IAPWS Certified Research Need - ICRN
|
|
|
- Bernadette Doyle
- 9 years ago
- Views:
Transcription
1 IAPWS Certified Research Need - ICRN ICRN 23 Dew Point for Flue Gas of Power-Plant Exhaust The IAPWS Working Group Industrial Requirements and Solutions has examined the published work in the area of dew-point prediction for power-plant exhaust and recognizes that there is a requirement for work to be pursued in this field and has prepared this document to assist potential investigators in obtaining sponsorship. This ICRN specifies the main questions that must be answered for the development of this technology. Although encouraging this work, IAPWS is not able under its statutes to provide financial support. The IAPWS contact can provide any further development information and will act as a liaison between research groups. Issued by the International Association for the Properties of Water and Steam President: J. R. Cooper School of Engineering and Materials Science Queen Mary, University of London Mile End Road London E1 4NS, England Executive Secretary: Dr. R. B. Dooley Structural Integrity Associates, Inc Chelsea Drive Charlotte, NC 28209, USA [email protected] 1
2 IAPWS Certified Research Need - ICRN Dew Point for Flue Gas of Power-Plant Exhaust Background Coal is the fuel used in the majority of power-generation plants over the world. Also, there are significantly more reserves of coal than other fossil fuels. However, on a global level, coal use accounts for a significant proportion of greenhouse gas emissions, particularly carbon dioxide (CO 2 ). When sulfur-bearing fuel is burned, sulfur is converted to sulfur dioxide (SO 2 ) and sulfur trioxide (SO 3 ). The sulfur trioxide combines with moisture to form sulfuric acid (H 2 SO 4 ) [See eq.(1)]. During combustion, some nitrogen is oxidized to form nitrogen dioxide (NO 2 ). Nitrogen dioxide in the flue also reacts with water to give nitric acid [eq.(2)] and with sulfur dioxide and water to form more sulfuric acid [eq.(3)]. SO 3 + H 2 O= H 2 SO 4 (1) 4NO 2 + 2H 2 O + O 2 = 4HNO 3 (2) NO 2 + SO 2 + H 2 O = H 2 SO 4 +NO (3) If the flue gas is cooled sufficiently, condensation will occur and liquid will appear on surfaces at temperatures below the dew point. The liquid phase will contain highly corrosive sulfuric acid. This causes sulfuric acid corrosion, so called low-temperature corrosion. Low-temperature corrosion needs to be taken into consideration for optimum system design of exhaust gas treatment, oxy-combustion capture of CO 2 and advanced power plants such as IGCC (Integrated Gasification Combined Cycle), IGFC (Integrated Gasification Fuel Cell), etc., which contribute to CO 2 emission reduction. Problems with regard to the prediction of low-temperature corrosion result from the fact that the dew point of flue gases depends not only on the partial pressure of water, but also on the partial pressure of H 2 SO 4. Existing prediction methods for dew points of flue gases are not comprehensive. The main issues with regard to the dew point may be summarized as follows: Dew-point equations with experimental data for several flue gas compositions exist, but there are significant discrepancies among the results. Concentration of H 2 SO 4 depends on the SO 3 conversion rate and on the surface temperature of the wall. Therefore, it is important to attempt to control SO 3 content and to predict precisely local surface temperatures. 2
3 Reliability of dew-point estimation depends not only on the equation but also on the temperature measurement uncertainty such as an accuracy of duct surface temperature distribution. A precise measuring method is necessary. A proper prediction of exhaust gas temperatures is required to ensure optimized overall performance and to minimize the potential for low-temperature corrosion. For example, an exhaust temperature that is 10 K higher than necessary will cause approximately a 0.3% reduction in overall efficiency, and an increase of tonne/year CO 2 emissions for a 1000-MW-class coal-fired power plant. Several empirical equations for dew point of flue gas with SO 2 from combustion plants have been obtained by fitting experimental data [1]-[7]. The curves shown in Figure 1 are based on a condition with SO 3 conversion rate of 6%. Large discrepancies, as much as 20 K, can be seen between these formulations. The curves in Figure 2 show the deviation of the Ohtsuka equation [7] from the Verhoff and Banchero (V&B in Figure 1) equation [1], having the larger difference (up to 10 K) at lower moisture and higher SO 3 concentration. These two equations are commonly utilized in Japan and within major boiler suppliers over the world, respectively. a Figure 1: Comparisons of dew-point formulations b Footnotes to Figure 1: a Volume in cubic meters at the normal state of kpa and 0 C ( K) b V&B: Verhoff and Banchero (1974), see [1]; H&B: Haase and Borgmann (1981), see [2]; HTR: Siemens AG Energy Sector internal document; P&M: Pierce and Mueller (1977), see [3],[4]; Neubauer (1962), see [5]; av2, av3: Curves averaged over the different equations valid in the respective range 3
