Projective geometry- 2D. Homogeneous coordinates x1, x2,



Similar documents
Matrices in Computer Graphics

Spline. Computer Graphics. B-splines. B-Splines (for basis splines) Generating a curve. Basis Functions. Lecture 14 Curves and Surfaces II

Projective Geometry. Projective Geometry

LINES AND PLANES IN R 3

Lecture 40 Induction. Review Inductors Self-induction RL circuits Energy stored in a Magnetic Field

Exponential and Logarithmic Functions

Inventory Management MILP Modeling for Tank Farm Systems

Random Walk in 1-D. 3 possible paths x vs n. -5 For our random walk, we assume the probabilities p,q do not depend on time (n) - stationary

Rotation Kinematics, Moment of Inertia, and Torque

Circle Geometry (Part 3)

Linear Circuits Analysis. Superposition, Thevenin /Norton Equivalent circuits

2.4 Network flows. Many direct and indirect applications telecommunication transportation (public, freight, railway, air, ) logistics

Fuld Skolerapport for Søhusskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 9. med reference Tilsvarende klassetrin i kommunen

Fuld Skolerapport for Hunderupskolen, i Odense kommune, for skoleår 2013/2014 for klassetrin(ene) 7. med reference Tilsvarende klassetrin i kommunen


5. Equations of Lines: slope intercept & point slope

2D Geometrical Transformations. Foley & Van Dam, Chapter 5

A Background Layer Model for Object Tracking through Occlusion

Section V.2: Magnitudes, Directions, and Components of Vectors

A) When two objects slide against one another, the magnitude of the frictional force is always equal to μ

Pocket3D Designing a 3D Scanner by means of a PDA 3D DIGITIZATION

>

1.- L a m e j o r o p c ió n e s c l o na r e l d i s co ( s e e x p li c a r á d es p u é s ).

21 Vectors: The Cross Product & Torque

Least Squares Fitting of Data

GENERAL INFORMAT ION:

Two Dimensional FEM Simulation of Ultrasonic Wave Propagation in Isotropic Solid Media using COMSOL

LINEAR FUNCTIONS OF 2 VARIABLES

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Vector Algebra. Addition: (A + B) + C = A + (B + C) (associative) Subtraction: A B = A + (-B)

V e r d e s I s t v á n a l e z r e d e s V Á L T O Z Á S O K. F E L A D A T O K. GONDOK A S O R K A TO N A I

Core Maths C3. Revision Notes

South East of Process Main Building / 1F. North East of Process Main Building / 1F. At 14:05 April 16, Sample not collected

Auxiliary Module for Unbalanced Three Phase Loads with a Neutral Connection

To Be or Not To Be a Linear Equation: That Is the Question

GENETIC NEURAL NETWORK BASED DATA MINING AND APPLICATION IN CASE ANALYSIS OF POLICE OFFICE

Section 7.2 Linear Programming: The Graphical Method

Notes on Unit 4 Acids and Bases

Standardized Coefficients

Affine Transformations

Appendix A: Area. 1 Find the radius of a circle that has circumference 12 inches.

Chapter 2 Kinematics in One Dimension

8.5 UNITARY AND HERMITIAN MATRICES. The conjugate transpose of a complex matrix A, denoted by A*, is given by

SLOPE STABILITY SLOPE STABILITY. Types of Slope Failure. Types of Slope Failure. Assistant Professor Berrak Teymur

2.6. The Circle. Introduction. Prerequisites. Learning Outcomes

A multi-item production lot size inventory model with cycle dependent parameters

2D TRANSFORMATIONS (Contd.)

opp (the cotangent function) cot θ = adj opp Using this definition, the six trigonometric functions are well-defined for all angles

1) Assume that the sample is an SRS. The problem state that the subjects were randomly selected.


