk, and this requires for I/O completion. This process determines the quality of the page replacement algorithm: the lesser the time waiting for page-ins, the better is the algorithm. A page replacement algorithm looks at the limited information about accessing the pages provided by hardware, and tries to select which pages should be replaced to minimize the total number of page misses, while balancing it with the costs of primary storage and processor time of the algorithm itself. There are many different page replacement algorithms. We evaluate an algorithm by running it on a particular string of memory reference and computing the number of page faults. Reference String The string of memory references is called reference string. Reference strings are generated artificially or by tracing a given system and recording the address of each memory reference. The latter choice produces a large number of data, where we note two things. For a given page size we need to consider only the page number, not the entire address. If we have a reference to a page p, then any immediately following references to page p will never cause a page fault. Page p will be in memory after the first reference; the immediately following references will not fault. For example, consider the following sequence of addresses - 123,215,600,1234,76,96 If page size is 100 then the reference string is 1,2,6,12,0,0 First In First Out (FIFO) algorithm Oldest page in main memory is the one which will be selected for replacement. Easy to implement, keep a list, replace pages from the tail and add new pages at the head. Optimal Page algorithm An optimal page-replacement algorithm has the lowest page-fault rate of all algorithms. An optimal pagereplacement algorithm exists, and has been called OPT or MIN.
4 Replace the page that will not be used for the longest period of time. Use the time when a page is to be used. Least Recently Used (LRU) algorithm Page which has not been used for the longest time in main memory is the one which will be selected for replacement. Easy to implement, keep a list, replace pages by looking back into time. Page Buffering algorithm To get process start quickly, keep a pool of free frames. On page fault, select a page to be replaced. Write new page in the frame of free pool, mark the page table and restart the process. Now write the dirty page out of disk and place the frame holding replaced page in free pool. Least frequently Used(LFU) algorithm Page with the smallest count is the one which will be selected for replacement.
5 This algorithm suffers from the situation in which a page is used heavily during the initial phase of a process, but then is never used again. Most frequently Used(MFU) algorithm This algorithm is based on the argument that the page with the smallest count was probably just brought in and has yet to be used.
Chapter 10: Virtual Memory. Lesson 08: Demand Paging and Page Swapping
Chapter 10: Virtual Memory Lesson 08: Demand Paging and Page Swapping Objective Learn demand paging, pages of data are only brought into the main memory when a program accesses them Learn swapping technique
Virtual Memory Paging
COS 318: Operating Systems Virtual Memory Paging Kai Li Computer Science Department Princeton University (http://www.cs.princeton.edu/courses/cos318/) Today s Topics Paging mechanism Page replacement algorithms
Operating Systems. Virtual Memory
Operating Systems Virtual Memory Virtual Memory Topics. Memory Hierarchy. Why Virtual Memory. Virtual Memory Issues. Virtual Memory Solutions. Locality of Reference. Virtual Memory with Segmentation. Page
Memory unit sees only the addresses, and not how they are generated (instruction counter, indexing, direct)
Memory Management 55 Memory Management Multitasking without memory management is like having a party in a closet. Charles Petzold. Programming Windows 3.1 Programs expand to fill the memory that holds
OPERATING SYSTEM - MEMORY MANAGEMENT
OPERATING SYSTEM - MEMORY MANAGEMENT http://www.tutorialspoint.com/operating_system/os_memory_management.htm Copyright tutorialspoint.com Memory management is the functionality of an operating system which
Operating Systems, 6 th ed. Test Bank Chapter 7
True / False Questions: Chapter 7 Memory Management 1. T / F In a multiprogramming system, main memory is divided into multiple sections: one for the operating system (resident monitor, kernel) and one