4 2 Deviation 1 of Dew-point/K ppm SO 3 by volum e -8 10ppm SO 3 by volum e -10 Mole percent of H2O (at atmospheric pressure) Figure 2: Comparison between Ohtsuka equation and Verhoff & Banchero equation ( 1 Deviation = Ohtsuka equation V & B equation at atmospheric pressure) Reasons for the discrepancies above may include non-ideal behavior of the flue gas, non-equilibrium states, and impurities including fly ash reducing the SO 3 precipitation [8]. The SO 3 conversion rate is important for predicting the dew point; however, it is outside the scope of IAPWS because it is a function of chemical reaction mechanisms. In addition, impurity effects including fly ash as well as wall temperature influence on heat and mass transfer should be investigated experimentally and theoretically, so that dew-point formulations become more comprehensive. These could be applied with advantage to future design of new power plant systems, such as oxy-combustion capture, IGCC and IGFC, etc. In summary, For design of air preheaters for coal-fired boilers, there is a need for accurate data and/or formulations for dew point for a range of actual flue gas compositions, including the effect of fly ash and wall temperature distribution, in order to reduce and keep proper design margins. For extensive applications in future design of new power-plant systems, adequate predictive methods of dew point considering effects of impurity and wall temperature profile are necessary from empirical and theoretical points of view, so that dew-point phenomena become more comprehensively understood. 4
5 Range of Compositions for Dew-Point Predictions The required range of concentration of each component of flue gas for data and formulations up to relatively high sulfur content is shown in Table 1. This takes into consideration several kinds of fuel, including heavy fuel oil which is also used when starting a coal-fired power plant and bringing it up to its initial load. Future application may be highlighted for system designs of oxy-combustion CO 2 capture, IGCC, IGFC, etc. For an oxy-combustion capture with wet-cooled flue gas, there will be a need to consider low-temperature corrosion by the acidic water leaving the cooling section (See Figure 3), but the SO x and NO x levels will be within the levels in the flue gas of existing coal-fired power plants. In a current design of IGCC (IGFC), called the EAGLE project in Japan, target SO x is 8 ppm with 5 ppm NO x at 16% O 2 condition, which is a very small level compared to those of existing coal-fired plants. Table 1: Required Range of Exhaust Gas Compositions 1 Component Range N mol % CO mol % O mol % H 2 O mol % CO 0 5 mol % Ar 0 5 mol % SO mol % SO mol % NO ppm NO ppm 1 1 ppm = 10 4 vol % = 10 6 mole fraction Water Figure 3: Oxy-combustion CO 2 capture process [9] 5
6 A common application in the future may be in the design of post-combustion exhaust gas treatment systems. Therefore, the values given in Table 1 will be sufficient, even in the future. Note that most systems may cover a much smaller range. Previous Work and Current Studies Since the 1950 s when oil-fired power plants were a large part of power-generation capacity, dew point formulations have been obtained, especially for high sulfur-content oil fuels, by fitting experimental data. The data were provided using model equipment and/or actual plant data. These formulations were compared in Figures 1 and 2 using the equations listed below. Additionally, every HRSG (Heat Recovery Steam Generator of combined-cycle power plant) supplier has its own method for calculation. All values are dependent on boundary conditions like the conversion rate from SO 2 to SO 3 or the water content. Nomenclatures: T D : Dew-point temperature (K) t D : Dew-point temperature ( C) t S : Saturation temperature of water at total pressure of exhaust flue gas ( C) C : Conversion rate of SO 3 from SO 2 by volume p SO2 : mole fraction of SO 2, equivalent to partial pressure (in atm) with the mixture of gases at standard atmospheric pressure ( kpa) p H20 : mole fraction of water, equivalent to partial pressure (in atm) with the mixture of gases at standard atmospheric pressure ( kpa) V : H 2 SO 4 concentration (vol %) Verhoff / Banchero (1974)[1] T D = / [ ln(p H20 ) ln(c p SO2 ) {6.633 ln(c p SO2 )} {6.633 ln(p H20 )}] Haase / Borgmann (1981)[2] t D = [ lg(p H20 ) lg(c p SO2 )] Neubauer (1962)[5] ( p ) t D = t S + ( p H20 ) p H2O p H2O SO2 2 6
