Pickling Behavior of AISI 304 Stainless Steel in Sulfuric and Hydrochloric Acid Solutions



Similar documents
AUSTENITIC STAINLESS DAMASCENE STEEL

ALLOY C276 DATA SHEET

LASER CUTTING OF STAINLESS STEEL

North American Stainless

GENERAL PROPERTIES //////////////////////////////////////////////////////

North American Stainless

SELECTIVE DISSOLUTION AND CORROSION FATIGUE BEHAVIORS OF 2205 DUPLEX STAINLESS STEEL

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

North American Stainless

Nickel Free Room Temperature Seal: an innovative and ecological process

North American Stainless

LIFTING WIRE FOR HOT-DIP GALVANIZING BY THOMAS LANGILL, Ph.D.

Chemical Surface Treatment of Stainless Steel

North American Stainless

Modification of Pd-H 2 and Pd-D 2 thin films processed by He-Ne laser

EXPERIMENT #9 CORROSION OF METALS

Crevice Corrosion on Stainless Steel Propeller Shafts

Valve Steel. Valve Steel

An Ammonium-free, Acid. Zinc/Nickel (12-15% Ni) Process

North American Stainless

Properties of Alcohols and Phenols Experiment #3

Duplex Stainless Steel Fabrication. Gary M. Carinci TMR Stainless Consultant for International Molybdenum Association

How To Write A Recipe Card

SALT SPRAY AND IMMERSION CORROSION TESTING OF PM STAINLESS STEEL MATERIALS. W. Brian James Hoeganaes Corporation. Cinnaminson, NJ 08077

THE USE OF OZONATED HF SOLUTIONS FOR POLYSILICON STRIPPING

Profiles for floors of same height Cerfix Projoint

ALLOY 2205 DATA SHEET

Photolithography. Class: Figure Various ways in which dust particles can interfere with photomask patterns.

PASSIVATION TREATMENTS FOR CORROSION-RESISTANT STEEL

Improved Broaching Steel Technology

Interfacial Reaction between Sn Ag Co Solder and Metals

Scanning Electron Microscopy Services for Pharmaceutical Manufacturers

Effect of Molybdate, Nitrite and Zinc Ions on the Corrosion Inhibition of Mild Steel in Aqueous Chloride Media Containing Cupric Ions

North American Stainless

NAWTEC Proceedings of NAWTEC16 16th Annual North American Waste-to-Energy Conference May 19-21, 2008, Philadelphia, Pennsylvania, USA

Friction Surfacing of Austenitic Stainless Steel on Low Carbon Steel: Studies on the Effects of Traverse Speed

THE INVESTIGATION OF CORROSION BEHAVIOR OF 316 Cb AUSTENITIC STAINLESS STEEL IN ACIDIC SOLUTIONS

6480(Print), ISSN (Online) Volume 5, Issue 4, April (2014), pp IAEME AND TECHNOLOGY (IJARET)

North American Stainless

Stainless Steel and Corrosion

Anodizing Reference Guide

MICROSTRUCTURAL AND MECHANICAL CHARACTERIZATION OF GRAY CAST IRON AND AlSi ALLOY AFTER LASER BEAM HARDENING

Wipe Analysis to Determine Metal Contamination on Critical Surfaces

Objectives/Introduction Extraction of zinc Physical properties of zinc Zinc casting alloys Wrought zinc alloys Engineering design with zinc alloys

PROTECTIVE LAYERS OF IRON AND NICKEL ALUMINIDES ON STEEL

Evaluating Surface Roughness of Si Following Selected Lapping and Polishing Processes

Sergey L. Belopukhov Department of Inorganic and Analytical Chemistry. K.A.Timirjazev Moscow Agricultural Academy.

