Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms

Size: px
Start display at page:

Download "Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms"

Transcription

1 Symposium on Automotive/Avionics Avionics Systems Engineering (SAASE) 2009, UC San Diego Model-based Parameter Optimization of an Engine Control Unit using Genetic Algorithms Dipl.-Inform. Malte Lochau M.Sc. Bo Sun Prof. Dr. Ursula Goltz Dr. Petra Huhn Institute for Programming and Reactive Systems 1

2 Contents 1. Constraint Multi-objective Optimization, Pareto-Optimality, and Genetic Algorithms (GA) 2. Case Study: 4-stroke Internal Combustion Engine 3. Design of Experiments and GA Application 4. Results and Observations 2

3 Motivation Combustion engine callibration/regulation Multitude of electronically influenced controlling parameters Growing number of requirements Conflicting optimization goals for objective values Maximization: engine performance Minimization: fuel consumption Constraints Depends on working point Parameterization (Design Variables) Working Point Working Point Optimization Goals (Objective Values) Engine Engine Control Control Unit Unit Engine Constraints Constraints 3

4 Engine Control Unit Central part of modern automotive engines High computational complexity 4

5 Optimization Approach (Constrained) Multi-Objective Optimization Problem (MOP) Large, nonconvex search space High inner complexity with interdisciplinary influences Conventional analytical optimization approaches inapplicable Blind optimization Random search techniques Continuous validation of possible solutions on the engine test bed costly and impracticable Engine model simulation as objective function 5

6 (Constraint) Multi-objective Optimization minimize Z = (z 1 (x), z 2 (x),, z m (x)) (objective functions) subject to h j (x) = 0, j = 1, 2,, p (constraint functions) g k (x) 0, k = 1, 2,, q where x S (decision variables) and S R n (search space) 6

7 Pareto-Optimality Contradicting objectives: Min. fuel consumption Max. power values Selection of a solution from a set of best rated value combinations: Domination relation on decision vectors: x 1 x 2 Pareto-optimal set: non-dominated set of objectives in S Pareto-Front: corresponding set in the objective space Set of optimal solutions constitute different possible tradeoffs between objectives 7

8 Non Dominance and Pareto-Front Pareto-optimal set: non-dominated set of the entire feasible region of the search space Pareto-Front: corresponding set in the objective space 8

9 Genetic Algorithms (GA) Random, stochastic search technique for a defined MOP search space Evolutionary optimization approach inspired by natural selection ( survival of the fittest ) A population of abstract representations of candidate solutions (individuals) to an optimization problem evolves towards better solutions Independent of the complexity and internal structure of the optimization problem 9

10 Principles of GA Initialization: Population composed of random/preselected individuals in the search space Iteration: chain of generations Fitness of each individual in the population is evaluated according to optimization goals Multiple individuals are stochastically selected from the current population based on their fitness Selected individuals are modified, recombined, and possibly randomly mutated to form a new population (genetic operators) Infeasible individuals are refused Termination: A specified number of generations has been met, or A satisfactory fitness level has been reached for the population 10

11 GA Flow 11

12 Individual Encoding Representation of decision variables Components encoded as genes 12

13 Population Encoding Population of generations: set of individuals 13

14 Genetic Operators (1/4) Selection: choose individuals in a population to produce the next generation Individuals are selected mainly based on their fitness value expressing their survivability in the population Examples: Elitist selection Roulette-Wheel selection Tournament selection Rank selection 14

15 Genetic Operators (2/4) Crossover (recombination): mates two individuals to produce two offsprings 15

16 Genetic Operators (3/4) Crossover with multiple crossover points 16

17 Genetic Operators (4/4) Mutation: spontaneous changes on individuals 17

18 Evolutionary Process Further GA Settings: Population Size N Crossover probability P c Mutation probability P m 18

19 Case Study: : 4-stroke 4 Internal Combustion Engine Cycle process: 4 movements (strokes) Crankshaft rotates 720 Angle of crankshaft: Point in time for operations of the strokes Controlled by ECU 19

20 4 Movements 1. Intake / induction stroke fuel / air injection 2. Compression stroke ignition 3. Power / combustion stroke engine gives power 4. Exhaust stroke gas leaves combustion chamber 20

21 Engine Model WAVE model ( Parameterized simulation performance values parameterization simulation 21

22 Design Variables Engine Parameters Optimization: adjusting parameters by the ECU Variable Description Unit Scope x 1 Fuel/Air ratio - [0.5, ] x 2 Diameter of throttle millimeter [mm] [40, 51.7] x 3 Fuel pressure bar [bar] [20, 110] x 4 Injection start degree [deg] [-360, 60] x 5 Injection duration degree [deg] [0, 240] x 6 Combustion start degree [deg] [-30, 30] x 7 Intake valve open degree [deg] [326, 386] Constraint: x 4 + x 5 < x 6 22

