Cognitive Radio Network as Wireless Sensor Network (II): Security Consideration



Similar documents
Detecting Multiple Selfish Attack Nodes Using Replica Allocation in Cognitive Radio Ad-Hoc Networks

Chapter 15. Cognitive Radio Network Security

CHAPTER 1 INTRODUCTION

A survey on Spectrum Management in Cognitive Radio Networks

The Effectiveness of Self-Organizing Network Toolbox (1)

Log-Likelihood Ratio-based Relay Selection Algorithm in Wireless Network

International Journal of Recent Trends in Electrical & Electronics Engg., Feb IJRTE ISSN:

Wireless Sensor Networks Chapter 14: Security in WSNs

Non-negative Matrix Factorization (NMF) in Semi-supervised Learning Reducing Dimension and Maintaining Meaning

Preventing Resource Exhaustion Attacks in Ad Hoc Networks

A Network Flow Approach in Cloud Computing

Bilinear Prediction Using Low-Rank Models

A Review of Anomaly Detection Techniques in Network Intrusion Detection System

Prediction of DDoS Attack Scheme

A SYSTEM FOR DENIAL OF SERVICE ATTACK DETECTION BASED ON MULTIVARIATE CORRELATION ANALYSIS

Background: State Estimation

HYBRID INTRUSION DETECTION FOR CLUSTER BASED WIRELESS SENSOR NETWORK

A NOVEL OVERLAY IDS FOR WIRELESS SENSOR NETWORKS

Problems of Security in Ad Hoc Sensor Network

PATTERN RECOGNITION AND MACHINE LEARNING CHAPTER 4: LINEAR MODELS FOR CLASSIFICATION

Preventing DDOS attack in Mobile Ad-hoc Network using a Secure Intrusion Detection System

The Security of Physical Layer in Cognitive Radio Networks

Clarify Some Issues on the Sparse Bayesian Learning for Sparse Signal Recovery

Lecture Topic: Low-Rank Approximations

Jeffrey H. Reed. Director, (540) Bradley Department of Electrical and Computer Engineering

Vulnerabilities of Intrusion Detection Systems in Mobile Ad-hoc Networks - The routing problem

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

An overview of the IEEE Standard

Detection of DDoS Attack Scheme

A Brief Discussion of Network Denial of Service Attacks. by Eben Schaeffer SE 4C03 Winter 2004 Last Revised: Thursday, March 31

Protecting Privacy Secure Mechanism for Data Reporting In Wireless Sensor Networks

Impact of Feature Selection on the Performance of Wireless Intrusion Detection Systems

Open Access Research on Application of Neural Network in Computer Network Security Evaluation. Shujuan Jin *

Robust Security Solution to Countermeasure of Malicious Nodes for the Security of MANET

A Game Theoretical Framework on Intrusion Detection in Heterogeneous Networks Lin Chen, Member, IEEE, and Jean Leneutre

A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property

Network Security A Decision and Game-Theoretic Approach

An Evaluation of Machine Learning Method for Intrusion Detection System Using LOF on Jubatus

Survey on DDoS Attack Detection and Prevention in Cloud

Big Data Analytics in Future Internet of Things

A Novel Distributed Denial of Service (DDoS) Attacks Discriminating Detection in Flash Crowds

IMPROVED NETWORK PARAMETER ERROR IDENTIFICATION USING MULTIPLE MEASUREMENT SCANS

Thwarting Selective Insider Jamming Attacks in Wireless Network by Delaying Real Time Packet Classification

Algorithms for Interference Sensing in Optical CDMA Networks

Defense in Cyber Space Beating Cyber Threats that Target Mesh Networks

E-commerce Transaction Anomaly Classification

Next Generation Intrusion Detection: Autonomous Reinforcement Learning of Network Attacks

Group Testing a tool of protecting Network Security

DENIAL OF SERVICE IN WIRELESS SENSOR NETWORKS: ISSUES AND CHALLENGES

Comparison of Various Passive Distributed Denial of Service Attack in Mobile Adhoc Networks

ISSN: (Online) Volume 3, Issue 3, March 2015 International Journal of Advance Research in Computer Science and Management Studies

AS MORE WIRELESS and sensor networks are deployed,

Detection. Perspective. Network Anomaly. Bhattacharyya. Jugal. A Machine Learning »C) Dhruba Kumar. Kumar KaKta. CRC Press J Taylor & Francis Croup

Ashok Kumar Gonela MTech Department of CSE Miracle Educational Group Of Institutions Bhogapuram.