Virtual vs Physical Addresses
Virtual vs Physical Addresses Physical addresses refer to hardware addresses of physical memory. Virtual addresses refer to the virtual store viewed by the process. virtual addresses might be the same
I/O Management. General Computer Architecture. Goals for I/O. Levels of I/O. Naming. I/O Management. COMP755 Advanced Operating Systems 1
General Computer Architecture I/O Management COMP755 Advanced Operating Systems Goals for I/O Users should access all devices in a uniform manner. Devices should be named in a uniform manner. The OS, without
Chapter 12. Paging an Virtual Memory Systems
Chapter 12 Paging an Virtual Memory Systems Paging & Virtual Memory Virtual Memory - giving the illusion of more physical memory than there really is (via demand paging) Pure Paging - The total program
Computer Architecture
Computer Architecture Slide Sets WS 2013/2014 Prof. Dr. Uwe Brinkschulte M.Sc. Benjamin Betting Part 11 Memory Management Computer Architecture Part 11 page 1 of 44 Prof. Dr. Uwe Brinkschulte, M.Sc. Benjamin
Chapter 11 I/O Management and Disk Scheduling
Operating Systems: Internals and Design Principles, 6/E William Stallings Chapter 11 I/O Management and Disk Scheduling Dave Bremer Otago Polytechnic, NZ 2008, Prentice Hall I/O Devices Roadmap Organization
Operating System Tutorial
Operating System Tutorial OPERATING SYSTEM TUTORIAL Simply Easy Learning by tutorialspoint.com tutorialspoint.com i ABOUT THE TUTORIAL Operating System Tutorial An operating system (OS) is a collection
Chapter 7 Memory Management
Operating Systems: Internals and Design Principles Chapter 7 Memory Management Eighth Edition William Stallings Frame Page Segment A fixed-length block of main memory. A fixed-length block of data that
On Demand Loading of Code in MMUless Embedded System
On Demand Loading of Code in MMUless Embedded System Sunil R Gandhi *. Chetan D Pachange, Jr.** Mandar R Vaidya***, Swapnilkumar S Khorate**** *Pune Institute of Computer Technology, Pune INDIA (Mob- 8600867094;
& Data Processing 2. Exercise 3: Memory Management. Dipl.-Ing. Bogdan Marin. Universität Duisburg-Essen
Folie a: Name & Data Processing 2 3: Memory Management Dipl.-Ing. Bogdan Marin Fakultät für Ingenieurwissenschaften Abteilung Elektro-und Informationstechnik -Technische Informatik- Objectives Memory Management
CS162 Operating Systems and Systems Programming Lecture 15. Page Allocation and Replacement
S6 Operating Systems and Systems Programming Lecture 5 Page llocation and Replacement October 5, 00 Prof. John Kubiatowicz http://inst.eecs.berkeley.edu/~cs6 Review: emand Paging Mechanisms PT helps us
Chapter 11 I/O Management and Disk Scheduling
Operatin g Systems: Internals and Design Principle s Chapter 11 I/O Management and Disk Scheduling Seventh Edition By William Stallings Operating Systems: Internals and Design Principles An artifact can
Buffer Management 5. Buffer Management
5 Buffer Management Copyright 2004, Binnur Kurt A journey of a byte Buffer Management Content 156 A journey of a byte Suppose in our program we wrote: outfile
Hardware Assisted Virtualization
Hardware Assisted Virtualization G. Lettieri 21 Oct. 2015 1 Introduction In the hardware-assisted virtualization technique we try to execute the instructions of the target machine directly on the host
Lecture 17: Virtual Memory II. Goals of virtual memory
Lecture 17: Virtual Memory II Last Lecture: Introduction to virtual memory Today Review and continue virtual memory discussion Lecture 17 1 Goals of virtual memory Make it appear as if each process has:
Recovery and the ACID properties CMPUT 391: Implementing Durability Recovery Manager Atomicity Durability
Database Management Systems Winter 2004 CMPUT 391: Implementing Durability Dr. Osmar R. Zaïane University of Alberta Lecture 9 Chapter 25 of Textbook Based on slides by Lewis, Bernstein and Kifer. University
HY345 Operating Systems
HY345 Operating Systems Recitation 2 - Memory Management Solutions Panagiotis Papadopoulos [email protected] Problem 7 Consider the following C program: int X[N]; int step = M; //M is some predefined constant
Memory Management 1. Memory Management. Multitasking without memory management is like having a party in a closet.