23 Objective Values Requirements f i Description Unit Objective / Constraint y 1 Brake specific fuel consumption kg/kw /h y 2 Net indicated mean effective pressure bar Minimum in [0,1] Maximum in (0, ) y 3 Brake mean effective pressure bar Maximum in (0, ) y 4 Air/Fuel ratio trapped, multi-cylinder average - y 5 Maximum cylinder pressure of cylinder 1 bar 14.5 ([10.5,18.5] acceptable) 130 (mechanical pressure) y 6 Maximum rate of pressure rise in cylinder bar/ KW 8 Speed of turbine rpm y 7 Area of waste-gate attached to turbine in [0,400] mm 2 y 8 y10 y 9 Temperature of thermocouple in duct of inlet K y9 180 y 10 Temperature of thermocouple in exhaust of duct K y 11 Temperature of thermoelement of turbine inlet K K y 12 Temperature of thermoelement of turbine outlet = 0 K K y 13 Normalized stall magnitude of compressor - 23

24 Optimization Approach minimize y = f(x) = (f 1 (x), -f 2 (x), -f 3 (x)) subject to x 1 + x 5 < x 6 0 f 1 (x) 1 f 2 (x) > 0 f 3 (x) > 0 f 4 (x) f 5 (x) 130 f 6 (x) 8 f 7 (x) f 8 (x) 400 f 10 (x) f 9 (x) 180 f 11 (x) f 12 (x) f 13 (x) = 0 where x S R 7 24

25 Tool-based Framework for GA Application Design Variables, Simulation Settings WAVE Engine Model Simulation Performance Values, Constraints Model File Individual Encoding GA Optimization Tool Interface Simulation Output File Individual Fitness Archived Individuals GA GA Settings Pareto Optimal Solutions 25

26 Experiments Case 1 Case 2 Case 3 discretized decision variables yes yes no preselection no yes no replacement Elitist Elitist Elitist selection scheme Roulette Wheel Roulette Wheel Rank crossover Uniform Uniform Blend mutation Gaussian Gaussian Gaussian population size generations crossover probability mutation probability

27 Observations (1/2) Collecting individual data during GA application Deriving further relations between design variables and objectives values Simplified engine model 27

28 Observations (2/2) y 2 and y 3 : linear increasing dependency neglecting y 3 y 1 and y 2 : competitive 2-dimensional objective space 28

29 Initialization 29

30 1st Generation 30

31 2nd Generation 31

32 3rd Generation 32

33 4th Generation 33

34 5th Generation 34

35 Final Generation 35

36 Dominated Space Measering size of dominated space final Pareto-Front 36

37 Pareto-Front for Case 1 Comprehensive coverage of the search space Selection of a solution: Further analyses Ranking Validation on the real engine test best: Plausibility of optimization results Ensuring correctness of the model 37

38 Observations Final Pareto sets stable Clear and consistent solution identification in all 3 Cases Validation on the engine test bed But: convergence speed depends on GA settings Speed vs. Accuracy 38

39 Convergence Case 2: preselection Case 1 and 2: discretized decision variables Total simulations Simulation duration Overall duration Case ca. 180 sec ca. 12 d, 17 h Case ca. 120 sec ca. 8 d, 19 h 39

40 Some Statistics Case 1 Case 2 Case 3 Total created individuals Total feasible individuals Average feasible individuals of generation Total infeasible individuals Total simulated individuals Individuals in Pareto-front of initial generation Individuals in Pareto-front of final generation Average individuals in Pareto-front of generations

41 Scalability of GA Independent of inner complexity Supplying no further information on system under optimization Adaptable optimization framework: Engine Model Optimization goals und constraints GA Settings Adaptive GA: Adjustable object function (working point) Integration of learning approaches 41

42 Future Work Improving efficiency of GA: Enhanced genetic operators Punishment for constraint violations Parallel computation of individuals Improving accuracy of GA: Hybrid approaches Domain knowledge for different engine classes Improving usability of GA: Engineering workflow integration Result selection, statistics capabilities 42

Introduction To Genetic Algorithms

Introduction To Genetic Algorithms 1 Introduction To Genetic Algorithms Dr. Rajib Kumar Bhattacharjya Department of Civil Engineering IIT Guwahati Email: [email protected] References 2 D. E. Goldberg, Genetic Algorithm In Search, Optimization

More information

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison

Chapters 7. Performance Comparison of CI and SI Engines. Performance Comparison of CI and SI Engines con t. SI vs CI Performance Comparison Chapters 7 SI vs CI Performance Comparison Performance Comparison of CI and SI Engines The CI engine cycle can be carried out in either 2 or 4 strokes of the piston, with the 4-cycle CI engine being more

More information

Genetic Algorithms for Bridge Maintenance Scheduling. Master Thesis

Genetic Algorithms for Bridge Maintenance Scheduling. Master Thesis Genetic Algorithms for Bridge Maintenance Scheduling Yan ZHANG Master Thesis 1st Examiner: Prof. Dr. Hans-Joachim Bungartz 2nd Examiner: Prof. Dr. rer.nat. Ernst Rank Assistant Advisor: DIPL.-ING. Katharina

More information

Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT

Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT Performance Optimization of I-4 I 4 Gasoline Engine with Variable Valve Timing Using WAVE/iSIGHT Sean Li, DaimlerChrysler (sl60@dcx dcx.com) Charles Yuan, Engineous Software, Inc ([email protected]) Background!

