Package mco. R topics documented: November 29, Version Title Multiple Criteria Optimization Algorithms and Related Functions

Similar documents
Package NHEMOtree. February 19, 2015

A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II

MULTI-OBJECTIVE OPTIMIZATION USING PARALLEL COMPUTATIONS

Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Algorithm

Multi-Objective Optimization using Evolutionary Algorithms

On Sequential Online Archiving of Objective Vectors

An Alternative Archiving Technique for Evolutionary Polygonal Approximation

Introduction To Genetic Algorithms

A New Multi-objective Evolutionary Optimisation Algorithm: The Two-Archive Algorithm

Package sendmailr. February 20, 2015

An Evolutionary Algorithm in Grid Scheduling by multiobjective Optimization using variants of NSGA

Multi-Objective Optimization to Workflow Grid Scheduling using Reference Point based Evolutionary Algorithm

Hiroyuki Sato. Minami Miyakawa. Keiki Takadama ABSTRACT. Categories and Subject Descriptors. General Terms

Proceedings of the 2012 Winter Simulation Conference C. Laroque, J. Himmelspach, R. Pasupathy, O. Rose, and A.M. Uhrmacher, eds

Defining and Optimizing Indicator-based Diversity Measures in Multiobjective Search

A Multi-Objective Performance Evaluation in Grid Task Scheduling using Evolutionary Algorithms

Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design

Index Terms- Batch Scheduling, Evolutionary Algorithms, Multiobjective Optimization, NSGA-II.

Genetic Algorithms for Bridge Maintenance Scheduling. Master Thesis

Package retrosheet. April 13, 2015

A Simulated Annealing Based Multi-objective Optimization Algorithm: AMOSA

4. Zastosowania Optymalizacja wielokryterialna

Multi-objective Approaches to Optimal Testing Resource Allocation in Modular Software Systems

Package dfoptim. July 10, 2016

Selecting Best Investment Opportunities from Stock Portfolios Optimized by a Multiobjective Evolutionary Algorithm

Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm

A Novel Constraint Handling Strategy for Expensive Optimization Problems

Multiobjective Multicast Routing Algorithm

Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms

jmetal: a Java Framework for Developing Multi-Objective Optimization Metaheuristics

An Optimal Design of Constellation of Multiple Regional Coverage

Multi-Objective Optimization of Intrusion Detection Systems for Wireless Sensor Networks

MULTI-OBJECTIVE EVOLUTIONARY SIMULATION- OPTIMIZATION OF PERSONNEL SCHEDULING

The 10 th International Scientific Conference elearning and software for Education Bucharest, April 24-25, / X

Multi-Objective Optimization Using Evolutionary Algorithms: An Introduction

Bi-Objective Optimization of MQL Based Turning Process Using NSGA II

Nature of Real-World Multi-objective Vehicle Routing with Evolutionary Algorithms

The Automotive Deployment Problem: A Practical Application for Constrained Multiobjective Evolutionary Optimisation

Package TSfame. February 15, 2013

MAGS An Approach Using Multi-Objective Evolutionary Algorithms for Grid Task Scheduling

Maintenance scheduling by variable dimension evolutionary algorithms

GP-DEMO: Differential Evolution for Multiobjective Optimization Based on Gaussian Process Models

How To Filter Spam With A Poa

Package decompr. August 17, 2016

Predictive Knowledge Discovery by Multiobjective Genetic Fuzzy Systems for Estimating Consumer Behavior Models

SCALING BUILDING ENERGY MODELING HORIZONTALLY IN THE CLOUD WITH OPENSTUDIO

Optimizing Door Assignment in LTL-Terminals by Evolutionary Multiobjective Algorithms

Package fastghquad. R topics documented: February 19, 2015

Package uptimerobot. October 22, 2015

Biopharmaceutical Portfolio Management Optimization under Uncertainty

Package MBA. February 19, Index 7. Canopy LIDAR data

Multiobjective Communication Optimization for Cloud-integrated Body Sensor Networks

Toward an Interactive Method for DMEA-II and Application to the Spam- Detection System

