SPV1040. High efficiency solar battery charger with embedded MPPT. Description. Features. Applications



Similar documents
LM337. Three-terminal adjustable negative voltage regulators. Features. Description

Description. Table 1. Device summary. Order codes. TO-220 (single gauge) TO-220 (double gauge) D²PAK (tape and reel) TO-220FP

Description. Table 1. Device summary

Single LNB supply and control IC DiSEqC 1.X compliant with EXTM based on the LNBH29 in a QFN16 (4x4) Description

UA741. General-purpose single operational amplifier. Features. Applications. Description. N DIP8 (plastic package)

EN: This Datasheet is presented by the m anufacturer. Please v isit our website for pricing and availability at ore.hu.

STTH1R04-Y. Automotive ultrafast recovery diode. Features. Description

MC34063AB, MC34063AC, MC34063EB, MC34063EC

Description. Table 1. Device summary. Order code Temperature range Package Packaging Marking

Description SO-8. series. Furthermore, in the 8-pin configuration Very low-dropout voltage (0.2 V typ.)

L6234. Three phase motor driver. Features. Description

Table 1. Absolute maximum ratings (T amb = 25 C) Symbol Parameter Value Unit. ISO C = 330 pf, R = 330 Ω : Contact discharge Air discharge

ULN2801A, ULN2802A, ULN2803A, ULN2804A

DDSL01. Secondary protection for DSL lines. Features. Description

AN2389 Application note

2STBN15D100. Low voltage NPN power Darlington transistor. Features. Application. Description

ST High voltage fast-switching NPN power transistor. Features. Applications. Description

STCS A max constant current LED driver. Features. Applications. Description

TDA W CAR RADIO AUDIO AMPLIFIER

BD241A BD241C. NPN power transistors. Features. Applications. Description. NPN transistors. Audio, general purpose switching and amplifier transistors

LM134-LM234-LM334. Three terminal adjustable current sources. Features. Description

MC Low noise quad operational amplifier. Features. Description

Order code Temperature range Package Packaging

BD238. Low voltage PNP power transistor. Features. Applications. Description. Low saturation voltage PNP transistor

UM1613 User manual. 16-pin smartcard interface ST8034P demonstration board. Introduction

TDA2004R W stereo amplifier for car radio. Features. Description

L78MxxAB L78MxxAC. Precision 500 ma regulators. Features. Description

TN0023 Technical note

ULN2001, ULN2002 ULN2003, ULN2004

STCS1A. 1.5 A max constant current LED driver. Features. Applications. Description

STOD2540. PMOLED display power supply. Features. Application. Description

BD135 - BD136 BD139 - BD140

STP60NF06. N-channel 60V Ω - 60A TO-220 STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

VN05N. High side smart power solid state relay PENTAWATT. Features. Description

SPC5-FLASHER. Flash management tool for SPC56xx family. Description. Features

STN3NF06L. N-channel 60 V, 0.07 Ω, 4 A, SOT-223 STripFET II Power MOSFET. Features. Application. Description

ESDLIN1524BJ. Transil, transient voltage surge suppressor diode for ESD protection. Features. Description SOD323

AN4368 Application note

ETP01-xx21. Protection for Ethernet lines. Features. Description. Applications. Benefits. Complies with the following standards

STP60NF06FP. N-channel 60V Ω - 30A TO-220FP STripFET II Power MOSFET. General features. Description. Internal schematic diagram.

EVL185W-LEDTV. 185 W power supply with PFC and standby supply for LED TV based on the L6564, L6599A and Viper27L. Features.

DSL01-xxxSC5. Secondary protection for DSL lines. Features. Description. Applications. Benefits. Complies with the following standards

STCS2A. 2 A max constant current LED driver. Features. Applications. Description

BZW50. Transil, transient voltage surge suppressor (TVS) Features. Description

LM135-LM235-LM335. Precision temperature sensors. Features. Description

LM2901. Low-power quad voltage comparator. Features. Description

STTH2R06. High efficiency ultrafast diode. Features. Description

VN03. ISO high side smart power solid state relay PENTAWATT. Features. Description.

