Évariste Galois and Solvable Permutation Groups



Similar documents
Galois Theory, First Edition

Group Theory. Contents

ON GALOIS REALIZATIONS OF THE 2-COVERABLE SYMMETRIC AND ALTERNATING GROUPS

Note concernant votre accord de souscription au service «Trusted Certificate Service» (TCS)

EPREUVE D EXPRESSION ORALE. SAVOIR et SAVOIR-FAIRE

Langages Orientés Objet Java

Level 2 French, 2014

HEALTH CARE DIRECTIVES ACT

Survey on Conference Services provided by the United Nations Office at Geneva

Technical Service Bulletin

Sun Management Center Change Manager Release Notes

In-Home Caregivers Teleconference with Canadian Bar Association September 17, 2015

ATP Co C pyr y ight 2013 B l B ue C o C at S y S s y tems I nc. All R i R ghts R e R serve v d. 1

Altiris Patch Management Solution for Windows 7.6 from Symantec Third-Party Legal Notices

Personnalisez votre intérieur avec les revêtements imprimés ALYOS design

Archived Content. Contenu archivé

SOLVING POLYNOMIAL EQUATIONS BY RADICALS

Archived Content. Contenu archivé

Archived Content. Contenu archivé

ACP-EU Cooperation Programme in Science and Technology (S&T II) / Programme de Coopération ACP-UE pour la Science et la Technologie

BILL C-665 PROJET DE LOI C-665 C-665 C-665 HOUSE OF COMMONS OF CANADA CHAMBRE DES COMMUNES DU CANADA

Archived Content. Contenu archivé

TREATIES AND OTHER INTERNATIONAL ACTS SERIES Agreement Between the UNITED STATES OF AMERICA and CONGO

Altiris Patch Management Solution for Windows 7.5 SP1 from Symantec Third-Party Legal Notices

General Certificate of Education Advanced Level Examination June 2012

Liste d'adresses URL

Archived Content. Contenu archivé

Office of the Auditor General / Bureau du vérificateur général FOLLOW-UP TO THE 2010 AUDIT OF COMPRESSED WORK WEEK AGREEMENTS 2012 SUIVI DE LA

SOLVING POLYNOMIAL EQUATIONS

Open call for tenders n SCIC C4 2014/01

AgroMarketDay. Research Application Summary pp: Abstract

Méthodes ensemblistes pour une localisation robuste de robots sous-marins

HOW MUCH DO YOU KNOW ABOUT RUGBY???

«Environnement Economique de l Entreprise»

Archived Content. Contenu archivé

Measuring Policing Complexity: A Research Based Agenda

1 = (a 0 + b 0 α) (a m 1 + b m 1 α) 2. for certain elements a 0,..., a m 1, b 0,..., b m 1 of F. Multiplying out, we obtain

Generic Polynomials of Degree Three

minimal polyonomial Example

Archived Content. Contenu archivé

REVOCABILITY. Contact: Lars MEINHARDT, Telephone:(32-2) ,

Solaris 10 Documentation README

GROUPS ACTING ON A SET

Introduction au BIM. ESEB Seyssinet-Pariset Economie de la construction contact@eseb.fr

Sun StorEdge A5000 Installation Guide

Millier Dickinson Blais

BUSINESS PROCESS OPTIMIZATION. OPTIMIZATION DES PROCESSUS D ENTERPRISE Comment d aborder la qualité en améliorant le processus

Online Learning Communities for LCTLs. NFLRC Summer Institute July 13, 2011

Finding a research subject in educational technology

The Need For Speed. leads to PostgreSQL. Dimitri Fontaine 28 Mars 2013

System Requirements Orion

Introduction ToIP/Asterisk Quelques applications Trixbox/FOP Autres distributions Conclusion. Asterisk et la ToIP. Projet tuteuré

Enterprise Risk Management & Board members. GUBERNA Alumni Event June 19 th 2014 Prepared by Gaëtan LEFEVRE

Unrealized Gains in Stocks from the Viewpoint of Investment Risk Management

TIMISKAMING FIRST NATION

Qu est-ce que le Cloud? Quels sont ses points forts? Pourquoi l'adopter? Hugues De Pra Data Center Lead Cisco Belgium & Luxemburg

SunFDDI 6.0 on the Sun Enterprise Server

I will explain to you in English why everything from now on will be in French

Product / Produit Description Duration /Days Total / Total

10 mistakes not to make in France!