Memory Management 1 Memory Management Multitasking without memory management is like having a party in a closet. Charles Petzold. Programming Windows 3.1 Programs expand to fill the memory that holds them.
OS OBJECTIVE QUESTIONS
OS OBJECTIVE QUESTIONS Which one of the following is Little s formula Where n is the average queue length, W is the time that a process waits 1)n=Lambda*W 2)n=Lambda/W 3)n=Lambda^W 4)n=Lambda*(W-n) Answer:1
Memory Management Outline. Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging
Memory Management Outline Background Swapping Contiguous Memory Allocation Paging Segmentation Segmented Paging 1 Background Memory is a large array of bytes memory and registers are only storage CPU can
Computer-System Architecture
Chapter 2: Computer-System Structures Computer System Operation I/O Structure Storage Structure Storage Hierarchy Hardware Protection General System Architecture 2.1 Computer-System Architecture 2.2 Computer-System
Chapter 3. Operating Systems
Christian Jacob Chapter 3 Operating Systems 3.1 Evolution of Operating Systems 3.2 Booting an Operating System 3.3 Operating System Architecture 3.4 References Chapter Overview Page 2 Chapter 3: Operating
Chapter 1 Computer System Overview
Operating Systems: Internals and Design Principles Chapter 1 Computer System Overview Eighth Edition By William Stallings Operating System Exploits the hardware resources of one or more processors Provides
Midterm Exam #2 November 10, 1999 CS162 Operating Systems
Fall 1999 Your Name: SID: University of California, Berkeley College of Engineering Computer Science Division EECS Midterm Exam #2 November 10, 1999 CS162 Operating Systems Anthony D. Joseph Circle the
Operating Systems OBJECTIVES 7.1 DEFINITION. Chapter 7. Note:
Chapter 7 OBJECTIVES Operating Systems Define the purpose and functions of an operating system. Understand the components of an operating system. Understand the concept of virtual memory. Understand the
Objectives. Chapter 5: CPU Scheduling. CPU Scheduler. Non-preemptive and preemptive. Dispatcher. Alternating Sequence of CPU And I/O Bursts
Objectives Chapter 5: CPU Scheduling Introduce CPU scheduling, which is the basis for multiprogrammed operating systems Describe various CPU-scheduling algorithms Discuss evaluation criteria for selecting
Page 1 of 5. IS 335: Information Technology in Business Lecture Outline Operating Systems
Lecture Outline Operating Systems Objectives Describe the functions and layers of an operating system List the resources allocated by the operating system and describe the allocation process Explain how
Midterm Exam #2 Solutions November 10, 1999 CS162 Operating Systems
Fall 1999 Your Name: SID: University of California, Berkeley College of Engineering Computer Science Division EECS Midterm Exam #2 November 10, 1999 CS162 Operating Systems Anthony D. Joseph Circle the
Operating Systems 4 th Class
Operating Systems 4 th Class Lecture 1 Operating Systems Operating systems are essential part of any computer system. Therefore, a course in operating systems is an essential part of any computer science
Performance Comparison of RTOS
Performance Comparison of RTOS Shahmil Merchant, Kalpen Dedhia Dept Of Computer Science. Columbia University Abstract: Embedded systems are becoming an integral part of commercial products today. Mobile
Chapter 2 Basic Structure of Computers. Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan
Chapter 2 Basic Structure of Computers Jin-Fu Li Department of Electrical Engineering National Central University Jungli, Taiwan Outline Functional Units Basic Operational Concepts Bus Structures Software
Timing of a Disk I/O Transfer
Disk Performance Parameters To read or write, the disk head must be positioned at the desired track and at the beginning of the desired sector Seek time Time it takes to position the head at the desired
Types Of Operating Systems
Types Of Operating Systems Date 10/01/2004 1/24/2004 Operating Systems 1 Brief history of OS design In the beginning OSes were runtime libraries The OS was just code you linked with your program and loaded
COS 318: Operating Systems. Virtual Memory and Address Translation
COS 318: Operating Systems Virtual Memory and Address Translation Today s Topics Midterm Results Virtual Memory Virtualization Protection Address Translation Base and bound Segmentation Paging Translation
We r e going to play Final (exam) Jeopardy! "Answers:" "Questions:" - 1 -
. (0 pts) We re going to play Final (exam) Jeopardy! Associate the following answers with the appropriate question. (You are given the "answers": Pick the "question" that goes best with each "answer".)