Obsolete Product(s) - Obsolete Product(s)

AN2680 Application note

VN5R003H-E. 3 mω reverse battery protection switch. Features. Description. Application

STEVAL-IEG001V2. Smart real-time vehicle tracking system. Features

STLQ ma, ultra low quiescent current linear voltage regulator. Description. Features. Application

P6KE. Transil, transient voltage surge suppressor (TVS) Features. Description. Complies with the following standards

STLM20. Ultra-low current 2.4 V precision analog temperature sensor. Features. Applications

STP55NF06L STB55NF06L - STB55NF06L-1

STB4NK60Z, STB4NK60Z-1, STD4NK60Z STD4NK60Z-1, STP4NK60Z,STP4NK60ZFP

Description. Table 1. Device summary. Order code Package Packing

Low power offline switched-mode power supply primary switcher. 60kHz OSCILLATOR PWM LATCH Q R4 S FF R3 R1 R2 + BLANKING + OVERVOLTAGE LATCH

M24LRxx/CR95HF application software installation guide

AN3332 Application note

AN3353 Application note

STP10NK80ZFP STP10NK80Z - STW10NK80Z

STTH110. High voltage ultrafast rectifier. Description. Features

STGB10NB37LZ STGP10NB37LZ

TDA4605 CONTROL CIRCUIT FOR SWITCH MODE POWER SUPPLIES USING MOS TRANSISTORS

AN2866 Application note

STB75NF75 STP75NF75 - STP75NF75FP

TDA2822 DUAL POWER AMPLIFIER SUPPLY VOLTAGE DOWN TO 3 V LOW CROSSOVER DISTORSION LOW QUIESCENT CURRENT BRIDGE OR STEREO CONFIGURATION

UM1676 User manual. Getting started with.net Micro Framework on the STM32F429 Discovery kit. Introduction

AN2760 Application note

AN3110 Application note

AN2604 Application note

L4940 series VERY LOW DROP 1.5 A REGULATORS

AN2703 Application note

STTH3R02QRL. Ultrafast recovery diode. Main product characteristics. Features and benefits. Description. Order codes DO-15 STTH3R02Q DO-201AD STTH3R02

Description. Table 1. Device summary. Order code Temperature range Package Packing Marking

SPV1020. Interleaved DC-DC boost converter with built-in MPPT algorithm. Features. Applications. Description

MC34063A MC34063E DC-DC CONVERTER CONTROL CIRCUITS

ST19NP18-TPM-I2C. Trusted Platform Module (TPM) with I²C Interface. Features

LM833 LOW NOISE DUAL OPERATIONAL AMPLIFIER

AN3998 Application note

Obsolete Product(s) - Obsolete Product(s)

ADJUSTABLE VOLTAGE AND CURRENT REGULATOR

AN4108 Application note

.OPERATING SUPPLY VOLTAGE UP TO 46 V

Description SO-8. Table 1. Device summary. Order codes. SO-8 (tape and reel) TO-92 (Bag) TO-92 (Ammopack) TO-92 (tape and reel)

AN4050 Application note

SPC5-CRYP-LIB. SPC5 Software Cryptography Library. Description. Features. SHA-512 Random engine based on DRBG-AES-128

BTW N. 50 A 1200 V non insulated SCR thyristor. Description. Features. Applications

STB60N55F3, STD60N55F3, STF60N55F3 STI60N55F3, STP60N55F3, STU60N55F3

VIPer22A-E VIPer22ADIP-E, VIPer22AS-E

AN3354 Application note

L6219. Stepper motor driver. Features. Description

LM217M, LM317M. Medium current 1.2 to 37 V adjustable voltage regulator. Description. Features

VNI2140JTR. Dual high side smart power solid state relay. Features. Description

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

NE555 SA555 - SE555. General-purpose single bipolar timers. Features. Description

L5970D. Up to 1A step down switching regulator. Features. Description. Applications L5970D

AN4156 Application note

Transcription:

High efficiency solar battery charger with embedded MPPT Description Datasheet - production data Features 0.3 V to 5.5 V operating input voltage 140 mω internal synchronous rectifier 120 mω internal power active switch 100 khz fixed PWM frequency Duty cycle controlled by MPPT algorithm Output voltage regulation, overcurrent and overtemperature protection Input source reverse polarity protection Built-in soft-start Up to 95% efficiency 3 mm x 4.4 mm TSSOP8 package Applications TSSOP8 Smart phones and GPS systems Wireless headsets Small appliances, sensors Portable media players Digital still cameras Toys and portable healthcare The SPV1040 device is a low power, low voltage, monolithic step-up converter with an input voltage range from 0.3 V to 5.5 V, and is capable of maximizing the energy generated by even a single solar cell (or fuel cell), where low input voltage handling capability is extremely important. Thanks to the embedded MPPT algorithm, even under varying environmental conditions (such as irradiation, dirt, temperature) the SPV1040 offers maximum efficiency in terms of power harvested from the cells and transferred to the output. The device employs an input voltage regulation loop, which fixes the charging battery voltage via a resistor divider. The maximum output current is set with a current sense resistor according to charging current requirements. The SPV1040 protects itself and other application devices by stopping the PWM switching if either the maximum current threshold (up to 1.8 A) is reached or the maximum temperature limit (up to 155 C) is exceeded. An additional built-in feature of the SPV1040 is the input source reverse polarity protection, which prevents damage in case of reverse connection of the solar panel at the input. Table 1. Device summary Order code Package Packaging SPV1040T SPV1040TTR TSSOP8 Tube Tape and reel March 2013 DocID18080 Rev 5 1/15 This is information on a product in full production. www.st.com 15

Contents SPV1040 Contents 1 Block diagram.............................................. 3 2 Pin description............................................. 4 3 Maximum ratings............................................ 5 3.1 Absolute maximum ratings..................................... 5 3.2 Thermal data............................................... 5 4 Electrical characteristics..................................... 6 5 Typical characteristics....................................... 8 6 Detailed description........................................ 10 6.1 Soft-start mode............................................. 10 6.2 Startup mode.............................................. 10 6.3 MPPT mode............................................... 10 6.4 Constant voltage regulation................................... 10 6.5 Constant current regulation....................................11 6.6 Overcurrent protection (OVC)..................................11 6.7 Overtemperature protection (OVT)...............................11 6.8 Shutdown mode.............................................11 6.9 Undervoltage lockout (UVLO)..................................11 6.10 Reverse polarity.............................................11 6.11 Burst mode................................................ 12 6.12 Sleep-IN mode............................................. 12 7 Package mechanical data.................................... 13 8 Revision history........................................... 14 2/15 DocID18080 Rev 5

Block diagram 1 Block diagram Figure 1. Block diagram Figure 2. Simplified application circuit L Lx VOUT RS VBATT VPV XSHUT ICTRL_PLUS RF1 GND ICTRL_MINUS CF RF2 R1 CIN MPP-SET VCTRL COUT R2 AM02612v1 For setting up the application and simulating the related test results please go to www.st.com/edesignstudio DocID18080 Rev 5 3/15

Pin description SPV1040 2 Pin description Table 2. Pin description Pin Name Type Description 1 MPP-SET I 2 GND Ground Power ground reference. 8 XSHUT I Non-inverting input to sense the PV cell voltage. It cannot be left floating. Shutdown input pin: XSHUT = LOW: device in Power Off mode XSHUT = HIGH: device enabled for Operating mode This pin cannot be left floating. 3 LX I Booster inductor connection. 7 ICTRL_PLUS I 6 ICTRL_MINUS I 5 VCTRL I Non-inverting input of constant current control loop. It cannot be left floating. Inverting input of constant current control loop. It cannot be left floating. 4 VOUT O Booster output voltage. Non-inverting input of constant voltage control loop. It cannot be left floating. Figure 3. Pin connection (top view) 1 MPP-SET XSHUT 8 2 GND ICTRL_PLUS 7 3 LX ICTRL_MINUS 6 4 VOUT VCTRL 5 AM02613v1 4/15 DocID18080 Rev 5