More information

A Robust Method for Solving Transcendental Equations

A Robust Method for Solving Transcendental Equations www.ijcsi.org 413 A Robust Method for Solving Transcendental Equations Md. Golam Moazzam, Amita Chakraborty and Md. Al-Amin Bhuiyan Department of Computer Science and Engineering, Jahangirnagar University,

More information

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve

Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Genetic Algorithms commonly used selection, replacement, and variation operators Fernando Lobo University of Algarve Outline Selection methods Replacement methods Variation operators Selection Methods

More information

Multi-Objective Optimization using Evolutionary Algorithms

Multi-Objective Optimization using Evolutionary Algorithms Multi-Objective Optimization using Evolutionary Algorithms Kalyanmoy Deb Department of Mechanical Engineering, Indian Institute of Technology, Kanpur, India JOHN WILEY & SONS, LTD Chichester New York Weinheim

More information

A Fast Computational Genetic Algorithm for Economic Load Dispatch

A Fast Computational Genetic Algorithm for Economic Load Dispatch A Fast Computational Genetic Algorithm for Economic Load Dispatch M.Sailaja Kumari 1, M.Sydulu 2 Email: 1 [email protected] 1, 2 Department of Electrical Engineering National Institute of Technology,

More information

REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR

REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR FISITA2010-SC-P-24 REDESIGN OF THE INTAKE CAMS OF A FORMULA STUDENT RACING CAR Sándor, Vass Budapest University of Technology and Economics, Hungary KEYWORDS valvetrain, camshaft, cam, Formula Student,

More information

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes

Original Article Efficient Genetic Algorithm on Linear Programming Problem for Fittest Chromosomes International Archive of Applied Sciences and Technology Volume 3 [2] June 2012: 47-57 ISSN: 0976-4828 Society of Education, India Website: www.soeagra.com/iaast/iaast.htm Original Article Efficient Genetic

More information

Alpha Cut based Novel Selection for Genetic Algorithm

Alpha Cut based Novel Selection for Genetic Algorithm Alpha Cut based Novel for Genetic Algorithm Rakesh Kumar Professor Girdhar Gopal Research Scholar Rajesh Kumar Assistant Professor ABSTRACT Genetic algorithm (GA) has several genetic operators that can

More information

A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II

A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II 182 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 6, NO. 2, APRIL 2002 A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II Kalyanmoy Deb, Associate Member, IEEE, Amrit Pratap, Sameer Agarwal,

More information

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING

CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 60 CHAPTER 3 SECURITY CONSTRAINED OPTIMAL SHORT-TERM HYDROTHERMAL SCHEDULING 3.1 INTRODUCTION Optimal short-term hydrothermal scheduling of power systems aims at determining optimal hydro and thermal generations

More information

Software-Engineering und Optimierungsanwendungen in der Thermodynamik

Software-Engineering und Optimierungsanwendungen in der Thermodynamik Software-Engineering und Optimierungsanwendungen in der Thermodynamik Optimierung 3 Optimization Frameworks Prof. Dr. Rolf Dornberger Optimization: 3 Optimization Frameworks 30.04.2006 3 Optimization Frameworks

More information

Optimization algorithms for aeronautical engine components: CFD design applications

Optimization algorithms for aeronautical engine components: CFD design applications Optimization algorithms for aeronautical engine components: CFD design applications 1 Outline CFD Optimization Research projects Combustor applications Injection system design à swirl number Cowl design

More information

Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms

Lab 4: 26 th March 2012. Exercise 1: Evolutionary algorithms Lab 4: 26 th March 2012 Exercise 1: Evolutionary algorithms 1. Found a problem where EAs would certainly perform very poorly compared to alternative approaches. Explain why. Suppose that we want to find

More information

ECONOMIC GENERATION AND SCHEDULING OF POWER BY GENETIC ALGORITHM

ECONOMIC GENERATION AND SCHEDULING OF POWER BY GENETIC ALGORITHM ECONOMIC GENERATION AND SCHEDULING OF POWER BY GENETIC ALGORITHM RAHUL GARG, 2 A.K.SHARMA READER, DEPARTMENT OF ELECTRICAL ENGINEERING, SBCET, JAIPUR (RAJ.) 2 ASSOCIATE PROF, DEPARTMENT OF ELECTRICAL ENGINEERING,

More information

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm

Genetic Algorithm. Based on Darwinian Paradigm. Intrinsically a robust search and optimization mechanism. Conceptual Algorithm 24 Genetic Algorithm Based on Darwinian Paradigm Reproduction Competition Survive Selection Intrinsically a robust search and optimization mechanism Slide -47 - Conceptual Algorithm Slide -48 - 25 Genetic

More information

College of information technology Department of software

College of information technology Department of software University of Babylon Undergraduate: third class College of information technology Department of software Subj.: Application of AI lecture notes/2011-2012 ***************************************************************************