Prevention of Anomalous SIP Messages

Study of Different Types of Attacks on Multicast in Mobile Ad Hoc Networks

Intrusion Detection for Mobile Ad Hoc Networks

DDOS WALL: AN INTERNET SERVICE PROVIDER PROTECTOR

Architecture Overview

ADHOC RELAY NETWORK PLANNING FOR IMPROVING CELLULAR DATA COVERAGE

An Overview of Knowledge Discovery Database and Data mining Techniques

Dual Mechanism to Detect DDOS Attack Priyanka Dembla, Chander Diwaker 2 1 Research Scholar, 2 Assistant Professor

A Catechistic Method for Traffic Pattern Discovery in MANET

ANALYTICS IN BIG DATA ERA

Robust and Scalable Algorithms for Big Data Analytics

An Interference Avoiding Wireless Network Architecture for Coexistence of CDMA x EVDO and LTE Systems

Security and Privacy Issues in Wireless Ad Hoc, Mesh, and Sensor Networks

On the Traffic Capacity of Cellular Data Networks. 1 Introduction. T. Bonald 1,2, A. Proutière 1,2

Anomaly Intrusion Detection System in Wireless Sensor Networks: Security Threats and Existing Approaches

Selfish MAC Layer Misbehavior in Wireless Networks

On the Potential of Network Coding for Cooperative Awareness in Vehicular Networks

Energy Efficiency Metrics for Low-Power Near Ground Level Wireless Sensors

III. Our Proposal ASOP ROUTING ALGORITHM. A.Position Management

Introduction to Wireless Sensor Network Security

Physical Layer Research Trends for 5G

HANDBOOK 8 NETWORK SECURITY Version 1.0

Network Intrusion Detection using Semi Supervised Support Vector Machine

Mitigation of Malware Proliferation in P2P Networks using Double-Layer Dynamic Trust (DDT) Management Scheme

Defending Against Traffic Analysis Attacks with Link Padding for Bursty Traffics

A TWO LEVEL ARCHITECTURE USING CONSENSUS METHOD FOR GLOBAL DECISION MAKING AGAINST DDoS ATTACKS

Evaluating Host-based Anomaly Detection Systems: Application of The One-class SVM Algorithm to ADFA-LD

Access Control And Intrusion Detection For Security In Wireless Sensor Network

C variance Matrices and Computer Network Analysis

System for Denial-of-Service Attack Detection Based On Triangle Area Generation

A Security Architecture for. Wireless Sensor Networks Environmental

KEITH LEHNERT AND ERIC FRIEDRICH

Using Received Signal Strength Indicator to Detect Node Replacement and Replication Attacks in Wireless Sensor Networks

From reconfigurable transceivers to reconfigurable networks, part II: Cognitive radio networks. Loreto Pescosolido

A Survey on Outlier Detection Techniques for Credit Card Fraud Detection

The University of Winnipeg Medical Algorithms propose New Network Utility Maximize Problem

350 Serra Mall, Stanford, CA

4F7 Adaptive Filters (and Spectrum Estimation) Least Mean Square (LMS) Algorithm Sumeetpal Singh Engineering Department sss40@eng.cam.ac.

Adaptive Anomaly Detection for Network Security

Security Scheme for Distributed DoS in Mobile Ad Hoc Networks

SIMULATION STUDY OF BLACKHOLE ATTACK IN THE MOBILE AD HOC NETWORKS

Energy Efficiency of Cooperative Jamming Strategies in Secure Wireless Networks

A Survey:Render of PUE Attack in Cognitive Radio Compressed by Software Defined Radio

Simple Channel-Change Games for Spectrum- Agile Wireless Networks

SPECIAL PERTURBATIONS UNCORRELATED TRACK PROCESSING

Analysis and Enhancement of QoS in Cognitive Radio Network for Efficient VoIP Performance

Transcription:

Cognitive Radio Network as Wireless Sensor Network (II): Security Consideration Feng Lin, Zhen Hu, Shujie Hou, Jingzhi Yu, Changchun Zhang, Nan Guo, Michael Wicks, Robert C Qiu, Kenneth Currie Cognitive Radio Institute, Department of Electrical and Computer Engineering, Center for Manufacturing Research, Tennessee Technological University, Cookeville, Tennessee 38505, USA ISR group of sensor system, University of Dayton Research Institute Dayton, Ohio 45469, USA Center for Manufacturing Research, Tennessee Technological University, Cookeville, Tennessee 38505, USA Email: {flin43, zhu2, shou42, jyu42, czhang42}@studentstntechedu, {nguo, rqiu, kcurrie}@tntechedu Abstract This is the second paper in a series of using cognitive radio network as wireless sensor network The motivation of the paper is to push the convergence of radar and communication systems into a unified cognitive network This paper studies this vision from a secure point of view We propose two methods for robust spectrum sensing in the same framework of cognitive radio network The first method is based on robust principal component analysis (PCA), to separate spectrum sensing results into the low rank signal matrix and the sparse attack matrix Using sparse attack cancellation in least squares, the second method iteratively estimates the relative transmitted power of primary user under the threats of attackers Then the relative transmitted power of primary user can be calculated from the recovered signal matrix Both two methods can detect the sparse compromised cognitive radio nodes and effectively obtain the relative transmitted power Index Terms cognitive radio network, security, attack cancellation, robust spectrum sensing I INTRODUCTION As a limited nature resource, wireless spectrum becomes increasingly scarce due to more and more applications Cognitive radio (CR) is a key technology to mitigate the overcrowding of spectrum space based on its capability of dynamic spectrum access (DSA) Cooperative cognitive radio network (CRN) has recently received considerable attention in literature, which can enhance the detection performance by exploring the spatial diversity [] However, similar to traditional wireless networks, CRN also have security problem that will make the network vulnerable to be attacked It is of crucial importance to identify various types of security attacks and the related protection measures One major threat in CRN is called masquerade attack [2], in which a malicious CR node can inject false information on the spectrum environment into the other CR nodes A malicious CR node may have two different motives for launching masquerade attack One motivation is to gain an unfair advantage in accessing Contact author: Robert C Qiu Mailing Address: Campus Box 5077, Tennessee Technological University, Cookeville, TN 38505-000 Telephone: (93) 372 3847 Fax: (93) 372 6345 Email: rqiu@tntechedu spectrum in the spectrum sharing paradigm of DSA We refer to such an attack as a selfish masquerade attack The second motivation is to deny spectrum resource to other legitimate secondaries, thereby causing denial of service, referred as DoS masquerade attack [3] In [4], threat about disruption to MAC or the cognitive engine of the cognitive radio network was introduced, and security for CR network MAC protocols was analyzed In [5], the authors look specifically at the use of unsupervised learning in signal classifiers, and attacks against self-organizing maps By temporarily manipulating their signals, attackers can cause other secondary users (SUs) to permanently mis-classify them as primary users (PUs), giving them complete access to the spectrum One result of the paper [6] is that distributed cooperative design seems more robust than non-cooperative CR The design of robust distributed cooperative sensing has recently received considerable attention Most of the anomaly detection are statistics-based The authors in [7] develops an attack detection framework called robust cooperative sensing via iterative State estimation (IRIS), that safeguards the incumbent detection process by checking the consistency among sensing reports via the estimation of system states Multi-objective programming is another method which makes system fluctuation small to against CR objective function attacks [8] There is a trend that utilizing machine learning algorithms to detect and mitigate threat [9] The authors in [0] develops countermeasures to the class manipulation attacks when using unsupervised learning classification The authors in [] presents a new geometric framework for unsupervised anomaly detection, which are algorithms that are designed to process unlabeled data Besides, two feature maps, datadependent normalization feature map and spectrum kernel map, for mapping data elements to a feature space A universal sparsity-controlling outlier rejection framework is introduced in [2] for outlier mitigation and robust learning Least square based method using soft-thresholding can effectively remove outlier from the dataset [3], [4] The rest of the paper is organized as follows In Section II,