Maximum ratings 3 Maximum ratings 3.1 Absolute maximum ratings Table 3. Absolute maximum ratings Symbol Parameter Range [min, max] Unit MPP-SET Analog input [-5.5, VOUT] V GND Ground 0 V XSHUT Analog input [-5.5, VOUT] V LX Analog input [-5.5, VOUT] V ICTRL_PLUS Analog input [-0.3, VOUT] V ICTRL_MINUS Analog input [-0.3, VOUT] V VCTRL Analog input [-0.3, VOUT] V VOUT Analog output [-0.3, 5.5] V 3.2 Thermal data Table 4. TSSOP8 thermal data Symbol Parameter Value Unit R th j-amb Thermal resistance, junction-to-ambient 135 C/W Tj op Junction operating temperature -40 to 125 C Tstg Storage temperature -40 to 150 C Note: R thja was measured on a 2-layer PCB: FR4, 35 µm Cu thickness, 2.8 cm 2 DocID18080 Rev 5 5/15

Electrical characteristics SPV1040 4 Electrical characteristics VMPP-SET = 0.5 V, V CTRL = I ctrl+ = I ctrl- = GND, XSHUT = 0.5 V, T J = -40 C to 125 C, unless otherwise specified. Table 5. Electrical characteristics Symbol Parameter Test condition Min. Typ. Max. Unit Input source section V MPP-SET Low boost voltage threshold V OUT = 3.3V 0.4 0.45 0.50 V I q Quiescent current I LOAD =0mA, V CTRL =2V, V OUT =3.3V, 60 80 μa I SD I rev V UVLO Power section Shutdown current Reverse input source current Undervoltage lockout threshold for turn ON @V OUT = 3.3V Undervoltage lockout threshold for turn OFF @V OUT = 3.3V V OUT = 3.3V, V CTRL =2V, I LOAD = 0mA, XSHUT = GND 0.7 5 μa V MPP-SET =-4V, V OUT = 1.5V 1 5 μa V MPP-SET increasing 0.27 0.34 V V MPP-SET decreasing 0.14 0.24 V R DS_ON-N R DS_ON-P N-channel power switch ON resistance P-channel synchronous rectifier ON resistance 120 mω V CTRL =2V 140 mω Control section V MPPT-THR MPPT-mode threshold Vout increasing, V MPP-SET = 1.5V 1.7 1.8 2 V V OUT Output voltage range V MPP-SET 1.5V 2 5.2 (1) V P OUT (2) Maximum output power V MPP-SET 1.5V 3 W I Lx Maximum inductor current peak 1.5 1.65 1.8 A F PWM PWM signal frequency 70 100 130 khz Internal V V CTRL REF reference voltage V OUT 1.8V, V CTRL increasing 1.2 1.25 1.3 V V Ictrl Sensing current offset I CTRL + - I CTRL - decreasing 40 50 60 mv XSHUT Thermal shutdown XSHUT logic LOW XSHUT increasing 0.27 0.34 V XSHUT logic HIGH XSHUT decreasing 0.14 0.24 V 6/15 DocID18080 Rev 5

Electrical characteristics Table 5. Electrical characteristics (continued) Symbol Parameter Test condition Min. Typ. Max. Unit T shutdown Overtemperature threshold for turn OFF Overtemperature threshold for turn ON Temperature increasing 155 C Temperature decreasing 130 C 1. According to the absolute maximum ratings the output charge voltage cannot be above 4.8 V but if an higher Vout up to 5.2 V is needed, a Schottky diode must be placed between the Lx and Vout pins as shown in Figure 2. In such way the Schottky diode in parallel to the embedded P-channel MOSFET will reduce the voltage drop between the VLX pin and the VOUT pin determined by the body diode when the internal PMOS is OFF from 0.7 V down to 0.3 V. 2. Given T j = T a + R thja x P D, and assuming R thja = 135 C/W, and that in order to avoid device destruction Tjmax must be 125 C, and that in the worst conditions T A = 85 C, the power dissipated inside the device is given by: T j T a P D ---------------- = 295mW R thja Therefore, if in the worst case the efficiency is assumed to be 90%, then P IN-MAX = 3.3 W and P OUT-MAX = 3 W. DocID18080 Rev 5 7/15