7 Pierce (1977)[3] / Mueller (1959)[4] / Okkes(1987)[6] t D = lg(p H20 ) lg(c p SO2 ) { lg(c p SO2 ) + 8} 2.19 Ohtsuka (1961)[7] t D = 20 lg V + A A : a constant depending on moisture content ( C) : ex. 184 for 5%, 194 for 10%, 201 for 15% As for the measuring tool itself for dew point of several kinds of gas, accurate instruments have been developed and the current accuracy level within ±1 K is enough [10]. Methods for a precise prediction of surface temperatures considering different thermal conductivities of wall materials have been developed [11], but may still need more attention for application to system design by simple calculations. References: [1] F. H. Verhoff and J. T. Banchero, 1974: Chem. Eng. Prog., 70(8), [2] R. Haase and H. W. Borgmann, 1981:, Korrosion, 15, [3] R. R. Pierce, 1977: Chem. Eng., 84(8), [4] P. Mueller, 1959: Chemie-Ing-Techn., 31-5, [5] W. Gumz, Kurzes., 1962: Handbuch der Brennstoff- und Feuerungstechnik, Heidelberg, Springer-Verlag [6] A.G. Okkes, 1987: Hydrocarbon Processing, 66(7), [7] T. Ohtsuka, 1961: CRIEPI report, Chemical [8] H. M. Odenwald, J. Demuth and H. Farwick, 1995: VGB Kraftwerkstechnik, 75-11, [9] A. Seltzer, Z. Fan, H. Hack, 2007: Oxyfuel Coal Combustion Power Plant System Optimization, 7 th Annual COAL-GEN Conference [10] Cooled Mirror Sensor and Impedance Hygrometer: [11] F. Ziegler, H. Auracher and W. Volz, 2004: Condensation of Water Vapor and Acid Mixtures from Exhaust Gases, Berlin Technical University, Institute of Engineering, D83 7
8 IAPWS Contact: Mr. N. Okita Thermal & Hydro Power Systems & Services Div. Toshiba Corporation Power Systems Company 2-4, Suehiro-Cho, Tsurumi-Ku, Yokohama , Japan Telephone: Fax: ICRN Issue Date: September 2008 (Renewed for 1 year September 2011) ICRN Expiration Date: September
Calculate Available Heat for Natural Gas Fuel For Industrial Heating Equipment and Boilers
For Industrial Heating Equipment and Boilers Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC
Module 5: Combustion Technology. Lecture 33: Combustion air calculation
1 P age Module 5: Combustion Technology Lecture 33: Combustion air calculation 2 P age Keywords: Heat of combustion, stoichiometric air, excess air, natural gas combustion Combustion air calculation The
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems
Carbon Dioxide Membrane Separation for Carbon Capture using Direct FuelCell Systems DFC Technology Used as Electrochemical Membrane for CO 2 Purification and Capture during Power Generation FCE s Direct
CONTENTS. ZVU Engineering a.s., Member of ZVU Group, WASTE HEAT BOILERS Page 2
WASTE HEAT BOILERS CONTENTS 1 INTRODUCTION... 3 2 CONCEPTION OF WASTE HEAT BOILERS... 4 2.1 Complex Solution...4 2.2 Kind of Heat Exchange...5 2.3 Heat Recovery Units and Their Usage...5 2.4 Materials
SULFUR RECOVERY UNIT. Thermal Oxidizer
SULFUR RECOVERY UNIT Thermal Oxidizer BURNERS FLARES INCINERATORS PARTS & SERVICE SULFUR RECOVERY UNIT Thermal Oxidizer Tail Gas Thermal Oxidizer designed and built to GOST-R requirements. Zeeco can meet
THE HUMIDITY/MOISTURE HANDBOOK
THE HUMIDITY/MOISTURE HANDBOOK Table of Contents Introduction... 3 Relative Humidity... 3 Partial Pressure... 4 Saturation Pressure (Ps)... 5 Other Absolute Moisture Scales... 8 % Moisture by Volume (%M
Optimization Design for Sulfur Dioxide Flow Monitoring Apparatus in Thermal Power Plants Hao-wei Hu 1, a, Xue Yang 1, b and Xiao-wei Song 1, c
International Conference on Information Sciences, Machinery, Materials and Energy (ICISMME 2015) Optimization Design for Sulfur Dioxide Flow Monitoring Apparatus in Thermal Power Plants Hao-wei Hu 1, a,
Module 5: Combustion Technology. Lecture 34: Calculation of calorific value of fuels
1 P age Module 5: Combustion Technology Lecture 34: Calculation of calorific value of fuels 2 P age Keywords : Gross calorific value, Net calorific value, enthalpy change, bomb calorimeter 5.3 Calculation
STOICHIOMETRY OF COMBUSTION
STOICHIOMETRY OF COMBUSTION FUNDAMENTALS: moles and kilomoles Atomic unit mass: 1/12 126 C ~ 1.66 10-27 kg Atoms and molecules mass is defined in atomic unit mass: which is defined in relation to the 1/12
CHEM 105 HOUR EXAM III 28-OCT-99. = -163 kj/mole determine H f 0 for Ni(CO) 4 (g) = -260 kj/mole determine H f 0 for Cr(CO) 6 (g)
CHEM 15 HOUR EXAM III 28-OCT-99 NAME (please print) 1. a. given: Ni (s) + 4 CO (g) = Ni(CO) 4 (g) H Rxn = -163 k/mole determine H f for Ni(CO) 4 (g) b. given: Cr (s) + 6 CO (g) = Cr(CO) 6 (g) H Rxn = -26
Lecture 35: Atmosphere in Furnaces
Lecture 35: Atmosphere in Furnaces Contents: Selection of atmosphere: Gases and their behavior: Prepared atmospheres Protective atmospheres applications Atmosphere volume requirements Atmosphere sensors
Assignment 8: Comparison of gasification, pyrolysis and combustion
AALTO UNIVERSITY SCHOOL OF CHEMICAL TECHNOLOGY KE-40.4120 Introduction to biorefineries and biofuels Assignment 8: Comparison of gasification, pyrolysis and combustion Aino Siirala 309141 Assignment submitted
IB Chemistry. DP Chemistry Review
DP Chemistry Review Topic 1: Quantitative chemistry 1.1 The mole concept and Avogadro s constant Assessment statement Apply the mole concept to substances. Determine the number of particles and the amount
Condensing Economizers Workshop Enbridge Gas, Toronto. MENEX Boiler Plant Heat Recovery Technologies. Prepared by: Jozo Martinovic, M A Sc, P Eng
Condensing Economizers Workshop Enbridge Gas, Toronto MENEX Boiler Plant Heat Recovery Technologies Prepared by: Jozo Martinovic, M A Sc, P Eng MENEX Innovative Solutions May 15, 2008 MENEX INC. 683 Louis
