Daniel Melo, P.Eng. (UMATAC), Steven Odut, P.Eng. (UMATAC) Page 1 Presentation To: Pictures UMATAC, Polysius Reducing Greenhouse Gas Intensity from Thermal Processing of Oil Shale Using the Alberta Taciuk Process (ATP) by Managing Carbonate Decomposition Colorado School of Mines, 32 nd Oil Shale Symposium
Agenda Page 2 o Introductions o Carbonate Decomposition Research & Results o Implementation into Commercial ATP Application o Questions
Corporate Introduction Page 3 ThyssenKrupp AG Plant Technology Fördertechnik Polysius AG Uhde Mining, Crushing, Stockpiling, Ash Handling UMATAC, ATP System Cement Production EPC, Oil Refining and Upgrading World Class Partners Complete Project Integration from Mine to Barrel, and Beyond!
UMATAC Research & Development Facility Page 4
UMATAC Research & Development Center Capabilities Feed Stock / Product Characterization: Basic Physical Properties Modified Fisher Assay (MFA) Batch Testing (Bulk Oil Sample Production) Analysis of Solid / Liquid / Gaseous Products ATP Technology: Bench Scale Test Units Small Scale Units (Batch) Continuous Flow Test Units ATP60 Plant (5 t/h Demonstration Plant) Other Services: Special Test Unit Development and Operation Alternative Feed Stocks Shale Ash Cementing Tests Project Specific R&D Testing from Bench to Demonstration Scale to Suit Clients Needs Page 5
The ATP Processor Page 6 Preheat Retort Combustion Cooling Residence Time/Cycle (min) 10-15 5-8 6-12 10-20 Coarse, <1 Fines Temperature ( C) Amb. 250 500 680-750 650-350 Gas Phase Steam HC Vapors Air/F.G./Dust F.G./Dust Pressure (mmwc) -2-40 -15 <-15 Carbonate Rxns Intensity N/A Low High Moderate - Diminished Rate Flue Gas Preheat Steam Cooling Zone Combustion Zone Auxiliary Burner Feed Preheat Zone Evolved Steam Retort Zone Hydrocarbon Vapours Heat Transfer Cooling Zone Solids Coked Solids Combusted Solids Combustion Air Spent Solids The ATP Processor
The Problem: Variation in Historical Data Page 7 Kg CO 2 / t ZRM 300 200 100 1999 Test F.G. CO 2 for ATP60 Pilot Runs 1998 Test 2009 Test #2 2006 Test 2009 Test #1 0 650 675 700 725 750 Comb. Zone Temperature ( C) Research Prompted by Large Deviation in Historical Data from ATP Pilot Runs on Al Lajjun Shale
Current CO 2 Accounting Karak International Oil Project CO 2 Intensity Estimate: Conservative & Comprehensive 145-185 kg/t ZRM 200-250 kg/bbl SCO Offsets: CO 2 Difference between KIO Byproducts and Current Production/Transport of Byproducts Potential Offsets: A-Offset Imported Sulphur for Fertilizer B-Low CO 2 Electricity Export C - Phosphate Co-Mining D-Shale Ash use in Cement Manufacture Comparable to: Alberta Oil Sands 233 kg/bbl SCO OPEC Primary Recovery 167 kg/bbl OPEC Tertiary Recovery 208 kg/bbl CO 2 Generation and Distribution Balance of Plant Upgrading 29% Power 15% 200 250 Kg/bbl kg/bbl SCO ATP System SCO Produced by ATP has Carbon Footprint Similar to Other Conventional & Non-Conventional oils Carbonate Sources 23% Coke Combustion 33% Page 8
Al Lajjun Oil Shale Mineralogy & Carbonate Decomposition Page 9 High Carbonate Content: ~ 27-40 wt% Calcite (CaCO 3 ) ~ 5-7 wt% Dolomite (CaMg(CO 3 ) 2 ) ~ 0-5 wt% Magnesite (MgCO 3 ) ~ 0-2 wt% Siderite (FeCO 3 ) Thermal Decomposition of Calcium Carbonate: CaCO 3 CaO (s) + CO 2(g) Temperature Range: 600 C to 1,000 C Endothermic Reaction: ~1.8 MJ/kg Al LajjunShale: High Carbonate Content