More information

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013

ISSN: 2319-5967 ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 3, May 2013 Transistor Level Fault Finding in VLSI Circuits using Genetic Algorithm Lalit A. Patel, Sarman K. Hadia CSPIT, CHARUSAT, Changa., CSPIT, CHARUSAT, Changa Abstract This paper presents, genetic based algorithm

More information

Practical Applications of Evolutionary Computation to Financial Engineering

Practical Applications of Evolutionary Computation to Financial Engineering Hitoshi Iba and Claus C. Aranha Practical Applications of Evolutionary Computation to Financial Engineering Robust Techniques for Forecasting, Trading and Hedging 4Q Springer Contents 1 Introduction to

More information

INTERNAL COMBUSTION (IC) ENGINES

INTERNAL COMBUSTION (IC) ENGINES INTERNAL COMBUSTION (IC) ENGINES An IC engine is one in which the heat transfer to the working fluid occurs within the engine itself, usually by the combustion of fuel with the oxygen of air. In external

More information

1.3 Turbochargers are categorised in three groups depending on served power by cylinder groups with:

1.3 Turbochargers are categorised in three groups depending on served power by cylinder groups with: (Feb 2015) Turbochargers 1. Scope 1.1 These requirements are applicable for s with regard to design approval, type testing and certification and their matching on engines. Turbochargers are to be type

More information

A Novel Constraint Handling Strategy for Expensive Optimization Problems

A Novel Constraint Handling Strategy for Expensive Optimization Problems th World Congress on Structural and Multidisciplinary Optimization 7 th - 2 th, June 25, Sydney Australia A Novel Constraint Handling Strategy for Expensive Optimization Problems Kalyan Shankar Bhattacharjee,

More information

OPTIMIZATION OF SPARK TIMING AND AIR-FUEL RATIO OF AN SI ENGINE WITH VARIABLE VALVE TIMING USING GENETIC ALGORITHM AND STEEPEST DESCEND METHOD

OPTIMIZATION OF SPARK TIMING AND AIR-FUEL RATIO OF AN SI ENGINE WITH VARIABLE VALVE TIMING USING GENETIC ALGORITHM AND STEEPEST DESCEND METHOD U.P.B. Sci. Bull., Series D, Vol. 77, Iss. 1, 2015 ISSN 1454-2358 OPTIMIZATION OF SPARK TIMING AND AIR-FUEL RATIO OF AN SI ENGINE WITH VARIABLE VALVE TIMING USING GENETIC ALGORITHM AND STEEPEST DESCEND

More information

Selecting Best Investment Opportunities from Stock Portfolios Optimized by a Multiobjective Evolutionary Algorithm

Selecting Best Investment Opportunities from Stock Portfolios Optimized by a Multiobjective Evolutionary Algorithm Selecting Best Investment Opportunities from Stock Portfolios Optimized by a Multiobjective Evolutionary Algorithm Krzysztof Michalak Department of Information Technologies, Institute of Business Informatics,

More information

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation

Empirically Identifying the Best Genetic Algorithm for Covering Array Generation Empirically Identifying the Best Genetic Algorithm for Covering Array Generation Liang Yalan 1, Changhai Nie 1, Jonathan M. Kauffman 2, Gregory M. Kapfhammer 2, Hareton Leung 3 1 Department of Computer

More information

The Ogunmuyiwa Engine Cycle

The Ogunmuyiwa Engine Cycle The Ogunmuyiwa Engine Cycle Dapo Ogunmuyiwa M.Sc VDI Chairman / CEO Tel: (+49) 162 961 04 50 E-mail: [email protected] Ogunmuyiwa Motorentechnik GmbH Technologie- und Gruenderzentrum (TGZ) Am Roemerturm

More information

Multiobjective Multicast Routing Algorithm

Multiobjective Multicast Routing Algorithm Multiobjective Multicast Routing Algorithm Jorge Crichigno, Benjamín Barán P. O. Box 9 - National University of Asunción Asunción Paraguay. Tel/Fax: (+9-) 89 {jcrichigno, bbaran}@cnc.una.py http://www.una.py

More information

THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE

THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE --8 THE INFLUENCE OF VARIABLE VALVE ACTUATION ON THE PART LOAD FUEL ECONOMY OF A MODERN LIGHT-DUTY DIESEL ENGINE Copyright 998 Society of Automotive Engineers, Inc. Tim Lancefield Mechadyne International

More information

Engine Optimization Methodologies: Tools and Strategies for Diesel Engine Design

Engine Optimization Methodologies: Tools and Strategies for Diesel Engine Design Engine Optimization Methodologies: Tools and Strategies for Diesel Engine Design George Delagrammatikas Dennis Assanis, Zoran Filipi, Panos Papalambros, Nestor Michelena The University of Michigan May

More information

CONVERGE Features, Capabilities and Applications

CONVERGE Features, Capabilities and Applications CONVERGE Features, Capabilities and Applications CONVERGE CONVERGE The industry leading CFD code for complex geometries with moving boundaries. Start using CONVERGE and never make a CFD mesh again. CONVERGE

More information

Integer Programming: Algorithms - 3

Integer Programming: Algorithms - 3 Week 9 Integer Programming: Algorithms - 3 OPR 992 Applied Mathematical Programming OPR 992 - Applied Mathematical Programming - p. 1/12 Dantzig-Wolfe Reformulation Example Strength of the Linear Programming

More information

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm

Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Journal of Al-Nahrain University Vol.15 (2), June, 2012, pp.161-168 Science Memory Allocation Technique for Segregated Free List Based on Genetic Algorithm Manal F. Younis Computer Department, College

More information

Gasoline engines. Diesel engines. Hybrid fuel cell vehicles. Model Predictive Control in automotive systems R. Scattolini, A.