Package DCG. R topics documented: June 8, Type Package

A Study of Local Optima in the Biobjective Travelling Salesman Problem

On Set-Based Multiobjective Optimization

Population-ACO for the Automotive Deployment Problem

ARTICLE IN PRESS. Applied Soft Computing xxx (2010) xxx xxx. Contents lists available at ScienceDirect. Applied Soft Computing

Population-ACO for the Automotive Deployment Problem

Package tvm. R topics documented: August 21, Type Package Title Time Value of Money Functions Version Author Juan Manuel Truppia

Reliable classification of two-class cancer data using evolutionary algorithms

A Multicriteria Approach to Project Portfolio Selection

Package PRISMA. February 15, 2013

Package erp.easy. September 26, 2015

Package urltools. October 11, 2015

Package syuzhet. February 22, 2015

Supply Chain Optimization using Multi-Objective Evolutionary Algorithms

Package wordnet. January 6, 2016

Research Article QoS-Aware Multiobjective Optimization Algorithm for Web Services Selection with Deadline and Budget Constraints

Pareto optimization for informed decision making in supply chain management

Package hoarder. June 30, 2015

Package COSINE. February 19, 2015

A Nondominated Sorting Genetic Algorithm for Sustainable Reverse Logistics Network Design

Package EstCRM. July 13, 2015

OPTIMIZATION techniques should be employed for the

A Multiobjective Genetic Fuzzy System for Obtaining Compact and Accurate Fuzzy Classifiers with Transparent Fuzzy Partitions

On the Value of User Preferences in Search-Based Software Engineering: A Case Study in Software Product Lines

Package CRM. R topics documented: February 19, 2015

Package pxr. February 20, 2015

Multiobjective Simulation Optimisation in Software Project Management

Package hive. July 3, 2015

Package survpresmooth

The Software Project Scheduling Problem: A Scalability Analysis of Multi-objective Metaheuristics

Optimal Testing Resource Allocation Problems in Software System using Heuristic Algorithm

Multiobjective Simulation Optimisation in Software Project Management

Package OECD. R topics documented: January 17, Type Package Title Search and Extract Data from the OECD Version 0.2.

GeNePi: a Multi-Objective Machine Reassignment Algorithm for Data Centres

Toward Sensor-Cloud Integration as a Service: Optimizing Three-tier Communication in Cloud-integrated Sensor Networks

A GRAPHICAL TOOL FOR CLOUD-BASED BUILDING ENERGY SIMULATION. National Renewable Energy Laboratory, Golden, CO

Package ChannelAttribution

Package changepoint. R topics documented: November 9, Type Package Title Methods for Changepoint Detection Version 2.

Hybrid Evolution of Heterogeneous Neural Networks

A Green Model of Cloud Resources Provisioning

Package biganalytics

Package treemap. February 15, 2013

Isight Design Optimization Methodologies. Dr. Alex Van der Velden, Director, SIMULIA Dr. Pat Koch, Manager, SIMULIA

Solving Three-objective Optimization Problems Using Evolutionary Dynamic Weighted Aggregation: Results and Analysis

Consistencies and Contradictions of Performance Metrics in Multiobjective Optimization

Package searchconsoler

Comparing Design Of Experiments and Evolutionary Approaches To Multi-Objective Optimisation Of Sensornet Protocols

Transcription:

Package mco November 29, 2014 Version 1.0-15.1 Title Multiple Criteria Optimization Algorithms and Related Functions Description Functions for multiple criteria optimization using genetic algorithms and related test problems Depends R (>= 3.0.0) Suggests scatterplot3d, testthat License GPL-2 URL http://git.p-value.net/p/mco.git LazyData yes Author Olaf Mersmann [aut, cre], Heike Trautmann [ctb], Detlef Steuer [ctb], Bernd Bischl [ctb], Kalyanmoy Deb [cph] Maintainer Olaf Mersmann <olafm@p-value.net> NeedsCompilation yes Repository CRAN Date/Publication 2014-09-30 08:58:58 R topics documented: functions.......................................... 2 generationaldistance.................................... 4 normalizefront....................................... 5 nsga2............................................ 6 paretofront......................................... 8 Index 10 1