Boiler efficiency measurement. Department of Energy Engineering
Boiler efficiency measurement Department of Energy Engineering Contents Heat balance on boilers Efficiency determination Loss categories Fluegas condensation principals Seasonal efficiency Emission evaluation
PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS
ASME ORC 2015 3rd International Seminar on ORC Power Systems 12-14 October 2015, Brussels, Belgium PERFORMANCE EVALUATION OF NGCC AND COAL-FIRED STEAM POWER PLANTS WITH INTEGRATED CCS AND ORC SYSTEMS Vittorio
BOILER TUNE-UP GUIDE FOR NATURAL GAS AND LIGHT FUEL OIL OPERATION GREG HARRELL, PH.D., P.E.
ENERGY MANAGEMENT SERVICES Greg Harrell, Ph.D., P.E. 341 Willocks Drive Jefferson City, Tennessee 37760 Telephone: (865) 719-0173 Email: [email protected] BOILER TUNE-UP GUIDE FOR NATURAL GAS AND
Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide
Chapter 2 Chemical and Physical Properties of Sulphur Dioxide and Sulphur Trioxide 2.1 Introduction In order to appreciate the impact of the properties of liquid sulphur dioxide and liquid sulphur trioxide
SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES
SIX REASONS TO DRY BIOGAS To A LOW DEWPOINT BEFORE COMBUSTION IN A CHP ENGINE STEVEN SCOTT MARKET DEVELOPMENT MANAGER ALTERNATIVE ENERGIES Filippo Turra Product Manager Cooling Technology INTRODUCTION
Chemical Equations & Stoichiometry
Chemical Equations & Stoichiometry Chapter Goals Balance equations for simple chemical reactions. Perform stoichiometry calculations using balanced chemical equations. Understand the meaning of the term
COMBUSTION. By: Michael Biarnes. In collaboration with: Bill Freed and Jason Esteves. E Instruments International LLC - www.e-inst.
COMBUSTION By: Michael Biarnes In collaboration with: Bill Freed and Jason Esteves E Instruments International LLC - www.e-inst.com 1 Combustion What is Combustion? Combustion takes place when fuel, most
Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal
19 Overview of Integrated Coal Gasification Combined-cycle Technology Using Low-rank Coal TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *2 YOSHIKI YAMAGUCHI *3 KOJI OURA *4 KENICHI ARIMA *5 TAKESHI SUZUKI *6 Mitsubishi
Site Identification No.: 197809AAO Application No.: 15030051
Project Summary for a Construction Permit Application from Midwest Generation for a Natural Gas Conversion Project for the Joliet Electric Generating Station Joliet, Illinois Site Identification No.: 197809AAO
Making Coal Use Compatible with Measures to Counter Global Warming
Making Use Compatible with Measures to Counter Global Warming The J-POWER Group is one of the biggest coal users in Japan, consuming approximately 2 million tons of coal per year at eight coal-fired power
The Empirical Formula of a Compound
The Empirical Formula of a Compound Lab #5 Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant,
= 1.038 atm. 760 mm Hg. = 0.989 atm. d. 767 torr = 767 mm Hg. = 1.01 atm
Chapter 13 Gases 1. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. Gases have volumes that depend on their conditions, and can be compressed or expanded by
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard
Sulfur Tail Gas Thermal Oxidizer Systems By Peter Pickard Introduction SRU s (Sulfur Recovery Units) are critical pieces of equipment in refineries and gas plants. SRUs remove sulfur compounds from certain
Combustion Analysis Basics
Combustion Analysis Combustion Analysis Basics An Overview of Measurements, Methods and Calculations Used in Combustion Analysis COMBUSTION ANALYSIS BASICS An Overview of Measurements, Methods and Calculations
COMBUSTION. In order to operate a heat engine we need a hot source together with a cold sink
COMBUSTION In order to operate a heat engine we need a hot source together with a cold sink Occasionally these occur together in nature eg:- geothermal sites or solar powered engines, but usually the heat
TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS
TRIAL CHEMICAL CLEANING OF FOULED APH BASKETS Dr. Abhay Kumar Sahay, AGM(CC OS) Bijay Manjul, AGM( Operation) Kahalgaon Boiler has three inputs Steam generator 1. WATER 2. COAL 3. AIR Burner Air preheater
Vogt Power Emission Control Solutions
ONE SOURCE ONE PURPOSE MANY SOLUTIONS Vogt Power Emission Control Solutions Kelly Flannery Kristen Cooper Andrew Heid Chief Thermal Engineer Simple Cycle Design Lead Emission Catalyst Design Lead Presented
Continuous flow direct water heating for potable hot water
Continuous flow direct water heating for potable hot water An independently produced White Paper for Rinnai UK 2013 www.rinnaiuk.com In the 35 years since direct hot water systems entered the UK commercial
NITROGEN OXIDES FORMATION in combustion processes COMBUSTION AND FUELS
NITROGEN OXIDES FORMATION in combustion processes NITROGEN OXIDES FORMED DURING COMBUSTION N 2 O - nitrous oxide NO - nitric oxide NO 2 - nitrogen dioxide N = 14, O 2 =16, NO = 30, NO 2 = 46 CONTRIBUTION
Monitoring Air Emissions on Ships. Restricted Siemens AG 2014 All rights reserved.