HEAT CONDUCTION PROBLEM IN A TWO-LAYERED HOLLOW CYLINDER BY USING THE GREEN S FUNCTION METHOD

International Journal of Mathematical Archive-7(5), 2016, Available online through ISSN

Chapter 5: Applying Newton s Laws

Section 11.4: Equations of Lines and Planes

Double Integrals in Polar Coordinates

Incline and Friction Examples

Home Software Hardware Benchmarks Services Store Support Forums About Us

Finite Difference Method Applied for the Beams on Elastic Foundation Theory. Metoda konečných diferencí použitá pro nosníky na pružném podkladu teorie

7.3 Parabolas. 7.3 Parabolas 505

SECTION 7-4 Algebraic Vectors

AP Calculus AB 2007 Scoring Guidelines

Mortality Variance of the Present Value (PV) of Future Annuity Payments

Transformations. Computer Graphics. Types of Transformations. 2D Scaling from the origin. 2D Translations. 9/22/2011. Geometric Transformation

THREE DIMENSIONAL GEOMETRY

Partial Differential Equations for Computer Animation

Chapter 7 Kinetic energy and work

a.) Write the line 2x - 4y = 9 into slope intercept form b.) Find the slope of the line parallel to part a

2012 by The University of Utah

Reading assignment: Chapter 4 of Aris

MTH6121 Introduction to Mathematical Finance Lesson 5

Assessment For The California Mathematics Standards Grade 4

Problem set on Cross Product

BBA/BCS double degree course selection guide

Campus Sustainability Assessment and Related Literature

MATH REVIEW SHEETS BEGINNING ALGEBRA MATH 60

How Much Can Taxes Help Selfish Routing?

Vector Algebra. Lecture programme. Engineering Maths 1.2

Form measurement systems from Hommel-Etamic Geometrical tolerancing in practice DKD-K Precision is our business.

Examples: Joint Densities and Joint Mass Functions Example 1: X and Y are jointly continuous with joint pdf

Graphing Linear Equations

Oblique incidence: Interface between dielectric media

Probabilistic Linear Classifier: Logistic Regression. CS534-Machine Learning

Overview of Spellings on

EQUATIONS OF LINES IN SLOPE- INTERCEPT AND STANDARD FORM

Introduction to Matrices for Engineers


D.3. Angles and Degree Measure. Review of Trigonometric Functions

Home Software Hardware Benchmarks Services Store Support Forums About Us

Solutions to Sample Problems for Test 3

Circles - Past Edexcel Exam Questions

Follow up and checkpoints of cable properties

Home Software Hardware Benchmarks Services Store Support Forums About Us

MANAGEMENT SCIENCE doi /mnsc ec pp. ec1 ec17

Home Software Hardware Benchmarks Services Store Support Forums About Us

Transcription:

Projece geomer- D cknowledgemen Marc Pollefe: for allowng e ue of ecellen lde on opc p://www.c.unc.edu/~marc/mg/ Rcard arle and ndrew Zerman "Mulple Vew Geomer n Compuer Von" omogeneou coordnae omogeneou repreenaon of lne a + b + c ( abc) ka ( abc ) ~ k( abc) ( ) + ( kb) + kc k equalence cla of ecor an ecor repreenae Se of all equalence clae n R () form P omogeneou repreenaon of pon ( ) on l ( abc) f and onl f a + b + c ( )( abc) ( ) l ( ) ~ k( ) k e pon le on e lne l f and onl f ll ( ) omogeneou coordnae Inomogeneou coordnae ( ) bu onl DOF Sprng 6 Projece Geomer D

Pon from lne and ce-era Inerecon of lne e nerecon of wo lne l and l' l l' Lne jonng wo pon e lne roug wo pon and ' l ' Eample Sprng 6 Projece Geomer D Ideal pon and e lne a nfn Inerecon of parallel lne l ( a b c) and l' ( a b c' ) l l' ( b a) Eample Ideal pon ( ) Lne a nfn l ( ) Noe a e le on a ngle lne P R l Noe a n P ere no dncon beween deal pon and oer Sprng 6 Projece Geomer D

Summar e e of deal pon le on e lne a nfn nerec e lne a nfn n e deal pon lne parallel o l alo nerec n e ame deal pon rrepece of e alue of c. In nomogeneou noaon a ecor angen o e lne. I orogonal o (a b) -- e lne normal. u repreen e lne drecon. e lne drecon are e deal pon are oer. --> lne a nfn can be oug of a e e of drecon of lne n e plane. Sprng 6 Projece Geomer D 5 model for e projece plane Pon repreened b ra roug orgn Lne repreened b plane roug orgn plane repreen lne a nfn eacl one lne roug wo pon eacl one pon a nerecon of wo lne Sprng 6 Projece Geomer D 6

Dual l l l l l' l ' Dual prncple: o an eorem of -dmenonal projece geomer ere correpond a dual eorem wc ma be dered b nercangng e role of pon and lne n e orgnal eorem Sprng 6 Projece Geomer D 7 Conc Cure decrbed b nd -degree equaon n e plane a + b + c + d + e + f a + b + c + d + e + f or omogenzed or n mar form C w a C b / d / b / c e / d / e / f 5DOF: { a : b : c : d : e : f } Sprng 6 Projece Geomer D 8