2 functions functions MCO test problems Description Collection of functions implementing various MCO test problems. Usage belegundu(x) belegundu.constr(x) binh1(x) binh2(x) binh2.constr(x) binh3(x) deb3(x) fonseca1(x) fonseca2(x) gianna(x) hanne1(x) hanne1.constr(x) hanne2(x) hanne2.constr(x) hanne3(x) hanne3.constr(x) hanne4(x) hanne4.constr(x) hanne5(x) hanne5.constr(x) jimenez(x) jimenez.constr(x) vnt(x) zdt1(x) zdt2(x) zdt3(x) Arguments x Input vector Value Function value. Author(s) Heike Trautmann <trautmann@statistik.tu-dortmund.de>, Detlef Steuer <steuer@hsu-hamburg.de> and Olaf Mersmann <olafm@statistik.tu-dortmund.de>

functions 3 Examples ## Not run: nsga2(belegundu, 2, 2, constraints=belegundu.constr, cdim=2, lower.bounds=c(0, 0), upper.bounds=c(5, 3)) nsga2(binh1, 2, 2, lower.bounds=c(-5, -5), upper.bounds=c(10, 10)) nsga2(binh2, 2, 2, lower.bounds=c(0, 0), upper.bounds=c(5, 3), constraints=binh2.constr, cdim=2) nsga2(binh3, 2, 3, lower.bounds=c(10e-6, 10e-6), upper.bounds=c(10e6, 10e6)) nsga2(deb3, 2, 2, lower.bounds=c(0, 0), upper.bounds=c(1, 1), generations=500) nsga2(fonseca1, 2, 2, lower.bounds=c(-100, -100), upper.bounds=c(100, 100)) nsga2(fonseca2, 2, 2, lower.bounds=c(-4, -4), upper.bounds=c(4, 4)) nsga2(gianna, 1, 2, lower.bounds=5, upper.bounds=10) nsga2(hanne1, 2, 2, constraints=hanne1.constr, cdim=1) nsga2(hanne2, 2, 2, constraints=hanne2.constr, cdim=1) nsga2(hanne3, 2, 2, constraints=hanne3.constr, cdim=1) nsga2(hanne4, 2, 2, constraints=hanne4.constr, cdim=1) nsga2(hanne5, 2, 2, constraints=hanne5.constr, cdim=1) nsga2(jimenez, 2, 2, lower.bounds=c(0, 0), upper.bounds=c(100, 100), constraints=jimenez.constr, cdim=4) nsga2(vnt, 2, 3, lower.bounds=rep(-3, 2), upper.bounds=rep(3, 2)) nsga2(zdt1, 30, 2,

4 generationaldistance lower.bounds=rep(0, 30), upper.bounds=rep(1, 30)) nsga2(zdt2, 30, 2, lower.bounds=rep(0, 30), upper.bounds=rep(1, 30)) nsga2(zdt3, 30, 2, lower.bounds=rep(0, 30), upper.bounds=rep(1, 30)) ## End(Not run) generationaldistance Quality measures for MCO solutions Description Functions to evaulate the quality of the estimated pareto front. Usage generationaldistance(x, o) generalizedspread(x, o) epsilonindicator(x, o) dominatedhypervolume(x, ref) Arguments x o ref Estimated pareto front or an object which has a paretofront method True pareto front or an object which has a paretofront method Reference point (may be omitted). Details Instead of the pareto front, one can also pass an object for which a paretofront method exists to both methods. For dominatedhypervolume, if no reference point is given, the maximum in each dimension is used as the reference point. Value The respective quality measure. Note This code uses version 1.3 of the hypervolume code available from http://iridia.ulb.ac.be/ ~manuel/hypervolume. For a description of the algorithm see Carlos M. Fonseca, Luis Paquete, and Manuel Lopez-Ibanez. An improved dimension-sweep algorithm for the hypervolume indicator. In IEEE Congress on Evolutionary Computation, pages 1157-1163, Vancouver, Canada, July 2006.