Gasoline engines. Diesel engines. Hybrid fuel cell vehicles. Model Predictive Control in automotive systems R. Scattolini, A. Model Predictive Control in automotive systems R. Scattolini, A. Miotti Dipartimento di Elettronica e Informazione Outline Gasoline engines Diesel engines Hybrid fuel cell vehicles Gasoline engines 3 System

More information

TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES

TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES 1. Introduction TYPE APPROVAL CERTIFICATION SCHEME MASS PRODUCED DIESEL ENGINES 1.1 This scheme details the tests and inspection of diesel engines manufactured by mass production system for use in marine

More information

Adjustment Data MAZDA - 626-2.0 Comprex D - RF-CX

Adjustment Data MAZDA - 626-2.0 Comprex D - RF-CX Adjustment Data MAZDA - 626-2.0 Comprex D - RF-CX Engine (general) Engine code RF Capacity 1998 (cc) Idle speed 725 ± 25 Valve clearance Valve clearance Cold Inlet 0.25 (mm) Exhaust 0.35 (mm) Compression

More information

8. ENERGY PERFORMANCE ASSESSMENT OF COMPRESSORS 8.1 Introduction

8. ENERGY PERFORMANCE ASSESSMENT OF COMPRESSORS 8.1 Introduction 8. ENERGY PERFORMANCE ASSESSMENT OF COMPRESSORS 8.1 Introduction The compressed air system is not only an energy intensive utility but also one o the least energy eicient. Over a period o time, both perormance

More information

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering

International Journal of Advanced Research in Electrical, Electronics and Instrumentation Engineering DOI: 10.15662/ijareeie.2014.0307061 Economic Dispatch of Power System Optimization with Power Generation Schedule Using Evolutionary Technique Girish Kumar 1, Rameshwar singh 2 PG Student [Control system],

More information

Turbo Tech 101 ( Basic )

Turbo Tech 101 ( Basic ) Turbo Tech 101 ( Basic ) How a Turbo System Works Engine power is proportional to the amount of air and fuel that can get into the cylinders. All things being equal, larger engines flow more air and as

More information

CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT

CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 77 CHAPTER 6 GENETIC ALGORITHM OPTIMIZED FUZZY CONTROLLED MOBILE ROBOT 6.1 INTRODUCTION The idea of evolutionary computing was introduced by (Ingo Rechenberg 1971) in his work Evolutionary strategies.

More information

Application and Design of the ebooster from BorgWarner

Application and Design of the ebooster from BorgWarner Application and Design of the ebooster from BorgWarner Knowledge Library Knowledge Library Application and Design of the ebooster from BorgWarner With an electrically assisted compressor, the ebooster,

More information

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN)

A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) ISSN: 2278 1323 All Rights Reserved 2014 IJARCET 3910 A Genetic Algorithm Processor Based on Redundant Binary Numbers (GAPBRBN) Miss: KIRTI JOSHI Abstract A Genetic Algorithm (GA) is an intelligent search

More information

Package NHEMOtree. February 19, 2015

Package NHEMOtree. February 19, 2015 Type Package Package NHEMOtree February 19, 2015 Title Non-hierarchical evolutionary multi-objective tree learner to perform cost-sensitive classification Depends partykit, emoa, sets, rpart Version 1.0

More information

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS

OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE. TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS UNIT 61: ENGINEERING THERMODYNAMICS Unit code: D/601/1410 QCF level: 5 Credit value: 15 OUTCOME 2 INTERNAL COMBUSTION ENGINE PERFORMANCE TUTORIAL No. 5 PERFORMANCE CHARACTERISTICS 2 Be able to evaluate

More information

Adaptive Cruise Control of a Passenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control

Adaptive Cruise Control of a Passenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control Adaptive Cruise Control of a assenger Car Using Hybrid of Sliding Mode Control and Fuzzy Logic Control Somphong Thanok, Manukid arnichkun School of Engineering and Technology, Asian Institute of Technology,

More information

Evolutionary SAT Solver (ESS)

Evolutionary SAT Solver (ESS) Ninth LACCEI Latin American and Caribbean Conference (LACCEI 2011), Engineering for a Smart Planet, Innovation, Information Technology and Computational Tools for Sustainable Development, August 3-5, 2011,