Monitoring Air Emissions on Ships siemens.com/answers Why emission monitoring in the marine industry? Main drivers: Meeting regulations: NOx and SOx reduction Energy optimization; CO 2 reduction Resolution
MEMORANDUM GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Paper 2
MEMORANDUM GRADE 11 PHYSICAL SCIENCES: CHEMISTRY Paper 2 MARKS: 150 TIME: 3 hours Learning Outcomes and Assessment Standards LO1 LO2 LO3 AS 11.1.1: Plan and conduct a scientific investigation to collect
Presentation Outline. Background
Introduction ENVIRONMENTAL SYSTEMS, INC. Innovative Air Pollution Control Solutions Air Pollution Abatement Technologies for the Oil and Natural Gas Processing Industries. Jeff Kudronowicz / Application
This article provides a basic primer on an
Everything You Need to Know About NOx Controlling and minimizing pollutant emissions is critical for meeting air quality regulations. By Charles Baukal, Director of R&D, John Zinc Co. LLC, Tulsa, Okla.
Commercial refrigeration has been in the environmental. Refrigerant. as a. Basics Considerations PART 1:
PART 1: CO 2 Commercial refrigeration has been in the environmental spotlight for more than a decade, especially as leakage studies have revealed the true effects of hydrofluorocarbon (HFC) emissions.
7. 1.00 atm = 760 torr = 760 mm Hg = 101.325 kpa = 14.70 psi. = 0.446 atm. = 0.993 atm. = 107 kpa 760 torr 1 atm 760 mm Hg = 790.
CHATER 3. The atmosphere is a homogeneous mixture (a solution) of gases.. Solids and liquids have essentially fixed volumes and are not able to be compressed easily. have volumes that depend on their conditions,
POINT SOURCES OF POLLUTION: LOCAL EFFECTS AND IT S CONTROL Vol. I - Air Pollution Caused by Industries - Jiming HAO and Guowen LI
AIR POLLUTION CAUSED BY INDUSTRIES Department of Evironmental Sciences and Engineering, Tsinghua University, Beijing 100084, P.R.China Keywords: Emission sources, emission inventory, emission factors,
Financing New Coal-Fired Power Plants
Financing New Coal-Fired Power Plants Guidance Note 2011 Coal is likely to be part of the energy mix for the foreseeable future. Therefore, to limit dangerous climate change, coal-fired power generation
General Chemistry I (FC, 09-10) Lab #3: The Empirical Formula of a Compound. Introduction
General Chemistry I (FC, 09-10) Introduction A look at the mass relationships in chemistry reveals little order or sense. The ratio of the masses of the elements in a compound, while constant, does not
AMMONIA AND UREA PRODUCTION
AMMONIA AND UREA PRODUCTION Urea (NH 2 CONH 2 ) is of great importance to the agriculture industry as a nitrogen-rich fertiliser. In Kapuni, Petrochem manufacture ammonia and then convert the majority
CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS
CHAPTER 7 THE DEHYDRATION AND SWEETENING OF NATURAL GAS Natural gases either from natural production or storage reservoirs contain water, which condense and form solid gas hydrates to block pipeline flow
Chapter 3: Water and Life
Name Period Chapter 3: Water and Life Concept 3.1 Polar covalent bonds in water result in hydrogen bonding 1. Study the water molecules at the right. On the central molecule, label oxygen (O) and hydrogen
Online Infrared Flue Gas Analyzer Gasboard 3000
Online Infrared Flue Gas Analyzer Gasboard 3000 O 2 CO CO2 SO 2 NO NO x Use of measurement methods Proprietary Infrared NDIR Detectors - Micro-flow in ppm range: CO, NO, SO2, CO2 - Dual beam in % volume
Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant
Process Integration of Chemical Looping Combustion with Oxygen Uncoupling in a Coal-Fired Power Plant Petteri Peltola 1, Maurizio Spinelli 2, Aldo Bischi 2, Michele Villani 2, Matteo C. Romano 2, Jouni
Carbon Capture. Investment for the Future
Carbon Capture Investment for the Future Doosan Carbon Capture Technologies Oxyfuel 160KWt at Doosan ERTF* ERTF Oxyfuel Conversion 40MWt OxyCoal TM Burner at Doosan CCTF Full Power Plant Demo Expected
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Chapter 10 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A gas at a pressure of 10.0 Pa exerts a force of N on an area of 5.5 m2. A) 1.8 B) 0.55
Balancing chemical reaction equations (stoichiometry)
