Microbiological quality assessment of some brands of cosmetics powders sold within Jos Metropolis, Plateau State

Similar documents
Microbial Evaluation of Some Non-sterile Pharmaceutical Preparations Commonly Used in the Egyptian Market

LAB 4. Cultivation of Bacteria INTRODUCTION

WHY IS THIS IMPORTANT?

Sampling of the surface contamination using sterile cotton swabs from toys obtained from

Raw Milk Quality Tests Do They Predict Fluid Milk Shelf-life or Is it time for new tests?

How To Interpret Laboratory Results for Airborne Fungal (Mould) Samples

ble spore suspension may be maintained at 2 to 8 for a validated

UTILIZATION of PLASMA ACTIVATED WATER in Biotechnology, Pharmacology and Medicine. JSC TECHNOSYSTEM-ECO Moscow, Russia April, 2009

Welcome to Implementing Inquirybased Microbial Project. Veronica Ardi, PhD

Testing of disinfectants

Hand Hygiene and Infection Control

Gelatin Hydrolysis Test Protocol

FACULTY OF MEDICAL SCIENCE

BACTERIA COUNTS IN RAW MILK

Microbiological Quality of Blister Pack Tablets in Community Pharmacies in Jordan

Presentation at the 3 rd SAFOODNET seminar

Laboratory Exercise # 11: Differentiation of the Species Staphylococcus and Streptococcus

New solutions for in-can preservation in the making for Europe

PETITION FOR EVALUATION AND APPROVAL OF REGULATED MEDICAL WASTE TREATMENT TECHNOLOGY PART A: GENERAL INFORMATION

Prevention and control of infection in care homes. Summary for staff

BD Modified CNA Agar BD Modified CNA Agar with Crystal Violet

Preservatives & Cosmetic Micro Regulations in the EU

FOOD QUALITY AND STANDARDS Vol. III - Testing Methods in Food Microbiology - Tibor Deak TESTING METHODS IN FOOD MICROBIOLOGY

Isolation and Identification of Bacteria Present in the Activated Sludge Unit, in the Treatment of Industrial Waste Water

Disc Diffusion Susceptibility Methods

Antimicrobial Activity of Tamarindus indica Linn

Environmental Monitoring in Isolators and Clean Rooms ICR settle and contact plates ICRplus contact plates

N-methyl-1,2-benzisothiazol-3(2H)-one (MBIT) New Solution for In-can Preservation

3M Food Safety. Quality Solutions. for. Testing Times

Lab Exercise 3: Media, incubation, and aseptic technique

Challenges in the Food Industry. Nuno Reis Workshop on Microbial Safety in Food Industry Using Rapid Methods 1

Media fills Periodic performance qualification (Re-Validation)

MODULE 2D ENVIRONMENTAL MICROBIOLOGICAL LABORATORY ACCREDITATION PROGRAM (EMLAP) ADDITIONAL REQUIREMENTS

Effect of herbicide (atrazine and paraquat) application on soil bacterial population

Testing Waste Water for Fecal Coliforms and/or E.coli using Colilert and Colilert -18 & Quanti-Tray

62 MICROBIOLOGICAL 9518, CIP 4.83, or NBRC 13276

A faster and more economical alternative to the standard plate count (SPC) method for microbiological analyses of raw milks

Microorganisms in water

7- Doctoral Degree in Public Health and Public Health Sciences (Majoring Microbiology)

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES

Microbiological Testing of the Sawyer Mini Filter. 16 December Summary

GUIDELINES FOR THE REGISTRATION OF BIOLOGICAL PEST CONTROL AGENTS FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS

International Journal of Research and Reviews in Pharmacy and Applied science.

URINE CULTURES GENERAL PROCEDURE

7- Master s Degree in Public Health and Public Health Sciences (Majoring Microbiology)

Lab Exercise 2 Media and Culture

Bio-deterioration of sweet potato (ipomoea batatas lam) in storage, inoculation-induced quality changes, and control by modified atmosphere

This project is financed by the EUROPEAN UNION. HACCP Case study Feta cheese

Schedule of Accreditation issued by United Kingdom Accreditation Service High Street, Feltham, Middlesex, TW13 4UN, UK

Testing Surface Disinfectants

Introduction. Contamination sources

THE EFFECT OF SOIL DISINFECTION WITH CHEMICAL AND ALTERNATIVE METHODS ON FUNGAL AND BACTERIAL POPULATIONS

IDENTIFICATION OF UNKNOWN BACTERIA

IDENTIFICATION OF UNKNOWN BACTERIA

Test Method for the Continuous Reduction of Bacterial Contamination on Copper Alloy Surfaces

