Biology for Science Majors



Similar documents
PHOTOSYNTHESIS AND CELLULAR RESPIRATION

Metabolism: Cellular Respiration, Fermentation and Photosynthesis

Name Section Lab 5 Photosynthesis, Respiration and Fermentation

What are the similarities between this equation for burning glucose and the equation for cellular respiration of glucose when oxygen is available?

Unit 5 Photosynthesis and Cellular Respiration

RESPIRATION AND FERMENTATION: AEROBIC AND ANAEROBIC OXIDATION OF ORGANIC MOLECULES. Bio 171 Week 6

Biology 20 Cellular Respiration Review NG Know the process of Cellular Respiration (use this picture if it helps):

Respiration Worksheet. Respiration is the controlled release of energy from food. Types of Respiration. Aerobic Respiration

Cellular Respiration An Overview

Figure 5. Energy of activation with and without an enzyme.

Harvesting Energy: Glycolysis and Cellular Respiration. Chapter 8

Chapter 9 Review Worksheet Cellular Respiration

The correct answer is d C. Answer c is incorrect. Reliance on the energy produced by others is a characteristic of heterotrophs.

Topic 3: Nutrition, Photosynthesis, and Respiration

008 Chapter 8. Student:

AP BIOLOGY CHAPTER 7 Cellular Respiration Outline

Is ATP worth the investment?

1. Explain the difference between fermentation and cellular respiration.

Cellular Respiration

What affects an enzyme s activity? General environmental factors, such as temperature and ph. Chemicals that specifically influence the enzyme.

Chapter 9 Cellular Respiration

-Loss of energy -Loss of hydrogen from carbons. -Gain of energy -Gain of hydrogen to carbons

Name Date Class. energy phosphate adenine charged ATP chemical bonds work ribose

Photosynthesis takes place in three stages:

PRE-LAB FOR YEAST RESPIRATION AND FERMENTATION

Summary of Metabolism. Mechanism of Enzyme Action

How Cells Release Chemical Energy Cellular Respiration

Todays Outline. Metabolism. Why do cells need energy? How do cells acquire energy? Metabolism. Concepts & Processes. The cells capacity to:

Energy Production In A Cell (Chapter 25 Metabolism)

The Huntington Library, Art Collections, and Botanical Gardens. How Sweet It Is: Enzyme Action in Seed Germination

Chapter 14- RESPIRATION IN PLANTS

(Figure revised from Johnson and Raven, 2004, Biology, Holt Rinehart and Winston, p. 110)

LAB #6 Photosynthesis and Cellular Respiration

Photo Cell Resp Practice. A. ATP B. oxygen C. DNA D. water. The following equation represents the process of photosynthesis in green plants.

1. Enzymes. Biochemical Reactions. Chapter 5: Microbial Metabolism. 1. Enzymes. 2. ATP Production. 3. Autotrophic Processes

6 H2O + 6 CO 2 (g) + energy

* Is chemical energy potential or kinetic energy? The position of what is storing energy?

CELL/ PHOTOSYNTHESIS/ CELLULAR RESPIRATION Test 2011 ANSWER 250 POINTS ANY WAY IN WHICH YOU WANT

Biology I. Chapter 8/9

Chapter 4. Photosynthesis and Cellular Respiration Worksheets. 63

Cellular Respiration Worksheet What are the 3 phases of the cellular respiration process? Glycolysis, Krebs Cycle, Electron Transport Chain.

Cellular Respiration and Fermentation

- Oxygen is needed for cellular respiration [OVERHEAD, fig. 6.2, p. 90 / 4th: 6.1] - lungs provide oxygen to blood, blood brings oxygen to the cells.

AP Bio Photosynthesis & Respiration

Cellular Respiration: Practice Questions #1

2 CELLULAR RESPIRATION

THE LIVING CELL. Cells also have variety of shapes. Plant cells are often rectangular or polygonal, while egg cells are usually spherical.

Cellular Energy. 1. Photosynthesis is carried out by which of the following?

Chapter 7 Active Reading Guide Cellular Respiration and Fermentation

Metabolism: Manometric Measurement of the Fermentation of Sucrose by Saccharomyces cerevisiae. Introduction

2. Which type of macromolecule contains high-energy bonds and is used for long-term energy storage?

Teacher Demo: Photosynthesis and Respiration: Complementary Processes

Bioenergetics Module A Anchor 3

PRESTWICK ACADEMY NATIONAL 5 BIOLOGY CELL BIOLOGY SUMMARY

Catalase. ***You will be working with hot water, acids and bases in this laboratory*** ****Use Extreme Caution!!!****

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Enzyme Action: Testing Catalase Activity

SOME Important Points About Cellular Energetics by Dr. Ty C.M. Hoffman

The Chemistry of Carbohydrates

1. f. Students know usable energy is captured from sunlight by chloroplasts and is stored through the synthesis of sugar from carbon dioxide.