Brush Plating of Nickel-Tungsten Alloy for Engineering Application

EXPERIMENT 10 Chemistry 110. Solutions Part 2 ACIDS, BASES, AND ELECTROLYTES

Defense Technical Information Center Compilation Part Notice

Surface Treatment of Titanium

EXPERIMENTAL INVESTIGATION OF PCM USING RESPONSE SURFACE METHODOLOGY ON SS316L STEEL

DX2202 Duplex stainless steel

Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.

Enhanced version of 316/316L austenitic stainless steel. Better material performance at a lower cost. Juha Kela Juha Kela / 316plus

CHAPTER Naming Ions. Chemical Names and Formulas. Naming Transition Metals. Ions of Transition Metals. Ions of Transition Metals

EXPERIMENT 7 Reaction Stoichiometry and Percent Yield

Special coating Corrotect. Anti-corrosion protection for rolling bearings and precision components

BIOACTIVE COATINGS ON 316L STAINLESS STEEL IMPLANTS

Welding and Corrosion Performance of INCO-WELD 686CPT Filler Metal In Waste-To-Energy Power Plants

ROLLING AND SURFACE COATING OF STEEL

ZINCROLYTE VS DUPLEX 700

OLIVÉR BÁNHIDI 1. Introduction

Experimental Investigation on Micro-Welding of Thin Stainless Steel Sheet by Fiber Laser

ALLOY 6022 SHEET. Higher Strength with Improved Formability SUPPLYING THE WORLD S BEST

Basic Properties and Application of Auto Enamels

AESF Aerospace / Airline Plating Forum - Tulsa, OK.

The Kleingarn Regenerated Spent Acid at Increasing Ferrous (Fe +2 ) and Ferric (Fe +3 ) Chloride Content

Localised corrosion of stainless steels depending on chlorine dosage in chlorinated water

Metals and Non-metals. Comparison of physical properties of metals and non metals

EXPERIMENT 8: Activity Series (Single Displacement Reactions)

Methods for evaluating the appearance of hot dip galvanized coatings

Standard Specification for Chromium and Chromium-Nickel Stainless Steel Plate, Sheet, and Strip for Pressure Vessels and for General Applications 1

Elemental Analyses by ICP-AES

DEVELOPMENT OF SURFACE TREATMENT FOR THERMALLY AND MECHANICALLY LOADED PARTS OF COMBUSTION ENGINES

Experiment 7: Titration of an Antacid

EXPERIMENT 5. Molecular Absorption Spectroscopy: Determination of Iron With 1,10-Phenanthroline

High-strength and ultrahigh-strength. Cut sheet from hot-rolled steel strip and heavy plate. voestalpine Steel Division

stainless steel for coastal and salt corrosion DESIGNER HANDBOOK TABLE OF CONTENTS: INTRODUCTION CASE STUDY ONE: STREET LEVEL APPLICATIONS

Duplex stainless steels

North American Stainless

STRUCTURAL STEELS. Steel Grades S185 S235JR S235JRG2 S235JO S235J2G3 S235J2G4 S275JR S275JO S275J2G3 S275J2G4 S355JR S355JO S355J2G3 S355J2G4

DURABILITY OF MORTAR LININGS IN DUCTILE IRON PIPES Durability of mortar linings

ATI 2205 ATI Technical Data Sheet. Duplex Stainless Steel GENERAL PROPERTIES. (UNS S31803 and S32205)

North American Stainless Long Products

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

The formation of polluted mine water

Discovering Electrochemical Cells

SCH 4C1 Unit 2 Problem Set Questions taken from Frank Mustoe et all, "Chemistry 11", McGraw-Hill Ryerson, 2001

GREY RELATIONAL ANALYSIS TO OPTIMIZE WELDING PARAMETERS FOR DISSIMILAR SHEETS OF MATERIAL IN RESISTANCE SPOT WELDING

Chapter 8 - Chemical Equations and Reactions

PAINTING OVER HOT DIP GALVANIZED STEEL

Chemistry 65 Chapter 6 THE MOLE CONCEPT

Phase. Gibbs Phase rule

Paper No APPLICATION OF EQCM TO THE STUDY OF CO2 CORROSION

Transcription:

Journal of Metals, Materials and Minerals, Vol.20 No.2 pp.1-6, 2010 Pickling Behavior of AISI 304 Stainless Steel in Sulfuric and Hydrochloric Acid Solutions Wanna HOMJABOK 1*, Siriwan PERMPOON 2 and Gobboon LOTHONGKUM 1* 1 Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Patumwan, Bangkok 10330, Thailand 2 Thainox Stainless Public Company Limited, 324 Moo 8, Highway no. 3191 Road, Tambol Mabkha, Nikom Pattana, Rayong 21180, Thailand Abstract Oxide scales as well as a Cr-depleted layer, which grows between the oxide scale and base metal, are formed on AISI 304 stainless steel surface during high temperature processing. Pickling is an important process which includes mechanical and chemical operations to remove oxide scales, Cr-depleted layers, and to recover the surface passivity. The multi-step pickling is commonly used because of its higher efficiency than a single step pickling. In this study, the multi-step pickling of AISI 304 stainless steel in HCl solution was investigated instead of H 2 SO 4 solution for the first step of pickling. HF+HNO 3 mixed acid is traditionally used in the second step of pickling. The pickling mechanism of HCl and H 2 SO 4 was discussed based on weight loss and the pickled surface qualities. It was found that the first step pickling efficiency directly affected the surface qualities of the final pickled sample. HCl solution showed much lower pickling efficiency than H 2 SO 4 solution. This resulted in a high concentration of remaining oxide scales and intergranular attack at the Cr-depleted layer, which cannot be completely removed in the second pickling step. Increasing of HCl concentration and electrolytic current did not improve the pickling efficiency. The addition of a small amount of H 2 O 2, which is a strong oxidizing agent, significantly improves the pickling efficiency of HCl. A smooth surface without any oxide scale and free of intergranular attack could be obtained. Key words: Pickling, Hydrochloric acid, Sulfuric acid, Scale, Stainless steel Introduction Acid pickling is an important step for the production of cold rolled stainless steel plates. Its aim is to remove the oxide scale as well as a Cr-depleted layer growing between the oxide scale and the base material. Oxide scale and Cr-depleted layer are formed during high temperature processing. Removing oxide scale processes consists of mechanical descaling and pickling. In mechanical descaling, scale breaker and shot blasting were used to break up the oxide scale. This results in easily penetrating the pickling solution into oxide scales and enhances the pickling efficiency. (1-5) Multi-step pickling is used for the pickling process because it has higher efficiency and better surface quality than single step. (6-7) In the first step, electricity was used in order to increase the pickling efficiency. (8) In this step, the mechanism is that the solution penetrates into metal Cr-depleted layer and the oxide scale is undercut and removed. (6) The acid type and concentration have a strong influence on the surface finish quality. For the second step, HF+HNO 3 has become widely accepted and used for removing the remaining oxide scale and passivation. (8) The sequence at which the pickling steps are used influences the surface finish significantly. H 2 SO 4 is a cheap acid and has a good pickling efficiency, which can be improved by being used together with electricity, so that H 2 SO 4 with electricity is generally used for the first step. However, H 2 SO 4 pickling causes black smut forming. Even though black smut can be removed by HF+HNO 3 in the next step, the surface finish has high roughness and intergranular attack. In this study, the multistep pickling behavior of AISI 304 austenitic stainless steel in HCl solution was experimented for replacing H 2 SO 4 solution in the first step, and the HF+HNO 3 mixed acid solution was used traditionally in the second step. HCl pickling has a uniform dissolution behavior with no intergranular attack. (8-10) Results were discussed *Corresponding author E-mails: whomjabok@yahoo.com, Gobboon.L@chula.ac.th