system model of CRN with malicious attack is described Section III will introduce the robust PCA based attack cancellation method Section IV presents a least square based iteration method to remove attack signals Preliminary simulation results are provided in Section V, followed by conclusion given in Section VI II SYSTEM MODEL We consider a cooperative CRN including one PU, several sensors and one fusion center Sometimes we use SU instead of sensor They have the same meaning in this paper Each SU is sensing the signals transmitted by PU periodically, and report the measurement results to fusion center at the end of the sensing period Based on the measurement results from all SU in the network, fusion center makes a decision that PU exists or not A Signal Propagation Model The received primary signal power of SU n N at sensing time t T can be expressed as [7]: y n,t = P t + α0 log 0 (d 0 /d n ), (db) () where P t denotes the received signal power at reference distance d 0 at sensing time t Power control may be applied at PU side, so P t varies at different sensing time t α is the pathloss exponent, which depends on the network environment d n is the distance between PU and SU n, and it can be measured prior via geo-location database The parameters P t and α are unknown, and needed to be estimated After that, all P t can be sent to fusion center, helping fusion center to make decision on PU present or absent In the scenario of attacking, as shows in Fig, the sensors may be compromised by the attacker, and their measurement results are manipulated by the attacker by injecting tampered data The goal of the attacker is to mislead the fusion center to make a wrong spectrum sensing decision For example, when the attacker injects positive offset data, the fusion center may make a decision that PU exists while actually PU is absent In other word, it raise false alarm rate When the attacker injects negative offset data, PU may not be detected, thus miss detection rate increases The received signal strength of SU can be modified as: y n,t = P t + α0 log 0 (d 0 /d n ) + o n,t, (db) (2) where o n,t represents the tampered data value, which take the value o n,t 0 whenever attack exists at sensor n at sensing time t, and o n,t = 0 otherwise As a unified received signal strength model, Eq (2) is adopted in both Section III and Section IV B Robust Spectrum Sensing Fusion center makes decision based on the estimated ˆP t at each sensing time using a threshold based spectrum sensing rule If the ˆP t is above threshold TH, fusion center decides the PU is present and broadcasts the information to all the SUs in the cell Then all the SUs must vacate the channel Primary User Fig Attacker Fusion Center Attacker Cooperative Cognitive Radio Network Structure immediately If the transmit-power is below the threshold TH, the SUs can utilize the channel without any limit III ROBUST PCA-BASED APPROACH In this section, we describe the robust PCA based attack detection approach for spectrum sensing Then the jammed nodes can be found at each sensing time After removing the injected data, P t can be estimated more accurately Robust PCA [5], [6], [7] is a powerful method in solving the problem how to recover the low rank matrix from grossly corrupted observation matrix The model can be expressed as: R = L + I (3) in which R is the observation matrix, L is a low rank matrix, and matrix I is a sparse matrix with arbitrarily magnitude Recovering matrix L can be solved by the relaxed convex optimization model minimize L L,I + λ I, subject to R = L + I, (4) where represents the nuclear norm of a matrix, denotes l norm, and λ is a tradeoff parameter Once the assumption of low rank matrix L and sparse matrix I are satisfied, L and I can be exactly recovered with very large probability We are rewriting the Eq (2) in matrix form Y = HX + O (5) Y = [y n, y n,2 y n,t ] (6) O = [o n, o n,2 o n,t ] (7) Here y n,t C N, o n,t C N, and y n,t is the t-th column of Y, o n,t is the t-th column of O respectively Let y n,t = [y,t y 2,t y N,t ] T (8) o n,t = [o,t o 2,t o N,t ] T (9) S = HX (0)