5 Sprng 6 Projece Geomer D 9 Conc p://ccn.camoun.bc.ca/~jbron/jbconc.m Sprng 6 Projece Geomer D Fe pon defne a conc For eac pon e conc pae roug + + + + + f e d c b a or ( ) c f ( ) f e d c b a c 5 5 5 5 5 5 c ackng conran eld

angen lne o conc e lne l angen o C a pon on C gen b lc l C Sprng 6 Projece Geomer D Dual conc lne angen o e conc C afe l * C l * In general (C full rank): C C C* : djon mar of C. Dual conc lne conc conc enelope Sprng 6 Projece Geomer D 6

Degenerae conc conc degenerae f mar C no of full rank e.g. wo lne (rank ) C lm + ml e.g. repeaed lne (rank ) m l C ll l Degenerae lne conc: pon (rank ) double pon (rank) Noe a for degenerae conc * * ( C ) C Sprng 6 Projece Geomer D Projece ranformaon Defnon: eorem: projec an nerble mappng from P o elf uc a ree pon le on e ame lne f and onl f ( )( )( ) do. mappng :P P a projec f and onl f ere e a non-ngular mar uc a for an pon n P repreened b a ecor rue a () Defnon: Projece ranformaon ' ' ' Sprng 6 Projece Geomer D or ' 8DOF projeccollneaonprojece ranformaonomograp 7

Mappng beween plane cenral projecon ma be epreed b (applcaon of eorem) Sprng 6 Projece Geomer D 5 Remong projece doron elec four pon n a plane w know coordnae ' + + ' ' ' ' + + ' + + + + '( + + ) + '( + + ) + + + (lnear n j ) ( conran/pon 8DOF pon needed) Remark: no calbraon a all necear beer wa o compue (ee laer) Sprng 6 Projece Geomer D 6 8

ranformaon of lne and conc For a pon ranformaon ' ranformaon for lne l' - ranformaon for conc l C ' - C - ranformaon for dual conc * * C' C Sprng 6 Projece Geomer D 7 Doron under cener projecon Smlar: quare maged a quare. ffne: parallel lne reman parallel; crcle become ellpe. Projece: Parallel lne conerge. Sprng 6 Projece Geomer D 8 9

Sprng 6 Projece Geomer D 9 Cla I: Iomere (oame mercmeaure) co n n co ' ' ± orenaon preerng: orenaon reerng: ' R E I R R pecal cae: pure roaon pure ranlaon DOF ( roaon ranlaon) Inaran: leng angle area Sprng 6 Projece Geomer D Cla II: Smlare (omer + cale) co n n co ' ' ' R S I R R alo know a equ-form (ape preerng) merc rucure rucure up o mlar (n leraure) DOF ( cale roaon ranlaon) Inaran: rao of leng angle rao of area parallel lne

Cla III: ffne ranformaon ' a ' a a a ' R()( R ) DR() D 6DOF ( cale roaon ranlaon) non-oropc calng! (DOF: cale rao and orenaon) Inaran: parallel lne rao of parallel leng rao of area Sprng 6 Projece Geomer D Cla VI: Projece ranformaon ' P ( ) 8DOF ( cale roaon ranlaon lne a nfn) con non-omogeneou oer e plane Inaran: cro-rao of four pon on a lne (rao of rao) Sprng 6 Projece Geomer D

Sprng 6 Projece Geomer D con of affne and projece on lne a nfn + Lne a nfn become fne allow o obere anng pon orzon. Lne a nfn a a nfn bu pon moe along lne Sprng 6 Projece Geomer D Decompoon of projece ranformaon P S I K R RK + K de K upper-rangular decompoon unque (f coen >).... 8..77..586.77.5. co 5 n 5. n 5 co 5 Eample:

Oerew ranformaon Projece 8dof ffne 6dof Smlar dof Eucldean dof a a r r r r a a r r r r Concurrenc collnear order of conac (nerecon angenc nflecon ec.) cro rao Parallellm rao of area rao of leng on parallel lne (e.g mdpon) lnear combnaon of ecor (cenrod). e lne a nfn l Rao of leng angle. e crcular pon IJ leng area. Sprng 6 Projece Geomer D 5