2 HOMJABOK, W. et al. based on weight loss and surface finish of the pickled samples. Materials and Experimental Procedures Material AISI 304 austenitic stainless steel strips were hot-rolled down to a thickness of 3 mm. The chemical composition of this material is listed in Table 1. After mechanical descaling process, test samples of 25x50x3 mm were cut. Subsequently, only the unexposed area was painted with EPIGEN XD005 (acid-resistant at high temperature), and cleaned with acetone and ethanol. The test samples were finally dried with air and kept in a desiccator before experiment. Table 1. Chemical composition (wt%) of AISI 304 stainless steel used in this study, analyzed by Optical Emission Spectrometer (OES). Element C Cr Ni Mn Si P S Fe Content (wt%) Pickling 0.04 18.1 8.03 1.076 0.342 0.029 0.001 Balanced To prepare the HCl, H 2 SO 4, HF and HNO 3 electrolytes, analytical grade was used. A purity of 50% of H 2 O 2 was used in this study. During pickling, temperature was controlled constantly in a water bath with constant stirring. After pickling, the samples were rinsed with tap water and brushed for removing any reaction products. The first step of pickling conditions was 4.0, 4.5, 5.0, 6.0-M HCl at 85 C or 4.0-M HCl with electricity at 85 C or 4.0-M H 2 SO 4 with or without electrolytic at 85 C or 4.0-M HCl + 0, 5, 10, 15 g/l H 2 O 2 at 60 C depending on the purposed tests. After the first step of pickling, the 1.0-M HF+1.0-M HNO 3 mixed acid solution at 45 C was traditionally used in the second step. Figure 1. Remaining oxide evaluations, after the in-house standard, on 6-area observations on test sample surface at 200X. Results and Discussion HCl solution was investigated instead of H 2 SO 4 solution for the first step of pickling. HF+HNO 3 mixed acid solution was still traditionally used in the second step. The traditional and studied conditions for this experiment are shown in Figure 2. The total weight loss resulting from those multi-step pickling conditions is shown in Figure 3. The weight loss of H 2 SO 4 condition was high, but some oxide scales remained on the pickled surface in level 2 as shown in Figure 4(a). Pickling by H 2 SO 4 solution with electricity followed by HF+HNO 3 solution increased the weight loss and allowed achieving a surface finish free of any oxide scale as shown in Figures 3 and 4(b), respectively. Figure 2. Multi-step pickling of AISI 304 stainless steel between the traditional and studied conditions. Characterization The surface finish was characterized with roughness profiler (Telescan 150) for surface roughness. Optical microscope (OM) at 200X and scanning electron microscopy (SEM) at 3000X were used for analysis of the remaining oxide level. Figure 1 shows the evaluation of the remaining oxide on the sample surface after the inhouse standard. Figure 3. Total weight loss of multi-step pickling of AISI 304 stainless steel in H 2 SO 4 at 85 C or HCl at 85 C followed by HF+HNO 3 at 45 C.

Pickling Behavior of AISI 304 Stainless Steel in Sulfuric and Hydrochloric Acid Solutions 3 The case of HCl pickling instead of H 2 SO 4 pickling showed that HCl had lower pickling efficiency than H 2 SO 4 (Figure 3) and many oxide scales remained (Figure 4(c)). Increasing HCl concentration and HCl pickling with electricity did not result in increasing the pickling efficiency to be higher than H 2 SO 4 pickling efficiency. The surface finish of HCl pickling had a rougher surface and more intergranular attack than H 2 SO 4 pickling as shown in Figure 4(d). The result was not the same as reported by Li et al. (2008) who stated that uniform dissolution and no intergranular attack were observed by HCl pickling. (a) (b) 4.0 M H 2 SO 4 ; 85 C Roughness (Rq) = 3.29 μm Remaining oxide level 2 4.0 M H 2 SO 4 (Electricity); 85 C (d) 4.0 M HCl (Electricity); 85 C Roughness (Rq) = 3.51 μm Figure 4. SEM surface characterization of AISI 304 stainless steel after multi-step pickling. To understand the pickling mechanism by both HCl and H 2 SO 4 in the first pickling step, which has a significant effect on the final surface finish after HF+HNO 3 pickling, weight loss was analyzed step by step as shown in Figure 5, and the surface was characterized by SEM as shown in Figure 6. HCl pickling had much lower weight loss than H 2 SO 4 pickling, and the surfaces of both samples were covered with oxide scale (Figure 6(a) and 6(b)). HCl pickling had smooth surface compared with H 2 SO 4 pickling. After the second pickling step with HF+HNO 3, HCl pickling had higher weight loss than H 2 SO 4 pickling and the intergranular attack became more pronounced on surface finish (Figure 6(c) and 6(d)). (c) Roughness (Rq) = 3.30 μm 4.0 M HCl; 85 C Figure 5. Step by step weight loss of AISI 304 stainless steel after pickling in 4.0 M H 2 SO 4 at 85 C or 4.0 M HCl at 85 C followed by HF+HNO 3 at 45 C. 4.0 M H 2 SO 4 ; 85 C (a) Roughness (Rq) = 3.34 μm Roughness (Rq) = 3.81 μm