Sun StorEdge RAID Manager Release Notes

Licence Informatique Année Exceptions

Thailand Business visa Application for citizens of Hong Kong living in Manitoba

Domino Tableaux, Schützenberger Involution, and the Symmetric Group Action

COLLABORATIVE LCA. Rachel Arnould and Thomas Albisser. Hop-Cube, France

Module MA3411: Abstract Algebra Galois Theory Appendix Michaelmas Term 2013

Web - Travaux Pratiques 1

at à 02 :00 PM on le

7. Some irreducible polynomials

AP FRENCH LANGUAGE 2008 SCORING GUIDELINES

How To Find Out How Roots Of A Polynome Are Calculated

Extracting the roots of septics by polynomial decomposition

2. Il faut + infinitive and its more nuanced alternative il faut que + subjunctive.

9. POLYNOMIALS. Example 1: The expression a(x) = x 3 4x 2 + 7x 11 is a polynomial in x. The coefficients of a(x) are the numbers 1, 4, 7, 11.

Formulaire de Modification de Données de l Emploi/Job Data Change Form France

N1 Grid Service Provisioning System 5.0 User s Guide for the Linux Plug-In

How To Prove The Dirichlet Unit Theorem

Hours: The hours for the class are divided between practicum and in-class activities. The dates and hours are as follows:

NOTES POUR L ALLOCUTION DE M

How To Write A Police Budget

BACCALAURÉAT GÉNÉRAL

Bicultural child in the Dordogne English classroom to be French or not to be? NORAH LEROY ESPE D AQUITAINE - UNIVERSITÉ DE BORDEAUX

9 More on differentiation

3.6 The Real Zeros of a Polynomial Function

Strategic Workforce Planning and Competency Management at Schneider Electric

FOR TEACHERS ONLY The University of the State of New York

G = G 0 > G 1 > > G k = {e}

Office of the Auditor General / Bureau du vérificateur général FOLLOW-UP TO THE 2007 AUDIT OF THE DISPOSAL OF PAVEMENT LINE MARKER EQUIPMENT 2009

FATMAS : A Methodology to Design Fault-tolerant Multi-agent Systems

Cryptography and Network Security. Prof. D. Mukhopadhyay. Department of Computer Science and Engineering. Indian Institute of Technology, Kharagpur

Inspection des engins de transport

Remote Method Invocation

NUNAVUT HOUSING CORPORATION - BOARD MEMBER RECRUITMENT

Sun Enterprise Optional Power Sequencer Installation Guide

Transcription:

Évariste Galois and Solvable Permutation Groups David A. Cox Department of Mathematics Amherst College dac@math.amherst.edu Bilbao May 2012

Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups.

Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups.

Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups.

Prologue Most mathematicians know about Galois: He introduced the concept of group. He created Galois theory. He defined finite fields. This Talk We will learn some of the amazing other things Galois did, especially his work on solvable permutation groups.

Outline 1 Lagrange Three Snapshots 2 Galois Four Snapshots 3 Solvable Permutation Groups Primitive Equations The Affine Linear Group Finite Fields The Main Theorem

Outline 1 Lagrange Three Snapshots 2 Galois Four Snapshots 3 Solvable Permutation Groups Primitive Equations The Affine Linear Group Finite Fields The Main Theorem

Outline 1 Lagrange Three Snapshots 2 Galois Four Snapshots 3 Solvable Permutation Groups Primitive Equations The Affine Linear Group Finite Fields The Main Theorem

Three Snapshots from Lagrange In 1770, Lagrange wrote the wonderful paper: Réflexions sur la résolution des équations which introduced many of the key players of group theory and Galois theory. We will give three excerpts from this paper to show how Lagrange laid the foundation for what Galois did.

Three Snapshots from Lagrange In 1770, Lagrange wrote the wonderful paper: Réflexions sur la résolution des équations which introduced many of the key players of group theory and Galois theory. We will give three excerpts from this paper to show how Lagrange laid the foundation for what Galois did.

Three Snapshots Snapshot #1 A Quote A function y of the roots of a polynomial gives values y, y,... when the roots are permuted. Lagrange says: il s agit ici uniquement de la forme de valeurs et non de leur quantité absolue. Since y = A(α 1,...,α n ) B(α 1,...,α n ) has the form A(x 1,..., x n ) B(x 1,..., x n ), we see that Lagrange regarded the roots as variables!