Introduction to Medical Microbiology

KATHON CG Preservative

Environmental Monitoring

Course Descriptions. I. Professional Courses: MSEG 7216: Introduction to Infectious Diseases (Medical Students)

STUDIES ON THE AIR QUALITY IN A DAIRY PROCESSING PLANT

62 MICROBIOLOGICAL Pseudomonas aeruginosa such as ATCC 9027, NCIMB

Introduction. Introduction. Why do we need microbiological diagnostics of udder infections? Microbiological diagnostics How is it done?

Medical Microbiology Culture Media :

ENUMERATION OF MICROORGANISMS. To learn the different techniques used to count the number of microorganisms in a sample.

National Food Safety Standard Food microbiological examination: Aerobic plate count

ABSTRACT. CFU/ml in case of air water syringe, log 10 CFU/ml in case of high speed air turbine hand-piece and log 10

GCSE BITESIZE Examinations

ENUMERATION OF SULPHITE-REDUCING CLOSTRIDIA FROM DRINKING WATER AND RIVERS IN BASRAH CITY USING MODIFIED DRCM MEDIUM

Principles of Microbiological Testing: Methodological Concepts, Classes and Considerations

FOUR-YEAR DEGREE PROGRAMME I MICROBIOLOGY YEAR I

Modelling of Effects of Water Activity, ph and Temperature on the Growth Rate of Mucor racemosus Isolated from Soft Camembert Cheese

Presentation at the 3 rd SAFOODNET seminar

BD CLED Agar / MacConkey II Agar (Biplate)

Olive polyphenols (encapsulated in maltodextrin) derive from olive fruits by physical treatments only.

Biological Sciences Initiative

Bioburden of Garri Stored in Different Packaging Materials under Tropical Market Conditions

Use of Chlorine in the Food Industry

INOCULATION PROCEDURES FOR MEDIA QC

Water Activity (a w. ) in Foods WHITEPAPER CONTENTS SUMMARY

Assessment of Bacteria and Fungi in air from College of Applied Medical Sciences (Male) at AD-Dawadmi, Saudi Arabia

WHY IS THIS IMPORTANT?

Preservatives for Personal Care

The Financial Benefits of the MicroSEQ Microbial Identification System

In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi

HOW TO WRITE AN UNKNOWN LAB REPORT IN MICROBIOLOGY

Transferring a Broth Culture to Fresh Broth

Delaware. Downloaded 01/2011

Predictive microbiological models

BLOOD CULTURE. Its Role in the Management of the Septic Patient

BACHELOR OF SCIENCE IN MICROBIOLOGY

Hygiene Assessment of the Performance of Food Safety Management System Implemented by Abattoirs in Edo State, Nigeria

Approaches to Infection Control

CLOTHING TO PROTECT AGAINST INFECTION

Food safety risk management in bakeries

THE ROLE OF RISK ANALYSIS IN THE FOOD QUALITY & SAFETY MANAGEMENT SYSTEMS

Science in the Real World Microbes In Action

Medical Microbiology Microscopic slides and media

Enteric Unknowns Miramar College Biology 205 Microbiology

Jeswin Philip, Sheila John and Priya Iyer*

Transcription:

Journal of Microbiology and Biotechnology Research J. Microbiol. Biotech. Res., 2011, 1 (2): 101-106 (http://scholarsresearchlibrary.com/archive.html) ISSN : 2231 3168 CODEN (USA) : JMBRB4 Microbiological quality assessment of some brands of cosmetics powders sold within Jos Metropolis, Plateau State Michael Macvren Dashen *1, Patricia Fremu Chollom 1, Juliet Ngueme Okechalu 1 and Josephine Ashulee Ma aji 1 Dept. of Microbiology, Faculty of Natural Sciences, University of Jos, P.M.B. 2084, Jos, Nigeria ABSTRACT The study was aimed at determining the microbiological quality of some brands of cosmetic powders sold within Jos metropolis. Staphylococcus aureus, Clostridium tetani, Pseudomonas aeruginosa, Candida albicans were specifically targetted. A total of 60 samples; 20 each of three different brands of cosmetic powders were analyzed. The mean aerobic plate counts obtained were 1.6 x 10 4 cfu/g, 2.3 x 10 4 cfu/g and 4.5 x 10 5 cfu/g while the mean yeast and mould counts were 1.1x 10 4 cfu/g, 1.4 X 10 4 cfu/g and 2.7 X 10 4 cfu/g. Thirty (50 %) of the samples analyzed were contaminated with Staphylococcus aureus, twelve (20 %) were contaminated with Clostridium tetani and four (7 %) were contaminated with Candida albicans. Bacillus spp was also isolated from four (7 %) samples while Pseudomonas aeruginosa was not isolated from any of the samples analyzed. The moulds isolated from the cosmetic powders include; Aspergillus niger, Apergillus fumigatus, Penicillium spp., Rhizopus oligosporus, Fusarium spp. Key words: Microbiological Quality assessment, Cosmetics Powders, Sold, Jos Metropolis. INTRODUCTION The ability of microorganisms to grow and reproduce in cosmetic products has been known for many years. Microorganisms may cause spoilage or chemical changes in cosmetic products and injury to users. Cosmetic products are topical applications for diverse dermatological uses [8]. These groups of products are widely useful and therefore a description of their functions can vary from decorative to protective. A powder is a decorative cosmetic product used by both men and women to improve their looks and also inhibit the growth of bacterial pathogen which may cause unpleasant odour and sometimes skin infections [8]. Many ingredients such as zinc oxide, 101

titanium dioxide, essential oils e.t.c. are added to provide the characteristics of a good powder, talc help it to spread easily [13]. Cosmetic powder comes packaged either as a compact powder or in a loose powder container which is used for make-up. It can also be reapplied throughout the day to minimize shinning of oily skin. It can be applied with a sponge, brush or powder puff. Because of the wide variation among human skin tones, there is a corresponding variety of colours of cosmetic powder. Besides toning the face, most make-up powders are available with sun protection fraction (SPF) that helps prevents pigmentisation of the skin under the sun [1]. Cosmetic powders have some positive effects on a person s appearance which include; reducing wrinkles and puffiness, it hides the blemishes and the dark circles, it helps in reducing the fine lines, it also give beautiful and clean appearances to the skin [17]. However, the critics have also pointed out the negative effects of cosmetic powders on a person s appearance which include; that the powder can not put a stop to the ageing process as the wrinkles return after a certain period of time, also, it was established that some cosmetic powders are contaminated with moulds and other microorganisms [9]. Cosmetic powders are sometimes contaminated with micro-organisms such as Staphylococcus aureus, Psuedomonas aeruginosa, Clostridium tetani, yeasts and moulds, which can either be from the raw materials or during manufacturing, processing, breakage or damage of the cosmetic powder container, at the retail market due to the presence of dust, also during usage of product [16]. Contamination of cosmetic powder by micro-organisms such as Clostridium tetani, Staphylococcus aureus, moulds and yeast e.t.c. may cause serious disease of the skin and mucous membrane which are difficult to cure in several cases [16]. It is also reported that some of these cosmetic powders are contaminated with spores of micro-organisms and can support their growth when they are poorly preserved [8]. It is against this background that the microbiological quality of some brands of cosmetics powders sold parts of Jos metropolis was analysed to determine their safety. MATERIALS AND METHODS Sample Collection A total of 60 samples, 20 each of three different types cosmetic powders two commonly used by adults and one for babies) designated sample A, sample B and sample C were purchased from different parts of Jos metropolis, transported to the laboratory and analyzed. Media Used Blood agar was used for the isolation of Clostridium tetani and Pseudomonas aeruginosa. Mannitol Salt agar was used for the isolation of Staphylococcus aureus, Plate count agar (PCA) was used to determine the bacterial load of the cosmetic powders and Sabauroud s Dextrose agar (SDA) was used for the isolation and enumeration of yeasts and moulds. All of the media mentioned above were prepared under aseptic conditions according to the manufacturers specifications. 102