normalizefront 5 Author(s) Heike Trautmann <trautmann@statistik.uni-dortmund.de>, Detlef Steuer <steuer@hsu-hamburg.de> and Olaf Mersmann <olafm@statistik.uni-dortmund.de> References Carlos M. Fonseca, Luis Paquete, and Manuel Lopez-Ibanez. An improved dimension-sweep algorithm for the hypervolume indicator. In IEEE Congress on Evolutionary Computation, pages 1157-1163, Vancouver, Canada, July 2006. Nicola Beume, Carlos M. Fonseca, Manuel Lopez-Ibanez, Luis Paquete, and J. Vahrenhold. On the complexity of computing the hypervolume indicator. IEEE Transactions on Evolutionary Computation, 13(5):1075-1082, 2009. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., and Grunert da Fonseca, V (2003): Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE Transactions on Evolutionary Computation, 7(2), 117-132. Examples ## Estimate true front: ## Not run: tf <- nsga2(fonseca2, 2, 2, lower.bounds=c(-4, -4), upper.bounds=c(4, 4), popsize=1000, generations=100) res <- nsga2(fonseca2, 2, 2, lower.bounds=c(-4, -4), upper.bounds=c(4, 4), popsize=16, generations=c(2, 4, 6, 8, 10, 20, 50)) n <- length(res) sapply(1:n, function(i) dominatedhypervolume(res[[i]], c(1, 1))) sapply(1:n, function(i) generationaldistance(res[[i]], tf)) sapply(1:n, function(i) generalizedspread(res[[i]], tf)) sapply(1:n, function(i) epsilonindicator(res[[i]], tf)) ## End(Not run) normalizefront Normalize a pareto front Description Rescales a pareto front to be in the unit hypercube Usage normalizefront(front, minval, maxval) Arguments front minval maxval Matrix containing the pareto front Vector containing the minimum value of each objective. May be omitted. Vector containing the maximum value of each objective. May be omitted.

6 nsga2 Value Matrix containing the rescaled pareto front. Author(s) Heike Trautmann <trautmann@statistik.uni-dortmund.de>, Detlef Steuer <steuer@hsu-hamburg.de> and Olaf Mersmann <olafm@statistik.uni-dortmund.de> nsga2 NSGA II MOEA Description Usage The NSGA-II algorithm minimizes a multidimensional function to approximate its Pareto front and Pareto set. It does this by successive sampling of the search space, each such sample is called a population. The number of samples taken is governed by the generations parameter, the size of the sample by the popsize parameter. Each population is obtained by creating so called offspring search points from the best individuals in the previous population. The best individuals are calculated by non-dominated sorting breaking ties using the crowding distance. The total number of function evaluations used is when generations is a single number and n e val = popsize (generations + 1) n e val = popsize (max(generations) + 1) when generations is a vector of numbers. Note the additional generation of evaluations in the above equation. These stem from the initial population which must be evaluated before the algorithm can start evolving new individuals. While the algorithm supports unbounded minimization, it will throw a warning and best results are obtained when a sensible upper and lower bound are given. No attempt is made to find such a sensible region of interest, instead if any element of the upper or lower bound is infinite, it is replace with a very large number (currently +/-4.49423283715579e+307). Arguments nsga2(fn, idim, odim,..., constraints = NULL, cdim = 0, lower.bounds = rep(-inf, idim), upper.bounds = rep(inf, idim), popsize = 100, generations = 100, cprob = 0.7, cdist = 5, mprob = 0.2, mdist = 10, vectorized=false) fn idim odim Function to be minimized Input dimension Output dimension