Three Snapshots Snapshot #2 The Universal Extension Let σ i be the ith elementary symmetric polynomial. Consider K = k(σ 1,...,σ n ) L = k(x 1,...,x n ). Lagrange s Theorem If t, y L and t is fixed by all permutations that fix y, then t is a rational expression in y,σ 1,...,σ n. K K(y) L gives Gal(L/K(y)) = {permutations fixing y}. So t fixed field of Gal(L/K(y)) = t K(y). Hence K(y) is the fixed field of Gal(L/K(y)). Lagrange knew the Galois correspondence!

Three Snapshots Snapshot #2 The Universal Extension Let σ i be the ith elementary symmetric polynomial. Consider K = k(σ 1,...,σ n ) L = k(x 1,...,x n ). Lagrange s Theorem If t, y L and t is fixed by all permutations that fix y, then t is a rational expression in y,σ 1,...,σ n. K K(y) L gives Gal(L/K(y)) = {permutations fixing y}. So t fixed field of Gal(L/K(y)) = t K(y). Hence K(y) is the fixed field of Gal(L/K(y)). Lagrange knew the Galois correspondence!

Three Snapshots Snapshot #2 The Universal Extension Let σ i be the ith elementary symmetric polynomial. Consider K = k(σ 1,...,σ n ) L = k(x 1,...,x n ). Lagrange s Theorem If t, y L and t is fixed by all permutations that fix y, then t is a rational expression in y,σ 1,...,σ n. K K(y) L gives Gal(L/K(y)) = {permutations fixing y}. So t fixed field of Gal(L/K(y)) = t K(y). Hence K(y) is the fixed field of Gal(L/K(y)). Lagrange knew the Galois correspondence!

Three Snapshots Snapshot #3 Definition Rational functions t, y L are similar ( semblable ) when a permutation fixes t if and only if it fixes y. Corollary of Lagrange s Theorem Functions t, y L are similar if and only if K(t) = K(y). For us, the Galois correspondence of K L is a bijection intermediate fields subgroups of S n. Lagrange worked with individual rational functions. The notion of similar function is his attempt at an intrinsic formulation. Lagrange knew the Galois correspondence!

Three Snapshots Snapshot #3 Definition Rational functions t, y L are similar ( semblable ) when a permutation fixes t if and only if it fixes y. Corollary of Lagrange s Theorem Functions t, y L are similar if and only if K(t) = K(y). For us, the Galois correspondence of K L is a bijection intermediate fields subgroups of S n. Lagrange worked with individual rational functions. The notion of similar function is his attempt at an intrinsic formulation. Lagrange knew the Galois correspondence!

Three Snapshots Snapshot #3 Definition Rational functions t, y L are similar ( semblable ) when a permutation fixes t if and only if it fixes y. Corollary of Lagrange s Theorem Functions t, y L are similar if and only if K(t) = K(y). For us, the Galois correspondence of K L is a bijection intermediate fields subgroups of S n. Lagrange worked with individual rational functions. The notion of similar function is his attempt at an intrinsic formulation. Lagrange knew the Galois correspondence!

Four Snapshots from Galois Évariste Galois was born October 25, 1811 and died May 31, 1832. We are celebrating the 200th anniversary of his birth. In January 1831, he wrote the amazing paper: Mémoire sur les conditions de résolubilité des équations par radicaux I will give four excerpts from this memoir to give you a sense of how Galois thought about Galois theory.

Four Snapshots Snapshot #1 PROPOSITION I THÉORÈME. Soit une équation donnée, dont a,b,c,... sont les m racines. Il y aura toujours un groupe de permutations des lettres a,b,c,... qui jouira des propriété suivant: 1 o que toute fonction des racines, invariable par les substitutions de ce groupe, soit rationallement connue; 2 o réciproquement, que toute fonction des racines déterminable rationallement, soit invariable par ces substitutions. The asterisks and indicate marginal notes in Galois s manuscript.

Four Snapshots Snapshot #1 Marginal Note for invariable Nous appelons ici invariable non seulement une fonction dont la forme est invariable par les substitutions des racines entre elles, mais encore celle dont las valeur numérique ne varieriat pas par ces substitutions. Galois is aware that his theory applies to the roots of any polynomial, not just the case when the roots are variables. Galois has gone beyond Lagrange!