where, Hence, β β 2 H = β N N 2 () β n = 0 log 0 (d 0 /d n ) (2) [ ] P P X = 2 P T (3) α α α We know from matrix theorem that Similarly, 2 T Y = S + O (4) rank(ab) min(rank(a), rank(b)) (5) rank(s) min(rank(h), rank(x)) (6) And we noticed rank of both matrix H and X is 2, so rank(s) 2 (7) As a result, S is a low rank matrix We consider the worst case that attack appears randomly, without following any distribution Besides, in order to make itself not to be discovered easily, attack behavior is not continuous In practice, it is reasonable to say the attack matrix O is sparse The percentage of o n,t 0 in the whole matrix dictates the sparsity in O Robust PCA can be applied here to get the estimated low rank matrix Ŝ and the estimated spare matrix Ô Then we can get the estimated ˆX by applying ˆX = H Ŝ (8) H = (H H H) H H (9) Finally, we get the estimated ˆP from the first row of ˆX, which is [ ˆP = ˆP ˆP2 P ˆ ] T T (20) IV LEAST SQUARE BASED APPROACH In this section we describe the least square based attack signal cancellation method Attack signals can be gradually mitigated by comparing with a threshold After several times iteration, we get accurate estimated ˆP t We expand the elements represented in Eq (2) into a vector form as z = Uv + w (2) z = [y, y N, y,t y N,T ] T (22) w = [o, o N, o,t o N,T ] T (23) v = [ P P 2 P T α ] T U = (24) [ ] T Q Q 2 Q T (25) γ γ γ γ = [β β 2 β N ] (26) 0 0 0 Q t = (27) 0 0 0 T N The entries of t-th row in the matrix Q t are all, of other rows are all 0 The sparsity is the percentage of o n,t 0 in the whole vector the same as which defined in Section III We are dealing with the Lagrangian version of problem below min v,w 2 (z w) Uv 2 2 + λ w r (28) Where 2 represents l 2 norm and r represents l r norm The initial w is set to be 0, and we solve for v Then we get a updated w from the v Again we use this updated w to solve for v Iteratively, we can get both accurate v and w This procedure is described in algorithm Algorithm Least Square Based Estimation : Specify the robust norm r 2: Choose the parameter λ 3: Initiate all entries of vector w to be 0 4: while v does not converge: do 5: Solve for v 6: Solve for w 7: end while v = arg min v 2 a Uv 2 2, a = z w (29) w = arg min w 2 b w 2 2 + λ w r, b = z Uv (30) The above algorithm is divided into two parts solving v and w separately Eq (29) can be solved by least square ˆv = U â (3) U = (U H U) U H (32) When we deal with Eq (30), a nature choice of r is 0, then r becomes l 0 norm 0, which counts the number of nonzero entries of w However, l 0 norm is in general difficult to optimize due to its non-convexity So we relax the l 0 norm to its tightest convex relaxation l norm, in which r equals to l norm is a classic choice for robust measurement and regularization for sparsity Then Eq (30) becomes w = arg min w 2 b w 2 2 + λ w, b = z Uv (33) The sof t thresholding method makes the solution to Eq (33) into sub-problems [4] w j = arg min w j 2 (b j w j ) 2 + λ w j (34)

Fig 2 Estimated error on different attack sparsity Fig 4 Comparison of Estimated Error on different average attack amplitude between two methods between 5km and 6km Attack amplitude also follows uniform distribution Each simulation is run 0 4 times and their average values are taken as the performance measures The estimation error of the transmit power of PU is defined as σ = ˆP P / P 2 (36) 2 Fig 3 Estimated error on different average attack amplitude b j λ if b j > λ = b j + λ if b j < λ j 0 otherwise (35) By tuning the parameter λ, we can control the threshold and the iteration time After algorithm converges, we get estimated ˆv and ˆP the same as Eq (20) V SIMULATION RESULTS We now evaluate the performance of two attack cancellation methods First we describe the simulation setting, then We compare the estimation error between with attack cancellation methods and without cancellation, under different attack sparsity and average attack amplitude scenario We consider a CRN where PU and SUs coexist The reference distance d 0 is 20m Path-loss component is set to α=4 Number of cooperative SUs is 40 Total number of sensing samples is 00 Transmission power of PU P t is uniformly distributed between 000W and 00W The distance between PU and n-th SU is uniformly distributed Here, we identify the following two key factors that can affect the estimation error: Attack sparsity, ranges from 0 to Average attack amplitude (in db) In Fig 2, we fixed average attack amplitude to be 20dB, but attack sparsity varies from 0 to 04 with step 005 When sparsity is less than 02, robust PCA based method can get nearly 0 estimation error As the attack becomes dense, the estimation error increases This is because the goal of robust PCA method is to separate the mixture of a low rank matrix and a sparse matrix The sparser of matrix O, the lower estimation error On the other hand, least square based method is not affected by sparsity, which can get almost 0 6 estimation error In Fig 3, The attack sparsity is fixed at 0, λ is set to 0, while average attack amplitude increases from 0dB to 30dB with step 3dB Both two attack cancellation method get nearly no estimation error Because them are overlapped, we may only see one line at the bottom of the figure Apparently, without any attack cancellation method, estimation error in both Fig 2 and Fig 3 increase dramatically Though the performance of robust PCA based method and least square based method looks similar in Fig 3, they have some differences as show in Fig 4 As average attack amplitude becomes large, estimation error of least square based method increases a little The performance of robust PCA based method remains in the same level, since it is insensitive to value of the sparse matrix, which can deal with any amplitude sparse attacks In summary, simulation results show that both two methods can get low estimation error of transmission power of PU when the SUs are under attack