nsga2 7 Value... Arguments passed through to fn constraints cdim lower.bounds upper.bounds popsize generations cprob cdist mprob mdist vectorized Constraint function Constraint dimension Lower bound of parameters Upper bound of parameters Size of population Number of generations to breed. If a vector, then the result will contain the population at each given generation. Crossover probability Crossover distribution index Mutation probability Mutation distribution index If TRUE, the objective and constraint functions must be vectorized, i.e. accept a matrix instead of a vector and return a matrix instead of a vector. The matrix is structured such that one individual parameter combination is contained in each row (the matrix has shape popsize * idim) and each objective is stored in a row of the returned matrix (the returned matrix must have shape odim * popsize). A vectorized of a function fn should behave like apply(x, 1, f for a population stored in the matrix x. If generation is an integer, a list describing the final population with components par, value and pareto.optimal. If generations is a vector, a list is returned. The i-th element of the list contains the population after generations[i] generations, this is not necessarily the set of new individuals that were evaluated in this generation. Some of the new individuals might have been eliminated in the selection phase. Author(s) Heike Trautmann <trautmann@statistik.uni-dortmund.de>, Detlef Steuer <steuer@hsu-hamburg.de> and Olaf Mersmann <olafm@statistik.uni-dortmund.de> References Deb, K., Pratap, A., and Agarwal, S.. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA- II. IEEE Transactions on Evolutionary Computation, 6 (8) (2002), 182-197. See Also zdt1 for more examples and a list of multiobjective test functions. Examples ## Binh 1 problem: binh1 <- function(x) { y <- numeric(2) y[1] <- crossprod(x, x) y[2] <- crossprod(x - 5, x - 5) return (y) }

8 paretofront r1 <- nsga2(binh1, 2, 2, generations=150, popsize=100, cprob=0.7, cdist=20, mprob=0.2, mdist=20, lower.bounds=rep(-5, 2), upper.bounds=rep(10, 2)) plot(r1) ## VNT problem: vnt <- function(x) { y <- numeric(3) xn <- crossprod(x, x) y[1] <- xn/2 + sin(xn); y[2] <- (crossprod(c(3, -2), x) + 4)^2/8 + (crossprod(c(1, -1), x) + 1)^2/27 + 15 y[3] <- 1/(xn + 1) - 1.1*exp(-xn) return (y) } r2 <- nsga2(vnt, 2, 3, generations=150, popsize=100, lower.bounds=rep(-3, 2), upper.bounds=rep(3, 2)) plot(r2) ## Example using constraints: ## minimize f(x) = (x[1]^2, x[2]^2) ## subject to g(x) = (sum(x) - 5) >= 0 f <- function(x) { x^2 } g <- function(x) { sum(x) - 5 } res <- nsga2(f, 2, 2, generations=500, constraints=g, cdim=1) opar <-par(mfrow=c(1,2)) plot(res, xlab="y1", ylab="y2", main="objective space") plot(res$par, xlab="x1", ylab="x2", main="parameter space") par(opar) paretofront Pareto Front and pareto set getters Description Extract the pareto front or pareto set from an mco result object. Filter an mco result and extract the pareto-optimal solutions. Usage paretofront(x,...) paretoset(x,...) paretofilter(x,...) Arguments x matrix or mco result object... Ignored

paretofront 9 Value A matrix containing the pareto front or pareto set. paretofilter returns those values in x which are not dominated by any other solution. Author(s) Heike Trautmann <trautmann@statistik.uni-dortmund.de>, Detlef Steuer <steuer@hsu-hamburg.de> and Olaf Mersmann <olafm@statistik.uni-dortmund.de>

Index Topic optimize nsga2, 6 belegundu (functions), 2 binh1 (functions), 2 binh2 (functions), 2 binh3 (functions), 2 deb3 (functions), 2 dominatedhypervolume (generationaldistance), 4 epsilonindicator (generationaldistance), 4 fonseca1 (functions), 2 fonseca2 (functions), 2 functions, 2 generalizedspread (generationaldistance), 4 generationaldistance, 4 gianna (functions), 2 hanne1 (functions), 2 hanne2 (functions), 2 hanne3 (functions), 2 hanne4 (functions), 2 hanne5 (functions), 2 jimenez (functions), 2 normalizefront, 5 nsga2, 6 paretofilter (paretofront), 8 paretofront, 8 paretoset (paretofront), 8 vnt (functions), 2 zdt1, 7 zdt1 (functions), 2 zdt2 (functions), 2 zdt3 (functions), 2 10