Four Snapshots Snapshot #2 Galois s Group Quelle que soit l équation donnée, on pourra trouver une fonction V des racines telle que toutes les racines soient fonctions rationelles des V. Cela posé, considérons l equation irréductible done V est racine (lemmes III et IV). Soient V, V, V,..., V (n 1) les racines de cette equation. Soient ϕv,ϕ 1 V,ϕ 2 V,...,ϕ m 1 V les racines de la proposée. Écrivons les n permutations suivants des racines: (V), ϕ V, ϕ 1 V, ϕ 2 V,..., ϕ n 1 V, (V ), ϕ V, ϕ 1 V, ϕ 2 V,...,...,...,...,...,...,...,..., (V (m 1) ), ϕ V (m 1), ϕ 1 V (m 1), ϕ 2 V (m 1),..., ϕ n 1 V (m 1) Je dis que ce groupe de permutations jouit de la propriété énoncée.

Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out!

Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out!

Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out!

Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out!

Four Snapshots Snapshot #2 For Galois, permutations are bijections {1,..., m} {roots} call these arrangements while substitutions are bijections {roots} {roots} call these substitutions. Arrangements give a strong visual picture. Substitutions give a group. Arrangements give a principal homogeneous space for the substitutions. Marginal note for substitutions Mettre partout á la place du mot permutation le mot substitution But then he crosses this out!

Four Snapshots Snapshot #3 Galois introduced normal subgroups as follows. PROPOSITION III THÉORÈME. Si ll on adjoint á une équation TOUTES les racines d une équation auxiliaire, les groupes dont il est question dans le théorème II jouiront de plus de cette propriété que les substitutions sont les mêmes dans chaque groupe. If G is the Galois group and a is one arrangement, then G a is Galois s groupe. The cosets of H G give G a = g 1 H a g 2 H a. These are the groupes of PROPOSITION III. Key observation: g(g i H a) = g i H a g g i Hg 1 i. So sont les mêmes means H is normal!

Four Snapshots Snapshot #3 Galois introduced normal subgroups as follows. PROPOSITION III THÉORÈME. Si ll on adjoint á une équation TOUTES les racines d une équation auxiliaire, les groupes dont il est question dans le théorème II jouiront de plus de cette propriété que les substitutions sont les mêmes dans chaque groupe. If G is the Galois group and a is one arrangement, then G a is Galois s groupe. The cosets of H G give G a = g 1 H a g 2 H a. These are the groupes of PROPOSITION III. Key observation: g(g i H a) = g i H a g g i Hg 1 i. So sont les mêmes means H is normal!

Four Snapshots Snapshot #3 Galois introduced normal subgroups as follows. PROPOSITION III THÉORÈME. Si ll on adjoint á une équation TOUTES les racines d une équation auxiliaire, les groupes dont il est question dans le théorème II jouiront de plus de cette propriété que les substitutions sont les mêmes dans chaque groupe. If G is the Galois group and a is one arrangement, then G a is Galois s groupe. The cosets of H G give G a = g 1 H a g 2 H a. These are the groupes of PROPOSITION III. Key observation: g(g i H a) = g i H a g g i Hg 1 i. So sont les mêmes means H is normal!

Four Snapshots Snapshot #4 Galois had a wonderful result about the Galois group of a solvable polynomial of prime degree. PROPOSITION VII PROBLÈME. Quel est le groupe d une équation irréductible d un degré premier n, soluble par radicaux? Faisons en general x n = x 0, x n+1 = x 1,... Donc, si d une équation irréductible de degré premier est soluble par radicaux, le groupe de cette léquation ne saurait contenir que les substitutions de la forme x k x ak+b a et b étant des constants.

Four Snapshots Snapshot #4 In modern terms, Galois s Proposition VII says that the Galois group of an irreducible polynomial of prime p is solvable by radicals if and only if the Galois group is isomorphic to a subgroup of the affine linear group AGL(1,F p ) = {x ax + b a, b F p, a 0}. There are two aspects of this result worth mentioning: Up to conjugacy, AGL(1,F p ) is the maximal solvable subgroup of the symmetric group S p. This proposition implies that such a polynomial is solvable by radicals iff any two roots generate the splitting field.

Four Snapshots Snapshot #4 In modern terms, Galois s Proposition VII says that the Galois group of an irreducible polynomial of prime p is solvable by radicals if and only if the Galois group is isomorphic to a subgroup of the affine linear group AGL(1,F p ) = {x ax + b a, b F p, a 0}. There are two aspects of this result worth mentioning: Up to conjugacy, AGL(1,F p ) is the maximal solvable subgroup of the symmetric group S p. This proposition implies that such a polynomial is solvable by radicals iff any two roots generate the splitting field.