Chapter 7 Cellular Respiration

Photosynthesis and Respiration

pathway that involves taking in heat from the environment at each step. C.

Chloroplasts and Mitochondria

Anabolic and Catabolic Reactions are Linked by ATP in Living Organisms

Biology 3A Laboratory: Enzyme Function

Visualizing Cell Processes

Photosynthesis and Respiration

10-ml Graduated cylinder 40 ml 3% Hydrogen peroxide solution (found in stores) Straight-edged razor blade Scissors and Forceps (tweezers)

Name: Hour: Elements & Macromolecules in Organisms

Today you need: your notebook, pen or pencil, textbook,worksheet

Sample Liver Enzyme Lab

Cellular Respiration & Metabolism. Metabolism. Coupled Reactions: Bioenergetics. Cellular Respiration: ATP is the cell s rechargable battery

Ch. 4 ATP & Photosynthesis

Enzyme Action: Testing Catalase Activity

Keystone Review Practice Test Module A Cells and Cell Processes. 1. Which characteristic is shared by all prokaryotes and eukaryotes?

The chemical energy used for most cell processes is carried by ATP.

REVIEW UNIT 3: METABOLISM (RESPIRATION & PHOTOSYNTHESIS) SAMPLE QUESTIONS

AP BIOLOGY 2015 SCORING GUIDELINES

Diffusion, Osmosis, and Membrane Transport

Photosynthesis and Cellular Respiration. Stored Energy

: Biochemistry of macromolecules and metabolic pathways

ATP accounting so far ELECTRON TRANSPORT CHAIN & CHEMIOSMOSIS. The Essence of ETC: The Electron Transport Chain O 2

HOW YEAST WORKS 2011, 1997 by David A. Katz. All rights reserved. Reproduction permitted for education use provided original copyright is included.

Chapter 8: Energy and Metabolism

RESPIRATION and METABOLIC RATE page 43

Enzyme Action: Testing Catalase Activity 50 Points

8.2 Cells and Energy. What is photosynthesis? Photosynthesis takes place in the chloroplasts. CHAPTER 8. Solar cells and chloroplasts

Partner: Jack 17 November Determination of the Molar Mass of Volatile Liquids

Cellular Energy: ATP & Enzymes. What is it? Where do organism s get it? How do they use it?

Review and apply Investigation 5. Let s review Pages

Cells & Cell Organelles

Cell. (1) This is the most basic unit of life inside of our bodies.

Evolution of Metabolism. Introduction. Introduction. Introduction. How Cells Harvest Energy. Chapter 7 & 8

PHOTOSYNTHESIS AND RESPIRATION

Enzymes Lab Pre-Lab Exercise

ENZYME ACTION: TESTING CATALASE ACTIVITY

Photosynthesis-Review. Pigments. Chloroplasts. Chloroplasts 5. Pigments are located in the thylakoid membranes. An Overview of Photosynthesis

Metabolism Poster Questions

Laboratory 5: Properties of Enzymes

Transcription:

Biology for Science Majors Lab 10

AP BIOLOGY Concepts covered Respirometers Metabolism Glycolysis Respiration Anaerobic vs. aerobic respiration Fermentation Lab 5: Cellular Respiration ATP is the energy currency of the cell. It is produced through a process called respiration. Cell respiration refers to the process of converting the chemical energy of organic molecules into a form immediately usable by organisms. All organisms, including plants and animals, oxidize glucose for energy. Often, this energy is used to convert ADP, and a free phosphate molecule, into ATP. The energy molecules (ATP), generated through respiration, are available to fuel the processes of the cell as needed. When ATP levels become too low a special protein signals the cell to begin respiration. As long as all the critical components for the reaction are available, this cycle provides a constant source of energy for the cell. Respiration harvests biological energy from fuel molecules, such as carbohydrates, and stores it as ATP. Together with oxygen, the cell converts carbohydrates to carbon dioxide, water, and most importantly, energy. Respiration is a controlled, multi step process which slowly releases the energy stored in glucose and converts it to ATP. If all of this energy from glucose were released at once, most would be lost as heat and light. Carbohydrates contain high energy bonds that, when broken, release electrons. The first stage, glycolysis, breaks carbohydrates (glucose) into pyruvate molecules. Though the bonds holding pyruvate together contain a great deal of potential energy, this step yields little energy. Glycolysis occurs with or without oxygen and takes place in the cytoplasm outside the mitochondria. Interestingly, it is a pathway found in all living things. C6H12O6 + 6O2 6CO2 + 6H2O + energy glucose oxygen carbon dioxide water Yeast has been used to make leavened bread for centuries. When yeast undergoes fermentation, CO2 is trapped between gluten and causes the bread to rise. Ethanol, another byproduct of yeast fermentation, generates the alcohol content in beer, and the CO2 provides effervescence. What ingredients must be present in order for this process to occur? The second stage, called an oxidation reaction, is always coupled with a reduction reaction. Both involve the manipulation of electrons. As shown in Figure 5.1, the process depends on if it takes place in the presence of oxygen (aerobic respiration) or without oxygen (anaerobic respira 58