4 HOMJABOK, W. et al. (b) (c) 4.0 M HCl; 85 C Roughness (Rq) = 3.15 μm 4.0 M H 2 SO 4 ; 85 C undercutting. Most oxide scales, but only some Cr-depleted layers, are removed. The surface is rough because H 2 SO 4 pickling behavior is non-uniform dissolution. In the next step of the pickling process by the selective dissolution of HF+HNO 3, an intergranular attack appears. The remaining oxide scale and Cr-depleted layer are almost removed. The final surface finish is completely free of oxide scales. The evolution of the surface finish after pickling in HCl followed by a pickling in HF+HNO 3 is shown in Figure 7(b). The same mechanism as H 2 SO 4 is obtained. However, HCl has lower pickling efficiency than H 2 SO 4. Most of the oxide scales and Cr-depleted layers still remain. The observed surface is smooth because HCl pickling behavior is uniform dissolution. By HF+HNO 3 pickling in the second step, intergranular attack appears because of a selective dissolution on the remaining Cr-depleted layer. Roughness (Rq) = 3.29 μm 4.0 M HCl; 85 C (d) Roughness (Rq) = 3.34 μm Figure 6. SEM surface characterization of AISI 304 stainless steel after multi-step pickling under the same conditions as in Figure 5. According to the previous results (Figures 5 and 6) and discussion, the evolution of surface during multi-step pickling in H 2 SO 4 and HCl solutions followed by HF+HNO 3 can be described as in Figure 7(a) and 7(b), respectively. The original metal surface consists of oxide scale, Cr-depleted layer and base metal. On H 2 SO 4 pickling in the first step, H 2 SO 4 transports into oxide scale. Then, the Cr-depleted layer is attacked or dissolved. Finally, the oxide scale is removed by Figure 7. The multi-step pickling mechanism models of intergranular attack. According to the mechanism, the most important finding is that the surface finish obtained from multi-step pickling is greatly affected by the pickling efficiency of the first step. Multi-step pickling will successively allow achieving a smooth surface finish free of any oxide scale when a high enough pickling efficiency with uniform dissolution in the first step is available. The result illustrates that increasing of HCl concentration and electrolytic currents were not enough to improve its pickling efficiency to be more than the H 2 SO 4 efficiency. The addition of H 2 O 2, which is a strong