More information

MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST

MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST MECHANICAL ENGINEERING EXPERIMENTATION AND LABORATORY II EXPERIMENT 490.07 ENGINE PERFORMANCE TEST 1. Objectives To determine the variation of the brake torque, brake mean effective pressure, brake power,

More information

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM

HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM 8 th European Symposium on Aerothermodynamics for space vehicles HYBRID ROCKET TECHNOLOGY IN THE FRAME OF THE ITALIAN HYPROB PROGRAM M. Di Clemente, R. Votta, G. Ranuzzi, F. Ferrigno March 4, 2015 Outline

More information

Computerized Micro Jet Engine Test Facility

Computerized Micro Jet Engine Test Facility Computerized Micro Jet Engine Test Facility Flexible test bed for experiments Vladimir Krapp Yeshayahu Levy Eliyahu Mashiah Technion Basic physics similar to full scale engines Education UAVs Fun Why micro

More information

CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES

CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES CLASSIFICATION OF INTERNAL COMBUSTION ENGINES VARIOUS TYPES OF ENGINES CLASSIFICATION OF INTERNAL COMBUSTION ENGINES 1. Application 2. Basic Engine Design 3. Operating Cycle 4. Working Cycle 5. Valve/Port

More information

WORKFLOW ENGINE FOR CLOUDS

WORKFLOW ENGINE FOR CLOUDS WORKFLOW ENGINE FOR CLOUDS By SURAJ PANDEY, DILEBAN KARUNAMOORTHY, and RAJKUMAR BUYYA Prepared by: Dr. Faramarz Safi Islamic Azad University, Najafabad Branch, Esfahan, Iran. Workflow Engine for clouds

More information

Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute

Fuel Requirements for HCCI Engine Operation. Tom Ryan Andrew Matheaus Southwest Research Institute Fuel Requirements for HCCI Engine Operation Tom Ryan Andrew Matheaus Southwest Research Institute 1 HCCI Fuel & Air Charge Undergoes Compression Spontaneous Reaction Throughout Cylinder Low Temperature

More information

Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms

Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms Nonlinear Model Predictive Control of Hammerstein and Wiener Models Using Genetic Algorithms Al-Duwaish H. and Naeem, Wasif Electrical Engineering Department/King Fahd University of Petroleum and Minerals

More information

Evolutionary Prefetching and Caching in an Independent Storage Units Model

Evolutionary Prefetching and Caching in an Independent Storage Units Model Evolutionary Prefetching and Caching in an Independent Units Model Athena Vakali Department of Informatics Aristotle University of Thessaloniki, Greece E-mail: avakali@csdauthgr Abstract Modern applications

More information

Hiroyuki Sato. Minami Miyakawa. Keiki Takadama ABSTRACT. Categories and Subject Descriptors. General Terms

Hiroyuki Sato. Minami Miyakawa. Keiki Takadama ABSTRACT. Categories and Subject Descriptors. General Terms Controlling election Area of Useful Infeasible olutions and Their Archive for Directed Mating in Evolutionary Constrained Multiobjective Optimization Minami Miyakawa The University of Electro-Communications

More information

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS

GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS 2 nd International Seminar on ORC Power Systems October 7 th & 8 th, 213 De Doelen, Rotterdam, NL GEOMETRIC, THERMODYNAMIC AND CFD ANALYSES OF A REAL SCROLL EXPANDER FOR MICRO ORC APPLICATIONS M. Morini,

More information

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service.

P = n M 9550 [kw] Variable Intake Manifold in VR Engines. Self-study programme 212. Principles and Description of Operation. Service. Service. Self-study programme 212 Variable Intake Manifold in VR Engines Principles and Description of Operation P = n M 9550 [kw] M [Nm] P [kw] n [min -1 ] 212_020 The output and torque of an engine have

More information

Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms

Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms Solving Method for a Class of Bilevel Linear Programming based on Genetic Algorithms G. Wang, Z. Wan and X. Wang Abstract The paper studies and designs an genetic algorithm (GA) of the bilevel linear programming

More information

International Journal of Software and Web Sciences (IJSWS) www.iasir.net

International Journal of Software and Web Sciences (IJSWS) www.iasir.net International Association of Scientific Innovation and Research (IASIR) (An Association Unifying the Sciences, Engineering, and Applied Research) ISSN (Print): 2279-0063 ISSN (Online): 2279-0071 International

More information

New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem

New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem New Modifications of Selection Operator in Genetic Algorithms for the Traveling Salesman Problem Radovic, Marija; and Milutinovic, Veljko Abstract One of the algorithms used for solving Traveling Salesman

More information

Hydrogen as a fuel for internal combustion engines

Hydrogen as a fuel for internal combustion engines Hydrogen as a fuel for internal combustion engines Contents: Introduction External mixture formation for hydrogen operated engines Experimental engine for hydrogen in Stralsund Internal mixture formation

More information

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1

Fault codes DM1. Industrial engines DC09, DC13, DC16. Marine engines DI09, DI13, DI16 INSTALLATION MANUAL. 03:10 Issue 5.0 en-gb 1 Fault codes DM1 Industrial engines DC09, DC13, DC16 Marine engines DI09, DI13, DI16 03:10 Issue 5.0 en-gb 1 DM1...3 Abbreviations...3 Fault type identifier...3...4 03:10 Issue 5.0 en-gb 2 DM1 DM1 Fault