tion). Aerobic respiration takes place in the mitochondria (a specialized organelle) of the cell and uses oxygen as the final electron transporter. Pyruvate is oxidized to generate energy. The key to efficiency in this step, is the use of oxygen to shuttle electrons. However, if the electrons released were transferred directly to oxygen, it would combust. To avoid this, special molecules shuttle electrons to the ATP production site. Since oxygen has a very high affinity for electrons, aerobic respiration is the most efficient means of producing ATP (36 per reaction). Anaerobic respiration takes place in the cytoplasm of the cell and uses other, less efficient, molecules to transport electrons. If the final transfer molecule is organic (contains a C), the process is called fermentation. Fermentation is an anaerobic process that uses enzymes to reduce pyruvate into energy rich molecules. Because it cannot fully break down the glucose molecule, fermentation is far less efficient than aerobic respiration, generating only two ATP molecules. Anaerobic 6 Carbon Compound Glucose Oxidation 3 Carbon Compound Pyruvate Yeast fermentation 2 ATP Alcohol + CO 2 Cytosol Homolactic fermentation Lactic Acid Membrane 2 ATP 4 ADP 4 ATP + O2 Aerobic in mitochondria 34 ADP CO 2 + H2O 34 ATP Mitochondrion Scientists use a respirometer to measure the rate of respiration. This device capitalizes on Figure 5.1 the ideal gas law for its function. The ideal gas law applies to a gas in which all collisions between atoms or molecules are perfectly elastic and no intermolecular forces exist. The internal energy is completely kinetic, and any change in energy will be accompanied by a change in temperature, volume, and pressure. The relationship is defined by the ideal gas law equation: where P is the absolute pressure, V is the volume, R is the universal gas constant (8.3145 J/mol K), and T is the absolute temperature ( Kelvin). Respirometers typically consist of a device to absorb carbon dioxide produced through respiration and measure oxygen uptake by displacement of fluid in a tube connected to the sealed chamber. Since the carbon dioxide is absorbed, air will be taken in through the tube (displacing the fluid) to maintain equal pressure within the chamber. During physical activity, cells require more energy. As long as enough oxygen can be delivered to cells, aerobic respiration dominates. When energy consumption exceeds the oxygen supply, anaerobic respiration starts. Lactic acid is a byproduct, and is what causes muscle soreness after a hard workout! Definitions Aerobic respiration the oxidation of molecules to produce energy in the presence of oxygen Anaerobic respiration the oxidation of molecules to produce energy in the absence of oxygen ATP Adenosine triphosphate; the main energy source of the cell 59

Fermentation respiration under anaerobic conditions in which there is no external electron acceptor Glycolysis the initial process of carbohydrate catabolism that produces ATP and pyruvate Oxidation the loss of electrons Oxidation state the degree of oxidation of an atom Pyruvate (pyruvic acid); a three carbon molecule generated through the oxidation of glucose through glycolysis Reduction the gain of electrons Pre laboratory Questions 1. Why is cellular respiration necessary for living organisms? 2. Why is fermentation less effective than respiration? 3. How is this topic important to the brewing and baking industries? 4. Why does deep breathing continue after strenuous exercise? 5. What is the purpose of glycolosis? Experiment 5.1: Fermentation by Yeast Yeast cells produce ethanol and CO2 during fermentation. We will measure the production of CO2 to determine the rate of anaerobic respiration in the presence of different carbohydrates with the use of a simplified respirometer. Note: Sucrose (a disaccharide) is made up of glucose and fructose. Glucose is a monosaccharide. Define for this experiment: Hypothesis: 60