Secondary Storage. Any modern computer system will incorporate (at least) two levels of storage: magnetic disk/optical devices/tape systems
1 Any modern computer system will incorporate (at least) two levels of storage: primary storage: typical capacity cost per MB $3. typical access time burst transfer rate?? secondary storage: typical capacity
How To Understand And Understand An Operating System In C Programming
ELEC 377 Operating Systems Thomas R. Dean Instructor Tom Dean Office:! WLH 421 Email:! [email protected] Hours:! Wed 14:30 16:00 (Tentative)! and by appointment! 6 years industrial experience ECE Rep
Virtual Machines. COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361
s COMP 3361: Operating Systems I Winter 2015 http://www.cs.du.edu/3361 1 Virtualization! Create illusion of multiple machines on the same physical hardware! Single computer hosts multiple virtual machines
Chapter 1: Introduction. What is an Operating System?
Chapter 1: Introduction What is an Operating System? Mainframe Systems Desktop Systems Multiprocessor Systems Distributed Systems Clustered System Real -Time Systems Handheld Systems Computing Environments
Outline. Outline. Why virtualization? Why not virtualize? Today s data center. Cloud computing. Virtual resource pool
Outline CS 6V81-05: System Security and Malicious Code Analysis Overview of System ization: The most powerful platform for program analysis and system security Zhiqiang Lin Department of Computer Science
Operating Systems Lecture #6: Process Management
Lecture #6: Process Written by based on the lecture series of Dr. Dayou Li and the book Understanding 4th ed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology,., 2013
Road Map. Scheduling. Types of Scheduling. Scheduling. CPU Scheduling. Job Scheduling. Dickinson College Computer Science 354 Spring 2010.
Road Map Scheduling Dickinson College Computer Science 354 Spring 2010 Past: What an OS is, why we have them, what they do. Base hardware and support for operating systems Process Management Threads Present:
Kernel Optimizations for KVM. Rik van Riel Senior Software Engineer, Red Hat June 25 2010
Kernel Optimizations for KVM Rik van Riel Senior Software Engineer, Red Hat June 25 2010 Kernel Optimizations for KVM What is virtualization performance? Benefits of developing both guest and host KVM
Process Scheduling CS 241. February 24, 2012. Copyright University of Illinois CS 241 Staff
Process Scheduling CS 241 February 24, 2012 Copyright University of Illinois CS 241 Staff 1 Announcements Mid-semester feedback survey (linked off web page) MP4 due Friday (not Tuesday) Midterm Next Tuesday,
Operating Systems Overview
Operating Systems Overview No single definition, but many perspectives: Role in an overall system: Intermediary between computer hardware and everything else User view: Provides an environment, preferably
CPU Scheduling. CPU Scheduling
CPU Scheduling Electrical and Computer Engineering Stephen Kim ([email protected]) ECE/IUPUI RTOS & APPS 1 CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling
Analysis of Job Scheduling Algorithms in Cloud Computing
Analysis of Job Scheduling s in Cloud Computing Rajveer Kaur 1, Supriya Kinger 2 1 Research Fellow, Department of Computer Science and Engineering, SGGSWU, Fatehgarh Sahib, India, Punjab (140406) 2 Asst.Professor,
Memory Management Simulation Interactive Lab
Memory Management Simulation Interactive Lab The purpose of this lab is to help you to understand deadlock. We will use a MOSS simulator for this. The instructions for this lab are for a computer running
Main Points. Scheduling policy: what to do next, when there are multiple threads ready to run. Definitions. Uniprocessor policies
Scheduling Main Points Scheduling policy: what to do next, when there are multiple threads ready to run Or multiple packets to send, or web requests to serve, or Definitions response time, throughput,
Operating System: Scheduling
Process Management Operating System: Scheduling OS maintains a data structure for each process called Process Control Block (PCB) Information associated with each PCB: Process state: e.g. ready, or waiting
The Deadlock Problem. Deadlocks. Deadlocks. Bridge Crossing Example