Typical characteristics SPV1040 5 Typical characteristics Figure 4. Efficiency vs output voltage 3 PV cells - V mp = 1.5 V, L X = 33 µh Figure 5. MPPT efficiency vs output voltage 3 PV cells - V mp = 1.5 V, L X = 33 µh Pout/Pin (%) 95 90 AM14860v1 Pin/Pmax Pin = 0.25 W Pin = 0.5 W Pin = 1.0 W Pin = 1.5 W Pin = 2.0 W (%) 97 95 93 AM14861v1 Pin = 0.25 W Pin = 0.5 W Pin = 1.0 W Pin = 1.5 W Pin = 2.0 W 85 80 91 89 87 75 3 3.5 4 4.5 Vout(V) 85 3 3.5 4 4.5 Vout(V) Figure 6. Efficiency vs output voltage 4 PV cells - V mp = 2 V, L X = 33 µh Figure 7. MPPT efficiency vs output voltage 4 PV cells - V mp = 2 V, L X = 33 µh Pout/Pin (%) 98 96 94 92 90 88 86 84 82 80 3 3.5 4 4.5 Vout(V) AM14862v1 Pin/Pmax Pin = 0.25 W Pin = 0.5 W Pin = 1.0 W Pin = 1.5 W Pin = 2.0 W Pin = 2.5 W (%) 97 95 93 91 89 87 85 3 3.5 4 4.5 Vout(V) AM14863v1 Pin = 0.25 W Pin = 0.5 W Pin = 1.0 W Pin = 1.5 W Pin = 2.0 W Pin = 2.5 W 8/15 DocID18080 Rev 5

Typical characteristics Figure 8. Efficiency vs output voltage 5 PV cells - V mp = 2.5 V, L X = 33 µh Figure 9. MPPT efficiency vs output voltage 5 PV cells - V mp = 2.5 V, L X = 33 µh Pout/Pin (%) 98 96 94 92 90 88 AM14864v1 Pin = 0.25 W Pin = 0.5 W Pin = 1.0 W Pin = 1.5 W Pin = 2.0 W Pin = 2.5 W Pin = 3.0 W Pin = 3.5 W Pin/Pmax (%) 97 95 93 91 AM14865v1 Pin = 0.25 W Pin = 0.5 W Pin = 1.0 W Pin = 1.5 W Pin = 2.0 W Pin = 2.5 W Pin = 3.0 W Pin = 3.5 W 86 84 82 89 87 80 3 3.5 4 4.5 Vout(V) 85 3 3.5 4 4.5 Vout(V) Figure 10. V LX and I LX waveforms - D = 39% Figure 11. V LX and I LX waveforms - D = 68% V OUT = 3V V OUT = 3V V LX I LX I LX V LX For setting up the application and simulating the related test results please go to www.st.com/edesignstudio DocID18080 Rev 5 9/15

Detailed description SPV1040 6 Detailed description The SPV1040 is a monolithic, high efficiency, low voltage, self-powered DC-DC converter that operates over a 0.3 V to 5.5 V DC input voltage range and provides a single output voltage. The device provides regulated output voltage and current by sensing the VCTRL feedback of the external resistor divider and the voltage drop on the external sense resistor Rs, respectively. High efficiency is ensured by low power consumption in any working mode and by the embedded Perturb & Observe MPPT algorithm. The SPV1040 guarantees its own safety and application safety by stopping the N-channel power switch in case of overcurrent or overtemperature conditions. 6.1 Soft-start mode In order to guarantee powerup even when V OUT is very low (battery completely discharged), a proper startup strategy has been implemented. Taking into account that the device is powered by the V OUT voltage, If V OUT is lower than 0.8 V, the device moves from power off to soft-start mode and the current flows from the input to output through the intrinsic body diode of the synchronous rectifier. In this condition V OUT follows the LX voltage. The IC exits Startup mode when V OUT reaches 0.8 V. 6.2 Startup mode When V OUT goes above 0.8 V but it is still lower than 2 V, a proper biasing of both MOSFETs is not yet guaranteed. In such conditions, the N-channel power switch is forced ON with a fixed duty cycle and the energy is transferred to the load via the intrinsic body diode of the P-channel synchronous switch. If the shutdown overcurrent limit is exceeded, the power switch is immediately turned OFF. The SPV1040 leaves Startup mode as soon as V OUT goes above 2 V. 6.3 MPPT mode Once the device has exited Startup mode, the SPV1040 enters MPPT mode to search for the maximum power point. The Perturb & Observe algorithm is based on monitoring either the voltage or the current supplied by the DC power source unit so that the PWM signal duty cycle is increased or decreased step by step according to the input power trend. Refer to Figure 12, which illustrates the MPPT working principle. 6.4 Constant voltage regulation The constant voltage control loop consists of an internal voltage reference, an op amp and an external resistor divider that senses the battery voltage and fixes the voltage regulation set-point at the value specified by the user. 10/15 DocID18080 Rev 5