Balancing chemical reaction equations (stoichiometry) This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit
Development and Operating Results of Low SO2 to SO3 Conversion Rate Catalyst for DeNOx Application
Development and Operating Results of Low SO2 to SO3 Conversion Rate Catalyst for DeNOx Application By Isato Morita Yoshinori Nagai Dr. Yasuyoshi Kato Babcock-Hitachi K.K., Japan Dr.Howard N. Franklin Hitachi
SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS
SUPPLEMENTARY TOPIC 3 ENERGY AND CHEMICAL REACTIONS Rearranging atoms. In a chemical reaction, bonds between atoms in one or more molecules (reactants) break and new bonds are formed with other atoms to
Petroleum Refinery Hydrogen Production Unit: Exergy and Production Cost Evaluation
Int. J. of Thermodynamics ISSN 1301-9724 Vol. 11 (No. 4), pp. 187-193, December 2008 Petroleum Refinery Hydrogen Production Unit: and Production Cost Evaluation Flávio E. Cruz 1 and Silvio de Oliveira
COST OF GREENHOUSE GAS MITIGATION [21jun, 10jul 1pm]
5 COST OF GREENHOUSE GAS MITIGATION [21jun, 10jul 1pm] Fix of Section 5 tables, but no change needed. EEH 955am 11nov00: The cost of greenhouse gas mitigation using renewable energy technologies depends
Impact of coal quality and gasifier technology on IGCC performance
Impact of coal quality and gasifier technology on IGCC performance Ola Maurstad 1 *, Howard Herzog**, Olav Bolland*, János Beér** *The Norwegian University of Science and Technology (NTNU), N-7491 Trondheim,
Development of Coal Gasification System for Producing Chemical Synthesis Source Gas
27 Development of Coal Gasification System for Producing Chemical Synthesis Source Gas TAKAO HASHIMOTO *1 KOICHI SAKAMOTO *1 KATSUHIRO OTA *2 TAKASHI IWAHASHI *3 YUUICHIROU KITAGAWA *4 KATSUHIKO YOKOHAMA
NUTC R304. Use of Absorption Mechanisms to Decrease Heavy Metal Mobility
Use of Absorption Mechanisms to Decrease Heavy Metal Mobility by Jianmin Wang Honglan Shi Joe G. Burken NUTC R304 A National University Transportation Center at Missouri University of Science and Technology
Dow Solvent Technologies for CO 2 Removal
Dow Oil & Gas Jan Lambrichts AIChE Netherlands / Belgium Section 21 January 2014 Novotel, Antwerp Dow Solvent Technologies for CO 2 Removal Who We Are Dow combines the power of science and technology to
COKE PRODUCTION FOR BLAST FURNACE IRONMAKING
COKE PRODUCTION FOR BLAST FURNACE IRONMAKING By Hardarshan S. Valia, Scientist, Ispat Inland Inc INTRODUCTION A world class blast furnace operation demands the highest quality of raw materials, operation,
Drying of Woody Biomass. Process Engineering / GEA Barr-Rosin
Drying of Woody Biomass BioPro Expo & Marketplace / Atlanta, GA / March 14-16, 2011 Drying of Woody Biomass Conventional Direct Fired Dryer Technology Proprietary work of the Copyright Owner Issues with
SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS
SEATTLE STEAM COMPANY FREQUENTLY ASKED QUESTIONS What products/services does Seattle Steam provide? The company provides thermal energy (heat) produced at two central heating plants in downtown Seattle.
State of the Art (SOTA) Manual for Boilers and Process Heaters
State of the Art (SOTA) Manual for Boilers and Process Heaters Original Date: July 1997 Revision Date: February 22, 2004 State of New Jersey Department of Environmental Protection Air Quality Permitting
Study on performance and methods to optimize thermal oil boiler efficiency in cement industry
energyequipsys/ Vol 4/No1/June 016/ 53-64 Energy Equipment and Systems http://energyequipsys.ut.ac.ir www.energyeuquipsys.com Study on performance and methods to optimize thermal oil boiler efficiency
Hybrid Power Generations Systems, LLC
Coal Integrated Gasification Fuel Cell System Study Pre-Baseline Topical Report April 2003 to July 2003 Gregory Wotzak, Chellappa Balan, Faress Rahman, Nguyen Minh August 2003 Performed under DOE/NETL
Review of Potential Efficiency Improvements at Coal-Fired Power Plants
Review of Potential Efficiency Improvements at Coal-Fired Power Plants Introduction The Clean Air Markets Division, U.S. Environmental Protection Agency requested that Perrin Quarles Associates, Inc.,