There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields.

There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields.

There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields.

There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields.

There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields.

There is More! The four snapshots from Galois: are well-known to most mathematicians, and illustrate nicely the power of the theory he developed. However, Galois did a lot more! In particular, we will explore: what Galois knew about solvable permutation groups, and why he invented finite fields.

Primitive Equations The Main Problem Definition On appelle équations non primitives les équations qui étant, par exemple, du degré mn, se décomposent en m facteurs du degré n, au moyen d une seule équation du degré m. Example x 4 2 has degree 4 = 2 2. Adjoining roots of x 2 2 gives x 4 2 = ( x 2 2 )( x 2 + 2 ). Thus x 4 2 is imprimitive ( non primitive ). Revenons maintenant á notre object, et cherchons en général dans quel cas une équation primitive est soluble par radicaux.

Primitive Equations The Main Problem Definition On appelle équations non primitives les équations qui étant, par exemple, du degré mn, se décomposent en m facteurs du degré n, au moyen d une seule équation du degré m. Example x 4 2 has degree 4 = 2 2. Adjoining roots of x 2 2 gives x 4 2 = ( x 2 2 )( x 2 + 2 ). Thus x 4 2 is imprimitive ( non primitive ). Revenons maintenant á notre object, et cherchons en général dans quel cas une équation primitive est soluble par radicaux.

Primitive Equations The Main Problem Definition On appelle équations non primitives les équations qui étant, par exemple, du degré mn, se décomposent en m facteurs du degré n, au moyen d une seule équation du degré m. Example x 4 2 has degree 4 = 2 2. Adjoining roots of x 2 2 gives x 4 2 = ( x 2 2 )( x 2 + 2 ). Thus x 4 2 is imprimitive ( non primitive ). Revenons maintenant á notre object, et cherchons en général dans quel cas une équation primitive est soluble par radicaux.

Primitive Equations The First Result Galois s Version... pour qu une équation primitive soit soluble par radicaux, it faut que son degré soit de la forme p ν, p étant premier. Definition A subgroup G S n is imprimitive if {1,...,n} = R 1 R k, k > 1, R i > 1 for some i and elements of G preserve the R i. Then G is primitive if it is not imprimitive. Theorem If G S n is primitive and solvable, then n = p ν, p prime.

Primitive Equations The First Result Galois s Version... pour qu une équation primitive soit soluble par radicaux, it faut que son degré soit de la forme p ν, p étant premier. Definition A subgroup G S n is imprimitive if {1,...,n} = R 1 R k, k > 1, R i > 1 for some i and elements of G preserve the R i. Then G is primitive if it is not imprimitive. Theorem If G S n is primitive and solvable, then n = p ν, p prime.

Primitive Equations The First Result Galois s Version... pour qu une équation primitive soit soluble par radicaux, it faut que son degré soit de la forme p ν, p étant premier. Definition A subgroup G S n is imprimitive if {1,...,n} = R 1 R k, k > 1, R i > 1 for some i and elements of G preserve the R i. Then G is primitive if it is not imprimitive. Theorem If G S n is primitive and solvable, then n = p ν, p prime.

Primitive Equations Proof Assume G S n is primitive and solvable. To show: n = p ν. Let N be a minimal normal subgroup of G. One can prove that there is a simple group A such that N A ν This is a standard fact about minimal normal subgroups. Then: G primitive = N transitive. G solvable = N F ν p. N transitive and abelian = its isotropy subgroups are all equal and hence trivial. Thus: p ν = N = orbit isotropy subgroup = n 1 = n. QED

Primitive Equations Proof Assume G S n is primitive and solvable. To show: n = p ν. Let N be a minimal normal subgroup of G. One can prove that there is a simple group A such that N A ν This is a standard fact about minimal normal subgroups. Then: G primitive = N transitive. G solvable = N F ν p. N transitive and abelian = its isotropy subgroups are all equal and hence trivial. Thus: p ν = N = orbit isotropy subgroup = n 1 = n. QED