Literature Review Page 10 Many Sources Referencing Thermal Decomposition of Carbonates: Laboratory/Academic Setting Pure Carbonate Species mg -g Industrial/Commercial Setting Carbonate Species Embedded in Shale (Clays, Silica, Kerogen, Etc) Up to 500 t/h Fixed Heating Rates Variable Heating Rates Inert Atmospheres High Vacuum/Pressure Effect of Temperature Different Atmospheres Nearly Atmospheric Pressure Effect of CO 2 Partial Pressure
The Research Apparatus: ATP Batch Unit Page 11
The Research: Initial Approach Page 12 Isolate Carbonate Decomposition Reaction O 2 -Free Environment to Prevent Combustion / Oxidation Reactions Parallel Reactions: CO 2 + C (Coke) 2CO (g) 2CO (g) CO 2 + C (Soot) Coke xc (s) + ych 4 + zh 2 Raw Shale Pyrolyzed Decarbonated Combusted
The Research: Comprehensive Approach Page 13 o 40 Batch Runs / Pyrolysis / High-Temperature Carbonate Decomposition / Combustion 800 4.00 o 360 GC Analyses 700 3.50 o LOI o CEM CO 2 & CO o XRD Analyses o SEM o Ultimate Analyses 600 500 400 300 200 100 ULTIMATE ANALYSIS, as received basis 0-0.50 0 50 100 150 200 Temperature ( C) Cummulative Gas Make (L) Gas Evolution Rate (L/Min) o Calcite Equivalent by Acid Digestion LAB# ID: %MOIST. %C %H %N %S %ASH O b/d Basis 121083 Raw Shale 0.94 20.59 2.00 0.37 3.27 62.37 10.46 arb 20.79 2.01 0.37 3.30 62.96 10.56 db 121084 Pyrolyzed Solids 0.04 12.29 0.42 0.32 1.10 72.43 13.40 arb 12.29 0.42 0.32 1.10 72.46 13.41 db 121085 Decarbonated Solids 0.10 10.41 0.17 0.20 1.21 80.03 7.88 arb 10.42 0.17 0.20 1.21 80.11 7.89 db 121086 Combusted Solids 0.21 5.20 0.09 0.01 1.22 83.34 9.93 arb 5.21 0.09 0.01 1.22 83.52 9.95 db 3.00 0 19900 0 800 0 800 0 508 0 20 Scale and Units ppmv C C mmwc vol% 2.50 Pen No. 6 5 4 3 2 TC9-2.00 Pen Name [CO] StationBed TC-7 Bed dp [CO2] Date and Time AVG AVG AVG 1.50 Sample Sample July-02-12 2:27:43 PM:000 28 832 658 6.2 0.2 1.00 July-02-12 2:27:44 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:45 PM:000 28 832 658 0.50 6.2 0.2 July-02-12 2:27:46 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:47 PM:000 28 832 658 0.00 6.2 0.2 July-02-12 2:27:48 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:49 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:50 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:51 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:52 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:53 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:54 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:55 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:56 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:57 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:58 PM:000 28 832 658 6.2 0.2 July-02-12 2:27:59 PM:000 28 832 658 6.2 0.2 July-02-12 2:28:00 PM:000 28 832 658 6.2 0.2 July-02-12 2:28:01 PM:000 678 687 657 6.3 7.2
The Results: Temperature and Residence Time Page 14 kg of CO 2 /t ZRM 140 120 100 80 60 40 20 0 CO 2 from Thermal Decomposition of Carbonates 750 C 700 C 680 C 650 C 600 C 0 50 100 150 Reaction Time (min) Lower Temperature Reduces Carbonate Decomposition Significantly and Also Reduces Overall Heat Demand!