VI CONCLUSION This paper deals with attack cancellation in estimating transmission power in CRN Two approaches, robust PCA based and least square based are introduced in this paper Robust PCA can divide observation matrix into a low rank matrix and a sparse matrix, and this method doesn t care about the amplitude of the attack Least square based method can remove attack values at any attack sparsities Hence, these two methods can deal with different kinds of attack scenarios effectively Our future work includes how to unify these two methods into a same framework and combine them together to make system more secure and robust [6] J Wright, A Ganesh, S Rao, and Y Ma, Robust Principal Component Analysis : Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization, submitted to Journal of ACM, 2009 [7] N Guo, S Hou, Z Hu, and R Qiu, Robust PCA Based Extended Target Estimation with Interference Mitigation, in 20 IEEE Radar Conference, 20 ACKNOWLEDGMENT This work is funded by National Science Foundation through two grants (ECCS-090420 and ECCS-082658), and Office of Naval Research through two grants (N0000-0-- 080 and N0004---0006) REFERENCES [] A W Min, K G Shin, and X Hu, Attack-tolerant distributed sensing for dynamic spectrum access networks, 2009 7th IEEE International Conference on Network Protocols, pp 294 303, Oct 2009 [2] G Baldini, T Sturman, and A R Biswas, Security Aspects in Software Defined Radio and Cognitive Radio Networks : A Survey and A Way Ahead, Spectrum, pp 25, 20 [3] R Chen, J-M Park, Y T Hou, and J H Reed, Toward secure distributed spectrum sensing in cognitive radio networks, IEEE Communications Magazine, vol 46, no 4, pp 50 55, Apr 2008 [4] L Zhu and Z Huaibei, Two Types of Attacks against Cognitive Radio Network MAC Protocols, in 2008 International Conference on Computer Science and Software Engineering (CSSE 2008), vol 4, Dec 2008, pp 0 3 [5] T C Clancy and A Khawar, Security Threats to Signal Classifiers Using Self-Organizing Maps, Computer Engineering, no 3, 2009 [6] A Sethi and T Brown, Hammer Model Threat Assessment of Cognitive Radio Denial of Service Attacks, in 3rd IEEE Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN08), Oct 2008, pp 2 [7] A Min, K Kim, and K Shin, Robust Cooperative Sensing via State Estimation in Cognitive Radio Networks, in The International Dynamic Spectrum Access Networks (20 DySPAN), 20 [8] Q Pei, H Li, J Ma, and K Fan, Defense Against Objective Function Attacks in Cognitive Radio Networks, Chinese Journal of Electronics, vol 20, no 4, 20 [9] Z Chen, C Zhang, F Lin, J Yu, X Li, Y Song, R Ranganathan, N Guo, and R C Qiu, Towards a large-scale cognitive radio network: Testbed, intensive computing, frequency agility and security, 20 [0] T C Clancy, A Khawar, and T R Newman, Robust Signal Classification using Unsupervised Learning, IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 20 [] E Eskin, A Arnold, M Prerau, L Portnoy, and S Stolfo, A geometric framework for unsupervised anomaly detection: Detecting intrusions in unlabeled data, in Applications of Data Mining in Computer Security, 2002 [2] G B Giannakis, G Mateos, S Farahmand, V Kekatos, and H Zhu, USPACOR: Universial sparsity-controlling outlier rejection, in 36th International Conference on Acoustics, Speech and Signal Processing (20ICASSP), May 20 [3] G Mateos and G B Giannakis, Robust Nonparametric Regression via Sparsity Control with Application to Load Curve Data Cleansing, April 20 [4] L Xiong, B Poczos, A Connolly, and J Schneider, Anomaly Detection for Astronomical Data, Dec 200, from Carnegie Mellon University [5] E Candes, X Li, Y Ma, and J Wright, Robust principal component analysis? 2009