Pickling Behavior of AISI 304 Stainless Steel in Sulfuric and Hydrochloric Acid Solutions 5 oxidizing agent, possibly improved the pickling efficiency of HCl. The temperature for this study must be fixed at 60 C because H 2 O 2 decomposes at temperatures higher than 60 C. (c) 4.0 M HCl+10g/L H 2 O 2 ; 60 C Roughness (Rq) = 2.92 μm 4.0 M HCl+15g/L H 2 O 2 ; 60 C Figure 8. Step by step weight loss of AISI 304 stainless steel by pickling with H 2 SO 4 (Electricity) at 85 C or HCl at 60 C or HCl+H 2 O 2 at 60 C followed by HF+HNO 3 at 45 C. Addition of H 2 O 2 to improve the pickling efficiency of HCl in the first step resulted in increasing weight loss and effected on the second step pickling by HF+HNO 3 by decreasing weight loss, as shown in Figure 8. It also reduced intergranular attack and delivered a smooth surface finish as shown in Figure 9(c) and 9(d). Multi-step pickling was successive at 10g/L H 2 O 2 added to HCl solution. It allowed achieving a higher pickling efficiency than H 2 SO 4 efficiency, a smooth surface finish free of oxide scales, and no intergranular attack. (a) (b) 4.0 M H 2 SO 4 (Electricity); 85 C Roughness (Rq) = 3.30 μm 4.0 M HCl; 60 C (d) Figure 9. SEM surface characterization of AISI 304 stainless steel after pickling in H 2 SO 4, HCl, HCl + H 2 O 2 solutions followed by HF+HNO 3 at 45 C. Conclusions Roughness (Rq) = 2.95 μm The multi-step pickling of AISI 304 stainless steel in HCl solution as the first step followed by HF+HNO 3 as the second step was investigated. Mechanism models of pickling by HCl or H 2 SO 4 in the first step were proposed. The following conclusions can be drawn from this study: 1. HCl solution has lower pickling efficiency than H 2 SO 4 solution. 2. HCl solution can not completely remove Cr-depleted layer and oxide scale. 3. H 2 O 2 addition can improve pickling efficiency of the HCl solution. The addition of 10g/L H 2 O 2 is enough to deliver a smooth surface without any oxide scales and free of intergranular attack after HF+HNO 3 pickling. Acknowledgements The authors would like to thank the Research and Development Center of Thainox Stainless Public Company Limited for test samples, Roughness (Rq) = 3.24 μm

6 HOMJABOK, W. et al. discussion and analysis equipment. We would also like to express our gratitude to the Thailand Research Fund (TRF) and the Office of Small and Medium Enterprises Promotion (OSMEP) for the research fund, content number MRG-OSMET 505034. 10. Li, L.F. (2002). Pickling and re-pickling of stainless steel with UGCO and UG3P +H 2 SO 4 electrolytes. Internal review report Alz-Arcelor France. References 1. Lacombe, P., Baroux, B. & Beranger, G. (1993). Stainless steel (1 st ed.). Les Editions de Physique Les Ulis, France. 2. Davis, J.R. (Ed.). (1996). Stainless steel; ASM specialty handbook. Ohio, OH: ASM International. 3. Fontana, M.G. (1987). Corrosion engineering (3 rd ed.); Materials science and engineering series. Singapore : McGraw-Hill. 4. Jones, D.A. (1997). Principles and prevention of corrosion (2 nd ed.). Singapore : Prentice Hall. 5. Ratanamongkolthaworn, S. (2007). Effects of sulfuric acid concentration, temperature, ferrous and ferric ion contents on pickling behavior of AISI 304 stainless steel. Master Thesis in Metallurgical Engineering. Chulalongkorn University. 6. Li, L.F., Caenen, P., Daerden, M., Vaes, D., Meers, G., Dhondt, C. & Celis, J.P. (2005). Mechanism of single and multiple step pickling of 304 stainless steel in acid electrolytes. Corros. Sci. 47(5) : 1307-1324. 7. Li, L.F. & Celis, J.P. (2004). Intergranular corrosion of 304 stainless steel pickled in acidic electrolytes. Scripta Mater. 51(10) : 949-953. 8. Li, L.F. (2002). Pickling of austenitic stainless Steels. Internal review report Alz-Arcelor France. 9. Li, L.F., Caenen, P. & Celis, J.P. (2008). Effect of hydrochloric acid on pickling of hot-rolled 304 stainless steel in iron chloride-based electrolytes. Corros. Sci. 50(3) : 804-810.