Aerobic Plate Count of the Cosmetic Powders A stock sample of each cosmetic powder was prepared. A five-fold serial dilution was made and aliquots of the last two dilutions were inoculated on Plate Count agar (PCA) in duplicates using the pour plate method. All the plates were incubated at 37 0 C for 24 hours followed by colony count. Results were expressed as colony forming unit per gram (cfu/g). Yeasts and Moulds Count of the Cosmetic Powders One ml of the last two dilutions mentioned in prepared above were inoculated on SDA plates using pour plate method. The plates were then incubated at 25 0 C for 24 hours. Colonies were counted after three days. Results of colony count was expressed as yeasts and moulds counts per gram. Identification of Bacterial Isolates All bacterial isolates were identified based on their Gram reaction and biochemical reactions as described by U.S.FDA manual online [19], [7, 6]. Identification of fungal Isolates All fungal isolates were identified based on their macroscopic and microscooic appearance with reference to mannuals of Barnett and Hunter, [4], [14, 10]. RESULTS The results obtained shows that the bacterial load of cosmetic powder A ranges from 4.6X10 3 to 1.3X10 4 cfu/g with a mean bacterial load of 4.5 X 10 5 cfu/g. The bacterial load of cosmetic powder B ranges from 4.6 X 10 3 to 1.1 X 10 4 cfu/g with a mean bacterial load of 2.3 X 10 4 cfu/g while that of cosmetic powder C ranges from 4.2 X 10 3 to 1.3X10 4 cfu/g with a mean bacterial load of 1.6 X 10 4 cfu/g (Table 1). Cosmetic powder C had the highest mean count of yeasts and moulds of 2.7 X 10 4 cfu/g followed by Cosmetic powder B with mean count of 1.4 X 10 4 cfu/g and the least was Cosmetic powder A with mean count of 1.1 X 10 4 cfu/ml (Table 2). Out of the 60 samples of cosmetic powders that were analyzed Staphylococcus aureus was isolated from 30 (50 %) samples, Clostridium tetani was isolated from 24 (20 %) samples, Candida albicans was isolated from 8 (7 %) samples (Table 3). Moulds such as Aspergillus niger, Penicillium spp, Aspergillus fumigatus, Rhizopus oligosporus, Mucor plumbeus, Fusarium spp were isolated from the cosmetic powders with Aspergillus niger having the highest frequency of occurrence of 14 (47 %), followed by Rhizopus oligosporus of 10 (17 %) samples and the least being Aspergillus fumigatus, Mucor plumbeus and Penicillium spp which were isolated from two samples each (Table 4). Table 1: Aerobic Plate Count (APC) of the Cosmetic Powders (cfu/g) Cosmetic Powder Range of APC Mean A 1.3 X 10 4 4.6 X 10 3 4.5X10 5 B 1.1 X 10 4 2.4 X 10 4 2.3X10 4 C 1.3 X 10 4 2.6 X 10 4 1.6X10 4 TOTAL MEAN 1.6 X 10 5 103

Other organisms isolated from the cosmetic powders were Bacillus species from 4 (7 %) samples, Pseudomonas aeruginosa which was one of the target organism was not isolated from any sample. Table 2: Yeasts and Moulds Count of the Cosmetic Powders (cfu/g) Cosmetic Powder Range of APC Mean A 0.0 2.0 X 10 4 1.1 X 10 4 B 3.8 X 10 3 2.6 X 10 4 1.4 X 10 4 C 3.5 X 10 3 2.6 X 10 4 2.7 X 10 4 TOTAL MEAN 1.7 X 10 4 Table 3: Frequency of the Occurrence of the Target Organisms in the Cosmetic Powders Sample No. analyzed No. positive No. positive No. positive for for for S. aureus Cl. tetani C. albicans A 20 12 (60%) 2 (10%) 2 (10%) B 20 8 (40%) 4 (20%) - C 20 10 (50%) 6 (30%) 4 (10%) Total 60 30 (50%) 12 (20%) 4 (20%) DISCUSSION Based on the findings of this work, the cosmetic powders analyzed are more contaminated with fungi than with bacteria. In a similar study, [11] and [15] also reported more of bacterial than fungal contamination. Fungal and bacterial contaminants in unused cosmetic powder are common because of the environment in which the powders are manufactured, packed and the ingredients themselves [8, 15].. The guidelines on microbiological quality of finished cosmetic products have defined cosmetic powders into two categories; Category 1 Cosmetic powders specifically intended for children under 3 years and Category 2 for other cosmetic powders [3]. The limit for cosmetic powder classified in category 1 is that viable count for aerobic mesophillic micro-organisms should not be more than 10 2 cfu/ml or g in 0.5 g or millitre of the powder [2]. Based on this limits, the aerobic plate count of all cosmetic powder B (a baby powder) analyzed were above the acceptable limit with a total mean count of 2.3 X 10 4 cfu/g. The high count may be due to environmental contamination during mining or processing of the talc (main ingredient) used or during manufacturing of the baby powders itself. The limit for cosmetic powder classified in category 2 is that the total viable count for aerobic mesophillic micro-organism should not be more than 10 3 cfu/g or ml in 1 g or millitre of the product [2]. Based on this information, the aerobic plate cont of both cosmetic powders A and B (use by adults) were above the acceptable limit which also agrees with the findings of Ashour et al., [1]. The isolation of Staphylococcus aureus as the most predominant contaminant tallies with the findings of Ashour et al. [1]. 104