The Deadlock Problem Deadlocks A set of blocked processes each holding a resource and waiting to acquire a resource held by another process in the set. Example System has 2 tape drives. P 1 and P 2 each
Comparison of Memory Management Systems of BSD, Windows, and Linux
Comparison of Memory Management Systems of BSD, Windows, and Linux Gaurang Khetan Graduate Student, Department of Computer Science, University of Southern California, Los Angeles, CA. [email protected] December
find model parameters, to validate models, and to develop inputs for models. c 1994 Raj Jain 7.1
Monitors Monitor: A tool used to observe the activities on a system. Usage: A system programmer may use a monitor to improve software performance. Find frequently used segments of the software. A systems
Process Description and Control. 2004-2008 william stallings, maurizio pizzonia - sistemi operativi
Process Description and Control 1 Process A program in execution (running) on a computer The entity that can be assigned to and executed on a processor A unit of activity characterized by a at least one
Data Storage - I: Memory Hierarchies & Disks
Data Storage - I: Memory Hierarchies & Disks W7-C, Spring 2005 Updated by M. Naci Akkøk, 27.02.2004 and 23.02.2005, based upon slides by Pål Halvorsen, 11.3.2002. Contains slides from: Hector Garcia-Molina,
The Classical Architecture. Storage 1 / 36
1 / 36 The Problem Application Data? Filesystem Logical Drive Physical Drive 2 / 36 Requirements There are different classes of requirements: Data Independence application is shielded from physical storage
361 Computer Architecture Lecture 14: Cache Memory
1 361 Computer Architecture Lecture 14 Memory cache.1 The Motivation for s Memory System Processor DRAM Motivation Large memories (DRAM) are slow Small memories (SRAM) are fast Make the average access
Multiprogramming. IT 3123 Hardware and Software Concepts. Program Dispatching. Multiprogramming. Program Dispatching. Program Dispatching
IT 3123 Hardware and Software Concepts Operating Systems II October 26 Multiprogramming Two or more application programs in memory. Consider one CPU and more than one program. This can be generalized to
Virtualization. Pradipta De [email protected]
Virtualization Pradipta De [email protected] Today s Topic Virtualization Basics System Virtualization Techniques CSE506: Ext Filesystem 2 Virtualization? A virtual machine (VM) is an emulation
Microsoft SQL Server OLTP Best Practice
Microsoft SQL Server OLTP Best Practice The document Introduction to Transactional (OLTP) Load Testing for all Databases provides a general overview on the HammerDB OLTP workload and the document Microsoft
Peter J. Denning, Naval Postgraduate School, Monterey, California
VIRTUAL MEMORY Peter J. Denning, Naval Postgraduate School, Monterey, California January 2008 Rev 6/5/08 Abstract: Virtual memory is the simulation of a storage space so large that users do not need to
Memory management basics (1) Requirements (1) Objectives. Operating Systems Part of E1.9 - Principles of Computers and Software Engineering
Memory management basics (1) Requirements (1) Operating Systems Part of E1.9 - Principles of Computers and Software Engineering Lecture 7: Memory Management I Memory management intends to satisfy the following
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Chapter 13 File and Database Systems
Chapter 13 File and Database Systems Outline 13.1 Introduction 13.2 Data Hierarchy 13.3 Files 13.4 File Systems 13.4.1 Directories 13.4. Metadata 13.4. Mounting 13.5 File Organization 13.6 File Allocation
Virtual Memory. Virtual Memory. Paging. CSE 380 Computer Operating Systems. Paging (1)
Virtual Memory CSE 380 Computer Operating Systems Instructor: Insup Lee University of Pennsylvania Fall 2003 Lecture Note: Virtual Memory (revised version) 1 Recall: memory allocation with variable partitions
Windows Server Performance Monitoring
Spot server problems before they are noticed The system s really slow today! How often have you heard that? Finding the solution isn t so easy. The obvious questions to ask are why is it running slowly
Technical Properties. Mobile Operating Systems. Overview Concepts of Mobile. Functions Processes. Lecture 11. Memory Management.