Control(s): Independent Variable(s): Dependent Variable(s): Materials 5 Respirometers: (two test tubes that fit into each other small plastic and large glass) 1% Glucose solution 1% Sucrose solution 1g Packets of Equal, Splenda, and sugar Yeast (4) 250mL Beakers *Warm water 3 Plastic pipettes *Watch or timer Permanent marker Ruler *You must provide Procedure 1. Label three 250ml beakers, Equal, Splenda, and sugar. 2. Empty the packets into the coordinating beakers, and fill to the 100ml mark with water in the Equal and Splenda beakers; add 200ml water to the beaker for the sugar solution. Mix thoroughly by pipetting. Each is now a 1% solution. 3. Completely fill the smallest tube with water and invert the larger tube over it. Push the small tube up (into the larger tube) until the top connects with the bottom of the inverted tube. Invert the respirometer so that the larger tube is upright (there should be a small bubble at the top of the internal tube). 4. Repeat this several times as practice strive for the smallest bubble possible. When you feel comfortable with this technique, empty the test tube and continue with this experiment. 5. Mix 1teaspoon yeast into 175mL of warm (40 45 C) water in a 250mL beaker. Stir until dissolved. Make sure the yeast solution is stirred before each test tube is filled. 6. Label both the big and small test tubes 1 5. 61 7. Fill the smaller tubes with 15ml solution as follows: Tube 1: 1% glucose solution Tube 2: 1% sucrose solution Tube 3: 1% Equal solution

Tube 4: 1% Splenda solution Tube 5: 1% sugar solution Note: Rinse the graduated cylinder between each use. 8. Then, fill each tube to the top with the yeast solution. 9. Slide the corresponding larger tube over the small tube and invert it as practiced. This will mix the yeast and sugar solutions. 10. Place respirometers in the test tube rack, and measure the initial air space in the rounded bottom of the internal tube. Record these values in the Table 5.1. 11. Allow the test tubes to sit in a warm place (~37 C) for one hour. Placement suggestions include: a sunny windowsill, atop a warm oven, or under a very bright (warm) light. 12. At the end of the respiration period, measure the air space in the internal tubes, and record it in Table 5.1. Table 5.1 Figure 5.2 Tube Initial gas height (mm) Final gas height (mm) Net Change 1 2 3 4 5 62

Questions 1. Did you notice a difference in the rate of respiration between the various sugars? Did the fake sugar provide a good starting material for fermentation? 2. How do you know that anaerobic fermentation was occurring? Experiment 5.2: Aerobic Respiration in Soybeans We will evaluate respiration in beans by comparing carbon dioxide production between germinated and non germinated beans. As shown in the balanced equation for cellular respiration, one of the byproducts is CO2 (carbon dioxide): C6H12O6 + 6H2O + 6O2 energy + 6CO2 +12H2O We will use a carbon dioxide indicator to show carbon dioxide is being released by the beans. Bromothymol blue is an indicator that turns yellow in acidic conditions, green when it is neutral and blue when it is in basic conditions. Define for this experiment: Hypothesis: Control(s): Independent Variable(s): Dependent Variable(s): Materials 63 200 Beans (5) 250 ml Beakers *Paper towels 5 Measuring cups Disposable pipette Bromothymol blue solution Parafilm

5 Rubber bands *Water *You must provide Procedure 1. Commence germination by soaking 150 beans for 24 hours in 200ml water. 2. Label five beakers: beaker 1, beaker 2, beaker 3, beaker 4, and beaker 5. 3. Place several layers of moist paper towels at the bottom of each of the 250ml beakers. 4. Place 50 germinating beans into beakers 1, 2, and 3. Place 50 non germinating beans in beaker 4, and zero beans in beaker 5. 5. Dispense 4ml of bromothymol blue solution into each of the measuring cups, and place the measuring cup inside each beaker (Figure 5.3). 6. Stretch parafilm across the top of each beaker. Secure with a rubber band to create an air tight seal. 7. Place beaker 1 in an ice water bath; beaker 2 in a hot water bath; and place the remaining beakers on a shelf or table, and let sit undisturbed at room temperature. 8. Observe the jars at 30 minute intervals for three hours, and record any color change of the bromothymol blue in Table 5.2 below. Be sure to maintain the water bath temperatures throughout the experiment. Figure 5.3 Table 5.2 Time Beaker 1 Beaker 2 Beaker 3 Beaker 4 Beaker 5 0 min 30 min 60 min 90 min 120 min 150 min 180 min 64

Questions 1. How did the color of the bromothymol blue solution in each beaker change over time in each condition? 2. What can be inferred from the color change of the bromothymol blue solution? 3. What is the mechanism driving the bromothymol blue solution color change? 4. What are the controls in this experiment, and what variables do they eliminate? Why is it important to have a control for this experiment? 5. What else could you incorporate into this experiment to verify that the gas is responsible for the color change? Design an experiment that shows the steps required. 65