Clostridium tetani was isolated from 20% of the cosmetic powders analysed which also agrees with the findings of Ashour et al. [1] who also reported the isolation of Clostridium spp. in cosmetic powders. The presence of the organism poses a serious danger to the user, because the tetanus toxin produce by the organism is lethal to human (at dose of approximately 1 ng.kg) especially neonatal cases. A serious tetanus neonatorum outbreak from talcum powders contaminated with Clostridium tetani in New Zealand was reported by Brazier et al. [5]. The organism gain entrance into the body through cuts on the skin thereby causing infection. The organism is an inhabitant of the soil, which may contaminate the main raw material (talc) of the talcum cosmetic powder [18]. The isolation of Candida albicans from the cosmetic powders though at low frequency is also of concern because when these powders contaminated with Candida albicans are used on genital areas and sanitary napkins it may lead to vaginal candidiasis and also oral candidiasis when the powder mistakenly gets into the mouth of user [12]. Contamination of cosmetic powders may derive from a variety of sources such as raw materials, manufacturing, storage and packaging or use. Cosmetics powders are not expected to be aseptic; however, the must be completely free of high virulence microbial pathogens, and the total number of aerobic microorganisms per gram must be low [12, 11]. CONCLUSION It can be concluded from the findings of this research work that all the cosmetic powders analyzed are of poor microbiological quality since their bacterial load are above standards. The presence of organisms such as Clostridium tetani, Staphylococcus aureus and Candida albicans in the cosmetic powders implies that they can serve as vehicles for the transmission of these pathogenic organisms. REFERENCES [1] MSE Ashour; AA Abdelaziz and Hefni, H. 2008. Journal of Clinical Pharmacy and Therapeutics, 14: 207-212. [2] AOAC International. 2001. Official methods of analysis, 17 th edition method. 998. 10. AOAC International, Gaithersburg, MD. Pp 1-14. [3] AOAC International. 2002. Journal of AOAC International 84(3): 671-675. [4] HL Barnett and BB Hunter 1972. Illustrated Genera of Imperfect fungi. Burgess Publishing Company, Minneapolis, Pp 62 63. [5] JS Brazier; BI Duerden; V Hall; JE Salmon; J Hood; J Brett; M.M Mclauchlin; George, R.C. 2002. Journal of Medical Microbiology. 51: 985-989. [6] M. Chessbrough 2005 Distinct Laboratory Practice in Tropical Countries. 2: 62-70. [7] B.A Cunha 2002. Semin Respiratory Infection, 17: 231-239. [8] MA Duke, 1978, Journal of Applied Bacteriology. 44: SXXXV- SXIII. [9] B Elane, 1989, The hazards of Cosmetics, New York, Hasrper and Row. 1-5. [10] D Ellis, 2006, Mycology online. The University of Adelaide, Australia. [11] S Hashim, 2003, Microbiological Aspect 47: 37-48. 105

[12] AD Hitchins;, TT Tranand; JE MCCaron, 2001, Bacteriological Analytical Mannual. Microbiological methods for Cosmetics. [13] R Josh 2006, Health-and-Fitness Beauty. Bantan Dell Pulishers. 1:105 [14] DC Larone 1995, Medically Important Fungi: A guide to identification. American Society of Microbiology. Washington, DC. 3 rd Ed. [15] L Nasser 2008, Saudi Journal of Biological Sciences, 15 (1) : 121-128. [16] M Pollack 2000. Pseudomonas aeruginosa. principles and practice of infectious diseases. 5 th edition New York. Churchill Livingstone. Pp. 2310-2327. [17] T Stabile 1984, Journal of Cosmetic formulation 1: 1-5. [18] K Todar 2005, Pathogenic clostridia. Ken Todar s microbial world. University of Wisconsin-Madison press. [19] United States Food and Drug Administration, 2001, Bacteriological Analytical Mannual Online: Staphylococcus aureus. FDA/Center for Food Safety and Applied Nutrition. 106