1. Standard conditions are 29.92 in. Hg (760 mm Hg, 14.696 psia) and 68 F (20 C).
INTRODUCTION Emission Monitoring Inc. DETERMINING F-FACTORS FROM GAS CHROMATOGRAPHIC ANALYSES Roger T. Shigehara Emission Monitoring Incorporated Howard F. Schiff TRC Environmental Corporation EPA Method
Beware of Exaggerated Claims and Uncertified Manufacturers Ratings Regarding Commercial Boiler Efficiency
Beware of Exaggerated Claims and Uncertified Manufacturers Ratings Regarding Commercial Boiler Efficiency For many years competent professional HVAC engineers have been aware of exaggerated or deceptive
Biomass Conversion to Electricity: Stand Alone Power Plants, Co-Generation,
Biomass Conversion to Electricity: Stand Alone Power Plants, Co-Generation, and Combined Heat and Power (CHP) Woody Biomass Workshop Ukiah, CA December 2, 2010 John R. Shelly UC Cooperative Extension University
Thermal Mass Flow Meters
Thermal Mass Flow Meters for Greenhouse Gas Emissions Monitoring Natural Gas Measurement for Emissions Calculations Flare Gas Monitoring Vent Gas Monitoring Biogas and Digester Gas Monitoring Landfill
Coal-To-Gas & Coal-To-Liquids
Located in the Energy Center at Discovery Park, Purdue University Coal-To-Gas & Coal-To-Liquids CCTR Basic Facts File #3 Brian H. Bowen, Marty W. Irwin The Energy Center at Discovery Park Purdue University
Temperature. Number of moles. Constant Terms. Pressure. Answers Additional Questions 12.1
Answers Additional Questions 12.1 1. A gas collected over water has a total pressure equal to the pressure of the dry gas plus the pressure of the water vapor. If the partial pressure of water at 25.0
Chapter 4 Practice Quiz
Chapter 4 Practice Quiz 1. Label each box with the appropriate state of matter. A) I: Gas II: Liquid III: Solid B) I: Liquid II: Solid III: Gas C) I: Solid II: Liquid III: Gas D) I: Gas II: Solid III:
Tim Facius Baltimore Aircoil
Presented By: Tim Facius Baltimore Aircoil Slide No.: 1 CTI Mission Statement To advocate and promote the use of environmentally responsible Evaporative Heat Transfer Systems (EHTS) for the benefit of
IB Chemistry 1 Mole. One atom of C-12 has a mass of 12 amu. One mole of C-12 has a mass of 12 g. Grams we can use more easily.
The Mole Atomic mass units and atoms are not convenient units to work with. The concept of the mole was invented. This was the number of atoms of carbon-12 that were needed to make 12 g of carbon. 1 mole
The Fate of Ammonia and Mercury in the Carbon Burn-Out (CBO ) Process
The Fate of Ammonia and Mercury in the Carbon Burn-Out (CBO ) Process Vincent M Giampa Progress Materials, Inc., One Progress Plaza, St. Petersburg, Florida 33701 KEYWORDS: mercury, ammonia, carbon burn-out,
Balance of Fuel Cell Power Plant (BOP)
Balance of Fuel Cell Power Plant (BOP) Docent Jinliang Yuan December, 2008 Department of Energy Sciences Lund Institute of Technology (LTH), Sweden Balance of Fuel Cell Power Plant In addition to stack,
Validated methods for flue gas flow rate calculation with reference to EN 12952-15
55106284-PGR/R&E 12-7222 Validated methods for flue gas flow rate calculation with reference to EN 12952-15 Nyköping, Ratcliffe-on-Soar, Arnhem; January 31, 2012 Authors David Graham E.ON New Build & Technology;
Boiler Calculations. Helsinki University of Technology Department of Mechanical Engineering. Sebastian Teir, Antto Kulla
Helsinki University of Technology Department of Mechanical Engineering Energy Engineering and Environmental Protection Publications Steam Boiler Technology ebook Espoo 2002 Boiler Calculations Sebastian
GCSE COMBINED SCIENCE: TRILOGY
GCSE COMBINED SCIENCE: TRILOGY Higher Tier Paper 4: Chemistry 2H H Specimen 2018 Time allowed: 1 hour 15 minutes Materials For this paper you must have: a ruler a calculator the periodic table (enclosed)
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I
STATE UNIVERSITY OF NEW YORK COLLEGE OF TECHNOLOGY CANTON, NEW YORK COURSE OUTLINE CHEM 150 - COLLEGE CHEMISTRY I PREPARED BY: NICOLE HELDT SCHOOL OF SCIENCE, HEALTH, AND PROFESSIONAL STUDIES SCIENCE DEPARTMENT
Renewable Choice Energy
Catawba College Table of Contents About Renewable Choice The Problem: Electricity Production Today The Solutions: Renewable Energy Sources Renewable Energy Credits (RECs) Who can participate in Renewable
Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT).