Detailed description 6.5 Constant current regulation The constant current control loop consists of an op amp and an external sense resistor that feeds the current sensing circuit with a voltage proportional to the DC output current. This resistor determines the current regulation set-point and must be adequately rated in terms of power dissipation. It provides the capability to fix the maximum output current to protect the battery. 6.6 Overcurrent protection (OVC) When the current that flows through the inductor reaches 1.8 A (overcurrent shutdown limit), the N-channel power switch is immediately forced OFF and the P-channel synchronous rectifier is switched ON. Once the overcurrent condition has expired (the inductor current goes below 1.8 A) the N-channel power switch is turned back ON. 6.7 Overtemperature protection (OVT) When the temperature sensed at silicon level reaches 155 C (overtemperature shutdown limit), the N-channel power switch is immediately forced OFF and the P-channel synchronous rectifier is switched ON. The device becomes operative again as soon as the silicon temperature goes below 130 C. 6.8 Shutdown mode The XSHUT pin low shuts OFF all internal circuitry, achieving the lowest power consumption mode. 6.9 Undervoltage lockout (UVLO) In order to prevent batteries from over-discharging, the device turns OFF in case of MPP- SET voltage lower than 0.24 V (no irradiation). A hysteresis has been implemented to avoid unpredictable ON-OFF switching. 6.10 Reverse polarity In order to avoid damage to the device and battery discharge when the solar panel connection is reverse-inserted, a dedicated protection circuit has been implemented. In such condition, the SPV1040 stays OFF until the panel is inserted correctly. DocID18080 Rev 5 11/15

Detailed description SPV1040 Figure 12. MPPT working principle 6.11 Burst mode When the output voltage reaches the battery charge voltage, the MPP-SET voltage drops below 450 mv, or the output current reaches the output maximum current limit, the duty cycle D drops down to 10% and the device evolves from Operating mode to Burst mode. The converter no longer works at constant frequency, but at frequencies gradually lower (1 T ON over 1 PWM cycle, 1 T ON over 2 PWM cycles,,1 T ON over 16 PWM cycles) prior to entering Sleep-IN mode. 6.12 Sleep-IN mode Once Sleep-IN mode has been entered, no current is provided to the load. The device exits this mode once the cause which forced it into this state is no longer present. 12/15 DocID18080 Rev 5

Package mechanical data 7 Package mechanical data In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark. Table 6. TSSOP8 package mechanical data Symbol mm Min. Typ. Max. A 1.200 A1 0.050 0.150 A2 0.800 1.000 1.050 b 0.190 0.300 c 0.090 0.200 CP 0.100 D 2.900 3.000 3.100 e 0.650 E 6.200 6.400 6.600 E1 4.300 4.400 4.500 L 0.450 0.600 0.750 L1 1.000 0 8 Figure 13. TSSOP8 package mechanical drawing DocID18080 Rev 5 13/15

Revision history SPV1040 8 Revision history Table 7. Document revision history Date Revision Changes 08-Oct-2010 1 Initial release 06-Apr-2011 2 04-Oct-2011 3 25-Jul-2012 4 Updated cover page, DFN8 information deleted, Chapter 3, Chapter 4 and Chapter 6 Updated Figure 1, Figure 2, Table 2 and Table 5 Minor text changes Updated Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, and Figure 9. 21-Mar-2013 5 Updated Figure 1 and note 1 in Table 5. 14/15 DocID18080 Rev 5

Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ( ST ) reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST s terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT AUTHORIZED FOR USE IN WEAPONS. NOR ARE ST PRODUCTS DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. 2013 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com DocID18080 Rev 5 15/15