More information

Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design

Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip Design 358 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 10, NO. 3, JUNE 2006 Multiobjective Optimization and Evolutionary Algorithms for the Application Mapping Problem in Multiprocessor System-on-Chip

More information

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk

Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk BMAS 2005 VHDL-AMS based genetic optimization of a fuzzy logic controller for automotive active suspension systems Leran Wang and Tom Kazmierski {lw04r,tjk}@ecs.soton.ac.uk Outline Introduction and system

More information

4. Zastosowania Optymalizacja wielokryterialna

4. Zastosowania Optymalizacja wielokryterialna 4. Zastosowania Optymalizacja wielokryterialna Tadeusz Burczyński 1,2) 1), Department for Strength of Materials and Computational Mechanics, Konarskiego 18a, 44-100 Gliwice, Poland 2) Cracow University

More information

Non-Uniform Mapping in Binary-Coded Genetic Algorithms

Non-Uniform Mapping in Binary-Coded Genetic Algorithms Non-Uniform Mapping in Binary-Coded Genetic Algorithms Kalyanmoy Deb, Yashesh D. Dhebar, and N. V. R. Pavan Kanpur Genetic Algorithms Laboratory (KanGAL) Indian Institute of Technology Kanpur PIN 208016,

More information

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Fluid Mechanics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 20 Conservation Equations in Fluid Flow Part VIII Good morning. I welcome you all

More information

Defining and Optimizing Indicator-based Diversity Measures in Multiobjective Search

Defining and Optimizing Indicator-based Diversity Measures in Multiobjective Search Defining and Optimizing Indicator-based Diversity Measures in Multiobjective Search Tamara Ulrich, Johannes Bader, and Lothar Thiele Computer Engineering and Networks Laboratory, ETH Zurich 8092 Zurich,

More information

Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Algorithm

Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Algorithm Simple Population Replacement Strategies for a Steady-State Multi-Objective Evolutionary Christine L. Mumford School of Computer Science, Cardiff University PO Box 916, Cardiff CF24 3XF, United Kingdom

More information

Solving Three-objective Optimization Problems Using Evolutionary Dynamic Weighted Aggregation: Results and Analysis

Solving Three-objective Optimization Problems Using Evolutionary Dynamic Weighted Aggregation: Results and Analysis Solving Three-objective Optimization Problems Using Evolutionary Dynamic Weighted Aggregation: Results and Analysis Abstract. In this paper, evolutionary dynamic weighted aggregation methods are generalized

More information

Index Terms- Batch Scheduling, Evolutionary Algorithms, Multiobjective Optimization, NSGA-II.

Index Terms- Batch Scheduling, Evolutionary Algorithms, Multiobjective Optimization, NSGA-II. Batch Scheduling By Evolutionary Algorithms for Multiobjective Optimization Charmi B. Desai, Narendra M. Patel L.D. College of Engineering, Ahmedabad Abstract - Multi-objective optimization problems are

More information

The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem

The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem Alex Rogers Adam Prügel-Bennett Image, Speech, and Intelligent Systems Research Group, Department of Electronics and Computer Science,

More information

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects

Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Journal of Computer Science 2 (2): 118-123, 2006 ISSN 1549-3636 2006 Science Publications Estimation of the COCOMO Model Parameters Using Genetic Algorithms for NASA Software Projects Alaa F. Sheta Computers

More information

Modified Version of Roulette Selection for Evolution Algorithms - the Fan Selection

Modified Version of Roulette Selection for Evolution Algorithms - the Fan Selection Modified Version of Roulette Selection for Evolution Algorithms - the Fan Selection Adam S lowik, Micha l Bia lko Department of Electronic, Technical University of Koszalin, ul. Śniadeckich 2, 75-453 Koszalin,

More information

APPLICATION OF OPTIMIZATION METHODS IN 2D HYDROFOIL DESIGN

APPLICATION OF OPTIMIZATION METHODS IN 2D HYDROFOIL DESIGN Electrozavodskaia St., 20, Moscow, 107023, Russia Phone/fax +7 (495) 788 1060 www.iosotech.com APPLICATION OF OPTIMIZATION METHODS IN 2D HYDROFOIL DESIGN Abstract Modern computer technologies allow us

More information

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM

DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM DIESEL ENGINE IN-CYLINDER CALCULATIONS WITH OPENFOAM 1 Ervin Adorean *, 1 Gheorghe-Alexandru Radu 1 Transilvania University of Brasov, Romania KEYWORDS - diesel, engine, CFD, simulation, OpenFOAM ABSTRACT

More information

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA

Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Automotive Powertrain Controls: Fundamentals and Frontiers Jing Sun Department of Naval Architecture and Marine Engineering University of Michigan Ann Arbor, MI USA Julie Buckland Research & Advanced Engineering

More information

Keywords revenue management, yield management, genetic algorithm, airline reservation