Overview Concepts of Mobile Operating Systems Lecture 11 Concepts of Mobile Operating Systems Mobile Business I (WS 2007/08) Prof Dr Kai Rannenberg Chair of Mobile Business and Multilateral Security Johann
4003-440/4003-713 Operating Systems I. Process Scheduling. Warren R. Carithers ([email protected]) Rob Duncan ([email protected])
4003-440/4003-713 Operating Systems I Process Scheduling Warren R. Carithers ([email protected]) Rob Duncan ([email protected]) Review: Scheduling Policy Ideally, a scheduling policy should: Be: fair, predictable
Supplementing Windows 95 and Windows 98 Performance Data for Remote Measurement and Capacity Planning
Supplementing 95 and 98 Performance Data for Remote Measurement and Capacity Planning BonAmi Software Corporation Abstract Microsoft NT provides a full featured Performance Monitor program that is widely
Red Hat Enterprise linux 5 Continuous Availability
Red Hat Enterprise linux 5 Continuous Availability Businesses continuity needs to be at the heart of any enterprise IT deployment. Even a modest disruption in service is costly in terms of lost revenue
This tutorial will take you through step by step approach while learning Operating System concepts.
About the Tutorial An operating system (OS) is a collection of software that manages computer hardware resources and provides common services for computer programs. The operating system is a vital component
W4118 Operating Systems. Instructor: Junfeng Yang
W4118 Operating Systems Instructor: Junfeng Yang Outline Introduction to scheduling Scheduling algorithms 1 Direction within course Until now: interrupts, processes, threads, synchronization Mostly mechanisms
Introduction. Scheduling. Types of scheduling. The basics
Introduction In multiprogramming systems, when there is more than one runable (i.e., ready), the operating system must decide which one to activate. The decision is made by the part of the operating system
Uses for Virtual Machines. Virtual Machines. There are several uses for virtual machines:
Virtual Machines Uses for Virtual Machines Virtual machine technology, often just called virtualization, makes one computer behave as several computers by sharing the resources of a single computer between
Outline. Failure Types
Outline Database Management and Tuning Johann Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE Unit 11 1 2 Conclusion Acknowledgements: The slides are provided by Nikolaus Augsten
Avoiding Performance Bottlenecks in Hyper-V
Avoiding Performance Bottlenecks in Hyper-V Identify and eliminate capacity related performance bottlenecks in Hyper-V while placing new VMs for optimal density and performance Whitepaper by Chris Chesley
Chapter 2: Computer-System Structures. Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture
Chapter 2: Computer-System Structures Computer System Operation Storage Structure Storage Hierarchy Hardware Protection General System Architecture Operating System Concepts 2.1 Computer-System Architecture
evm Virtualization Platform for Windows
B A C K G R O U N D E R evm Virtualization Platform for Windows Host your Embedded OS and Windows on a Single Hardware Platform using Intel Virtualization Technology April, 2008 TenAsys Corporation 1400
Chapter 3 Operating-System Structures
Contents 1. Introduction 2. Computer-System Structures 3. Operating-System Structures 4. Processes 5. Threads 6. CPU Scheduling 7. Process Synchronization 8. Deadlocks 9. Memory Management 10. Virtual
Memory Management under Linux: Issues in Linux VM development
Memory Management under Linux: Issues in Linux VM development Christoph Lameter, Ph.D. Technical Lead, Linux Kernel Software Silicon Graphics Inc. [email protected] 2008-03-12 2008 SGI Sunnyvale, California
Computer Organization and Architecture. Characteristics of Memory Systems. Chapter 4 Cache Memory. Location CPU Registers and control unit memory