CHEM110 Week 9 Notes (Gas Laws) Page 1 of 7 Lecture Notes: Gas Laws and Kinetic Molecular Theory (KMT). Gases Are mostly empty space Occupy containers uniformly and completely Expand infinitely Diffuse
COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK
COMPARISON OF PROCESS FLOWS: FLUID BED COMBUSTOR AND GLASSPACK PURPOSE The purpose of this document is to present the assumptions and calculations used to prepare Minergy Drawing 100-0204-PP00 (attached).
Recover Heat from Boiler Blowdown Water
Prepared for California Energy Commission (CEC) Prepared By: Southern California Gas Company (A Sempra Energy Utility) E3M Inc. May 2012 i Disclaimer The CEC and its contractor, Southern California Gas
Coal waste slurries as a fuel for integrated gasification combined cycle plants
Coal waste slurries as a fuel for integrated gasification combined cycle plants Marcin A. Lutynski 1,a, and Aleksander Lutynski 2 1 Silesian University of Technology, Faculty of Mining and Geology, ul.
CHAPTER 12. Gases and the Kinetic-Molecular Theory
CHAPTER 12 Gases and the Kinetic-Molecular Theory 1 Gases vs. Liquids & Solids Gases Weak interactions between molecules Molecules move rapidly Fast diffusion rates Low densities Easy to compress Liquids
ENERGY EFFICIENCY IN POWER PLANTS
Plenary session Producing more with less: Efficiency in Power Generation ENERGY EFFICIENCY IN POWER PLANTS Frans van Aart, Wim Kok, Pierre Ploumen KEMA Power Generation & Sustainables ENERGY EFFICIENCY
Fuel Cells and Their Applications
Karl Kordesch, Giinter Simader Fuel Cells and Their Applications VCH Weinheim New York Basel Cambridge Tokyo Contents 1. Introduction 1 1.1. Fuel Cell Technology: a Dream, Challenge or a Necessity? 1 1.2.
Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2
Effects of Temperature, Pressure and Water Vapor on Gas Phase Infrared Absorption by CO 2 D. K. McDermitt, J. M. Welles, and R. D. Eckles - LI-COR, inc. Lincoln, NE 68504 USA Introduction Infrared analysis
Greenhouse gas emissions from direct combustion of various fuels (e.g. grain dryer)
Greenhouse gas emissions from direct combustion of various fuels (e.g. grain dryer) The most significant greenhouse gas from direct combustion is carbon dioxide (CO 2 ) Large number of other compounds
Reporting: one report / group. The results of the carryover load calculations will also be reported to Metsä Fibre, Rauma.
Carryover load Your task is to use the obtained experimental result from the probe measurement in combination with the information given in this handout to calculate the carryover load (g/nm 3 dry flue
F321 MOLES. Example If 1 atom has a mass of 1.241 x 10-23 g 1 mole of atoms will have a mass of 1.241 x 10-23 g x 6.02 x 10 23 = 7.
Moles 1 MOLES The mole the standard unit of amount of a substance (mol) the number of particles in a mole is known as Avogadro s constant (N A ) Avogadro s constant has a value of 6.02 x 10 23 mol -1.
Latest Low-NOx Combustion Technology for Pulverized-coal-fired Boilers
Hitachi Review Vol. 58 (29), No.5 187 Latest Low- Combustion Technology for Pulverized-coal-fired Boilers Kenichi Ochi Kenji Kiyama Hidehisa Yoshizako, Dr. Eng. Hirofumi Okazaki Masayuki Taniguchi, Dr.
The Solubility of Calcium Carbonate
1 The Solubility of Calcium Carbonate Lesson Plan Developed by: John Thurmond, Plainfield North High School, Plainfield, Illinois Based on Presentation June, 2011. Northwestern University, Climate Change
Austin Peay State University Department of Chemistry CHEM 1111. Empirical Formula of a Compound
Cautions Magnesium ribbon is flammable. Nitric acid (HNO 3 ) is toxic, corrosive and contact with eyes or skin may cause severe burns. Ammonia gas (NH 3 ) is toxic and harmful. Hot ceramic crucibles and
Stoichiometry. 1. The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 0.1; (4) 0.2.
Stoichiometry 1 The total number of moles represented by 20 grams of calcium carbonate is (1) 1; (2) 2; (3) 01; (4) 02 2 A 44 gram sample of a hydrate was heated until the water of hydration was driven
Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies
Efficiency Metrics for CHP Systems: Total System and Effective Electric Efficiencies Combined heat and power (CHP) is an efficient and clean approach to generating power and thermal energy from a single
OVERVIEW. Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink. Key Features:
A COMPANY WITH ENERGY Toolbox for Thermodynamic Modeling and Simulation with MATLAB /Simulink OVERVIEW Thermolib Expands the MATLAB /Simulink Suite with tools to design, model and simulate complex thermodynamic
Waste to Energy in Düsseldorf. for a clean city.
Waste to Energy in Düsseldorf for a clean city. Waste Management in Düsseldorf. Düsseldorf s public utilities company known as Stadtwerke Düsseldorf operates a waste to energy plant (WtE) that has been