The Results: Carbonate CO 2 Page 15 Combustion Run 750 C Total and Carbonate CO 2 Combustion Run 680 C Total and Carbonate CO 2 375 375 kg of CO 2 / t ZRM 250 125 kg of CO 2 / t ZRM 250 125 0 0 50 100 150 Total CO2 Reaction Time (min) Carbonate Contribution 0 0 50 100 150 Total CO2 Reaction Time (min) Carbonate Contribution Lower Temperature: Lower Overall Emissions Lower Contribution from Carbonates
The Results: CO 2 Partial Pressure kg of CO 2 / t ZRM 60 50 40 30 20 10 CO 2 from Decomposition of Carbonates at 680 C in CO 2 Atmosphere Some Evidence Supporting Carbonization of Spent Shale Hypothesis: CaCO 3 CaO (s) + CO 2(g) CaO (s) + CO 2(g) CaCO 3 XRD Analysis: Spent Al Lajjun Shale: ~500 C in Retorting Atmosphere 55.0 wt% Calcite 3.1 wt% Dolomite Page 16 0 0 100 Reaction Time (min) <10% CO2 in N2 Atmosphere 50% CO2 Atmosphere 100% CO2 Atmosphere 680 C in N 2 32.3 wt% Calcite 0.1 wt% Dolomite 680 C in CO 2 56.4 wt% Calcite 4.0 wt% Dolomite
The Results: Combined Temperature & CO 2 Partial Pressure Page 17 kg of CO 2 / t ZRM 350 300 250 200 150 100 50 0 Possible Reduction in Total CO 2 Emissions 750 C 680 C 680 C in CO 2 0 50 100 150 Reaction Time (min) Potential for Significant Reduction in CO 2 Emissions By Simply Changing Operating Parameters of ATP
Implementation into Commercial ATP Application Page 18 Temperature Reduction? ATP has the Flexibility (without Sacrificing Performance) Combustion Temperature can be Reduced: Jordanian oil shale can be burned continuously & efficiently with an average bed temperature of 647 C., M.A. Hararah, A. Sakhrieh, M. Hamdan Already Tested -More than 500 t CO 2 Enriched Atmosphere? ATP has the Flexibility (without Sacrificing Performance) Best when Coupled with CO 2 Sequestration Economical Viability? Feed Kg CO 2 / t ZRM Preheat Steam Spent Solids 300 200 100 Flue Gas Cooling Zone Preheat Zone Heat Transfer Cooling Zone Solids Evolved Steam Combustion Zone Retort Zone The ATP Processor Coked Solids Combusted Solids ATP Pilot Runs F.G. CO 2 Auxiliary Burner Hydrocarbon Vapours Combustion Air 0 650 675 700 725 750 Comb. Zone Temperature ( C)
Questions? Page 19 Gracias 谢 谢 Thank You Obrigado Спасибі Vielen Dank شكرا Merci
Definitions / Legend Page 20 ATP ATP60 bbl CEM FG HC LOI mg mmwc SCO SEM t ZRM wt% XRD Alberta Taciuk Processor UMATAC s 5 t/h Pilot ATP Unit (60 bbl/d on Oil Sands) Barrel of Oil (~159 L) Continuous Emission Monitoring Flue Gas Hydrocarbons Loss on Ignition Milligram(s) (Unit of Mass) Millimeter(s) of Water Column (Unit of Pressure) Synthetic Crude Oil Scanning Electron Microscopy Metric Tons of Zero Moisture Shale (No Free & No Retort Water) Weight per Cent X-Ray Diffraction
Contact Information Page 21 UMATAC Industrial Processes Inc. A Company of ThyssenKrupp Polysius Suite #110 6835 Railway Street S.E. Calgary, Alberta, Canada T2H-2V6 Telephone: 1403-910-1000 Facsimile: 1403-910-1040 email: web: umatac@thyssenkrupp.com www.umatac.ca