Computer Organization and Architecture Chapter 4 Cache Memory Characteristics of Memory Systems Note: Appendix 4A will not be covered in class, but the material is interesting reading and may be used in
Exceptions in MIPS. know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine
7 Objectives After completing this lab you will: know the exception mechanism in MIPS be able to write a simple exception handler for a MIPS machine Introduction Branches and jumps provide ways to change
Scheduling. Yücel Saygın. These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum
Scheduling Yücel Saygın These slides are based on your text book and on the slides prepared by Andrew S. Tanenbaum 1 Scheduling Introduction to Scheduling (1) Bursts of CPU usage alternate with periods
How To Understand The History Of An Operating System
7 Operating Systems 7.1 Source: Foundations of Computer Science Cengage Learning Objectives After studying this chapter, the student should be able to: 7.2 Understand the role of the operating system.
Operating Systems. III. Scheduling. http://soc.eurecom.fr/os/
Operating Systems Institut Mines-Telecom III. Scheduling Ludovic Apvrille [email protected] Eurecom, office 470 http://soc.eurecom.fr/os/ Outline Basics of Scheduling Definitions Switching
External Sorting. Why Sort? 2-Way Sort: Requires 3 Buffers. Chapter 13
External Sorting Chapter 13 Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1 Why Sort? A classic problem in computer science! Data requested in sorted order e.g., find students in increasing
1 File Management. 1.1 Naming. COMP 242 Class Notes Section 6: File Management
COMP 242 Class Notes Section 6: File Management 1 File Management We shall now examine how an operating system provides file management. We shall define a file to be a collection of permanent data with
Overview and History of Operating Systems
Overview and History of Operating Systems These are the notes for lecture 1. Please review the Syllabus notes before these. Overview / Historical Developments An Operating System... Sits between hardware
Remote Copy Technology of ETERNUS6000 and ETERNUS3000 Disk Arrays
Remote Copy Technology of ETERNUS6000 and ETERNUS3000 Disk Arrays V Tsutomu Akasaka (Manuscript received July 5, 2005) This paper gives an overview of a storage-system remote copy function and the implementation
COMPUTER HARDWARE. Input- Output and Communication Memory Systems
COMPUTER HARDWARE Input- Output and Communication Memory Systems Computer I/O I/O devices commonly found in Computer systems Keyboards Displays Printers Magnetic Drives Compact disk read only memory (CD-ROM)
The basic CAP CPU consists of a microprogramming control unit, 4K 16-bit words of micro-control storage, and an 79
5 The Cambridge CAP Computer 5. I Introduction In 1970, Roger Needham and Maurice Wilkes at Cambridge University began a research project to construct a capabilitybased machine. In contrast to the Chicago
Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009
Performance Study Performance Evaluation of VMXNET3 Virtual Network Device VMware vsphere 4 build 164009 Introduction With more and more mission critical networking intensive workloads being virtualized
Operating Systems. Lecture 03. February 11, 2013
Operating Systems Lecture 03 February 11, 2013 Goals for Today Interrupts, traps and signals Hardware Protection System Calls Interrupts, Traps, and Signals The occurrence of an event is usually signaled
MS SQL Performance (Tuning) Best Practices:
MS SQL Performance (Tuning) Best Practices: 1. Don t share the SQL server hardware with other services If other workloads are running on the same server where SQL Server is running, memory and other hardware
Deploying and Optimizing SQL Server for Virtual Machines
Deploying and Optimizing SQL Server for Virtual Machines Deploying and Optimizing SQL Server for Virtual Machines Much has been written over the years regarding best practices for deploying Microsoft SQL