Primitive Equations Proof Assume G S n is primitive and solvable. To show: n = p ν. Let N be a minimal normal subgroup of G. One can prove that there is a simple group A such that N A ν This is a standard fact about minimal normal subgroups. Then: G primitive = N transitive. G solvable = N F ν p. N transitive and abelian = its isotropy subgroups are all equal and hence trivial. Thus: p ν = N = orbit isotropy subgroup = n 1 = n. QED

The Affine Linear Group The Affine Linear Group When G is primitive and solvable, the proof just given shows that N F ν p is normal in G. One can show without difficulty that G AGL(ν,F p ) = {x Ax + b A GL(ν,F p ), b F ν p}. Galois knew this! Letter to Chevalier, 29 May 1832 Toutes les permuations d une équation primitive soluble par radicaux sont de la forme x k.l.m... /x ak+bl+cm+...+f.a1 k+b 1 l+c 1 m+...+g.... k, l, m,... étant ν indices qui prenant chacun p valeurs indiquent toutes les racines. Les indices sont pris suivant le module p, c est-á-dire que la racines sera la même quand on adjoutera á l un des indices un multiple de p.

Finite Fields Finite Fields and the Affine Semilinear Group When a primitive of degree p ν is solvable by radicals, its Galois group lies in AGL(ν,F p ) S p ν. However, AGL(ν,F p ) is not solvable when ν 2. What is its maximal primitive solvable subgroup? This is the question Galois wanted to answer. Galois used the Galois theory of finite fields to create some primitive solvable permutation subgroups of AGL(ν,F p ): AGL(1,F p ν): The affine linear group over F p ν is {x ax + b a, b F p ν, a 0}. AΓL(1,F p ν): The affine semilinear group over F p ν is {x aσ(x)+b a, b F p ν,σ Gal(F p ν/f p ), a 0}.

Finite Fields Finite Fields and the Affine Semilinear Group When a primitive of degree p ν is solvable by radicals, its Galois group lies in AGL(ν,F p ) S p ν. However, AGL(ν,F p ) is not solvable when ν 2. What is its maximal primitive solvable subgroup? This is the question Galois wanted to answer. Galois used the Galois theory of finite fields to create some primitive solvable permutation subgroups of AGL(ν,F p ): AGL(1,F p ν): The affine linear group over F p ν is {x ax + b a, b F p ν, a 0}. AΓL(1,F p ν): The affine semilinear group over F p ν is {x aσ(x)+b a, b F p ν,σ Gal(F p ν/f p ), a 0}.

The Main Theorem What Galois Knew Why Do We Need Finite Fields? C est surtout dans la théorie des permutations... que la considération des racines imaginaires des congruences paraît indispensable. Elle donne une moyen simple et facile de reconnaître dans quel cas une équation primitive soit soluble par radicaux... Galois notes that if the Galois group of a primitive equation lies in AΓL(1,F p ν), then the equation is solvable by radicals. Galois Goes On To Say: Cette remarque aurait peu d importance, si je n etais parvenu á demontrer que réciproquement une équation primitive ne saurait soluble par radicaux, á moins de satisfaire aux conditions que je viens d enoncer.

The Main Theorem What Galois Knew Why Do We Need Finite Fields? C est surtout dans la théorie des permutations... que la considération des racines imaginaires des congruences paraît indispensable. Elle donne une moyen simple et facile de reconnaître dans quel cas une équation primitive soit soluble par radicaux... Galois notes that if the Galois group of a primitive equation lies in AΓL(1,F p ν), then the equation is solvable by radicals. Galois Goes On To Say: Cette remarque aurait peu d importance, si je n etais parvenu á demontrer que réciproquement une équation primitive ne saurait soluble par radicaux, á moins de satisfaire aux conditions que je viens d enoncer.

The Main Theorem Subsequent Developments Galois Knew That There Were Exceptions: J excepte les équations du 9 e et 25 e degré. In 1868, Jordan classifed primitive solvable subgroups of S p 2. He used AΓL(1,F p 2) together with two other groups. Of Jordan s groups, only AΓL(1,F p 2) is doubly-transitive. Doubly-transitive subgroups are automatically primitive, though the converse (as shown by Jordan) is false. Jordan s result shows that Galois characterization of primitive solvable equations has some gaps. But maybe Galois was implicitly assuming double-transitivity. If this is the case, then his characterization (with the above exceptions) is remarkably close to being complete.