Keywords revenue management, yield management, genetic algorithm, airline reservation Volume 4, Issue 1, January 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com A Revenue Management

More information

OPTIMIZATION TECHNIQUES AND AN INTRODUCTION TO GENETIC ALGORITHMS AND SIMULATED ANNEALING Dr. T. Ghose Dept. of EEE BIT, Mesra

OPTIMIZATION TECHNIQUES AND AN INTRODUCTION TO GENETIC ALGORITHMS AND SIMULATED ANNEALING Dr. T. Ghose Dept. of EEE BIT, Mesra OPTIMIZATION TECHNIQUES AND AN INTRODUCTION TO GENETIC ALGORITHMS AND SIMULATED ANNEALING Dr. T. Ghose Dept. of EEE BIT, Mesra INTRODUCTION:: Almost any problem in the design, operation, and analysis of

More information

Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm

Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm Electric Distribution Network Multi objective Design Using Problem Specific Genetic Algorithm 1 Parita Vinodbhai Desai, 2 Jignesh Patel, 3 Sangeeta Jagdish Gurjar 1 Department of Electrical Engineering,

More information

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines

Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines 36 Energy Savings through Electric-assist Turbocharger for Marine Diesel Engines KEIICHI SHIRAISHI *1 YOSHIHISA ONO *2 YUKIO YAMASHITA *3 MUSASHI SAKAMOTO *3 The extremely slow steaming of ships has become

More information

Marine after-treatment from STT Emtec AB

Marine after-treatment from STT Emtec AB Marine after-treatment from STT Emtec AB For Your Vessel and the Environment SCR Technology How it works The selective catalytic reduction of nitrous oxides (NOx) by nitrogen compounds such as urea solutions

More information

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem

A Study of Crossover Operators for Genetic Algorithm and Proposal of a New Crossover Operator to Solve Open Shop Scheduling Problem American Journal of Industrial and Business Management, 2016, 6, 774-789 Published Online June 2016 in SciRes. http://www.scirp.org/journal/ajibm http://dx.doi.org/10.4236/ajibm.2016.66071 A Study of Crossover

More information

Genetic Algorithm Performance with Different Selection Strategies in Solving TSP

Genetic Algorithm Performance with Different Selection Strategies in Solving TSP Proceedings of the World Congress on Engineering Vol II WCE, July 6-8,, London, U.K. Genetic Algorithm Performance with Different Selection Strategies in Solving TSP Noraini Mohd Razali, John Geraghty

More information

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization

Introductory Study of Variable Valve Actuation for Pneumatic Hybridization 2007-01-0288 Introductory Study of Variable Valve Actuation for Pneumatic Hybridization Copyright 2007 SAE International Sasa Trajkovic, Per Tunestål and Bengt Johansson Division of Combustion Engines,

More information

Stock price prediction using genetic algorithms and evolution strategies

Stock price prediction using genetic algorithms and evolution strategies Stock price prediction using genetic algorithms and evolution strategies Ganesh Bonde Institute of Artificial Intelligence University Of Georgia Athens,GA-30601 Email: [email protected] Rasheed Khaled Institute

More information

Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim

Automotive Sensor Simulator. Automotive sensor simulator. Operating manual. AutoSim Automotive sensor simulator Operating manual AutoSim Contents Introduction.. page 3 Technical specifications.... page 4 Typical application of AutoSim simulator..... page 4 Device appearance... page 5

More information

Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies

Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Volume 3, Issue 2, February 2015 International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online at: www.ijarcsms.com

More information

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University)

A.Pannirselvam*, M.Ramajayam, V.Gurumani, S.Arulselvan and G.Karthikeyan *(Department of Mechanical Engineering, Annamalai University) A.Pannirselvam, M.Ramajayam, V.Gurumani, S.Arulselvan, G.Karthikeyan / International Journal of Vol. 2, Issue 2,Mar-Apr 212, pp.19-27 Experimental Studies on the Performance and Emission Characteristics

More information

Simulating the Multiple Time-Period Arrival in Yield Management

Simulating the Multiple Time-Period Arrival in Yield Management Simulating the Multiple Time-Period Arrival in Yield Management P.K.Suri #1, Rakesh Kumar #2, Pardeep Kumar Mittal #3 #1 Dean(R&D), Chairman & Professor(CSE/IT/MCA), H.C.T.M., Kaithal(Haryana), India #2

More information

A Basic Guide to Modeling Techniques for All Direct Marketing Challenges

A Basic Guide to Modeling Techniques for All Direct Marketing Challenges A Basic Guide to Modeling Techniques for All Direct Marketing Challenges Allison Cornia Database Marketing Manager Microsoft Corporation C. Olivia Rud Executive Vice President Data Square, LLC Overview

More information

Specifications for Volkswagen Industrial Engine

Specifications for Volkswagen Industrial Engine Volkswagen 1 industrial engine Specifications for Volkswagen Industrial Engine AFD 1.9 ltr. TDI diesel engine EURO 2 Volkswagen AG, Wolfsburg Volkswagen AG reserves the right to introduce amendments or

More information