The Main Theorem Subsequent Developments Galois Knew That There Were Exceptions: J excepte les équations du 9 e et 25 e degré. In 1868, Jordan classifed primitive solvable subgroups of S p 2. He used AΓL(1,F p 2) together with two other groups. Of Jordan s groups, only AΓL(1,F p 2) is doubly-transitive. Doubly-transitive subgroups are automatically primitive, though the converse (as shown by Jordan) is false. Jordan s result shows that Galois characterization of primitive solvable equations has some gaps. But maybe Galois was implicitly assuming double-transitivity. If this is the case, then his characterization (with the above exceptions) is remarkably close to being complete.

The Main Theorem Subsequent Developments Galois Knew That There Were Exceptions: J excepte les équations du 9 e et 25 e degré. In 1868, Jordan classifed primitive solvable subgroups of S p 2. He used AΓL(1,F p 2) together with two other groups. Of Jordan s groups, only AΓL(1,F p 2) is doubly-transitive. Doubly-transitive subgroups are automatically primitive, though the converse (as shown by Jordan) is false. Jordan s result shows that Galois characterization of primitive solvable equations has some gaps. But maybe Galois was implicitly assuming double-transitivity. If this is the case, then his characterization (with the above exceptions) is remarkably close to being complete.

The Main Theorem Subsequent Developments Galois Knew That There Were Exceptions: J excepte les équations du 9 e et 25 e degré. In 1868, Jordan classifed primitive solvable subgroups of S p 2. He used AΓL(1,F p 2) together with two other groups. Of Jordan s groups, only AΓL(1,F p 2) is doubly-transitive. Doubly-transitive subgroups are automatically primitive, though the converse (as shown by Jordan) is false. Jordan s result shows that Galois characterization of primitive solvable equations has some gaps. But maybe Galois was implicitly assuming double-transitivity. If this is the case, then his characterization (with the above exceptions) is remarkably close to being complete.

The Main Theorem Subsequent Developments Galois Knew That There Were Exceptions: J excepte les équations du 9 e et 25 e degré. In 1868, Jordan classifed primitive solvable subgroups of S p 2. He used AΓL(1,F p 2) together with two other groups. Of Jordan s groups, only AΓL(1,F p 2) is doubly-transitive. Doubly-transitive subgroups are automatically primitive, though the converse (as shown by Jordan) is false. Jordan s result shows that Galois characterization of primitive solvable equations has some gaps. But maybe Galois was implicitly assuming double-transitivity. If this is the case, then his characterization (with the above exceptions) is remarkably close to being complete.

The Main Theorem Huppert s Theorem Here is the great theorem proved by Huppert in 1957. Theorem Assume G S n is solvable and doubly-transitive. Then: n = p ν, p prime. Furthermore, if p ν / {3 2, 5 2, 7 2, 11 2, 23 2, 3 4 }, then G AΓL(1,F p ν) up to conjugacy. Given that Galois invented groups in 1829, his level of insight is astonishing! So, in this 200th anniversary of Galois s birth, we have more to celebrate than we thought!

The Main Theorem Huppert s Theorem Here is the great theorem proved by Huppert in 1957. Theorem Assume G S n is solvable and doubly-transitive. Then: n = p ν, p prime. Furthermore, if p ν / {3 2, 5 2, 7 2, 11 2, 23 2, 3 4 }, then G AΓL(1,F p ν) up to conjugacy. Given that Galois invented groups in 1829, his level of insight is astonishing! So, in this 200th anniversary of Galois s birth, we have more to celebrate than we thought!

The Main Theorem Huppert s Theorem Here is the great theorem proved by Huppert in 1957. Theorem Assume G S n is solvable and doubly-transitive. Then: n = p ν, p prime. Furthermore, if p ν / {3 2, 5 2, 7 2, 11 2, 23 2, 3 4 }, then G AΓL(1,F p ν) up to conjugacy. Given that Galois invented groups in 1829, his level of insight is astonishing! So, in this 200th anniversary of Galois s birth, we have more to celebrate than we thought!

The Main Theorem Huppert s Theorem Here is the great theorem proved by Huppert in 1957. Theorem Assume G S n is solvable and doubly-transitive. Then: n = p ν, p prime. Furthermore, if p ν / {3 2, 5 2, 7 2, 11 2, 23 2, 3 4 }, then G AΓL(1,F p ν) up to conjugacy. Given that Galois invented groups in 1829, his level of insight is astonishing! So, in this 200th anniversary of Galois s birth, we have more to celebrate than we thought!