Scheme of work Cambridge IGCSE Biology (0610)



Similar documents
Bio EOC Topics for Cell Reproduction: Bio EOC Questions for Cell Reproduction:

Name: Class: Date: ID: A

Heredity - Patterns of Inheritance

A trait is a variation of a particular character (e.g. color, height). Traits are passed from parents to offspring through genes.

Mendelian and Non-Mendelian Heredity Grade Ten

LAB : PAPER PET GENETICS. male (hat) female (hair bow) Skin color green or orange Eyes round or square Nose triangle or oval Teeth pointed or square

Genetics 1. Defective enzyme that does not make melanin. Very pale skin and hair color (albino)

Respiration occurs in the mitochondria in cells.

Heredity. Sarah crosses a homozygous white flower and a homozygous purple flower. The cross results in all purple flowers.

Terms: The following terms are presented in this lesson (shown in bold italics and on PowerPoint Slides 2 and 3):

Biology Final Exam Study Guide: Semester 2

Science 10-Biology Activity 14 Worksheet on Sexual Reproduction

Chapter 9 Patterns of Inheritance

B2 5 Inheritrance Genetic Crosses

GENETIC CROSSES. Monohybrid Crosses

7A The Origin of Modern Genetics

Chapter 13: Meiosis and Sexual Life Cycles

MCAS Biology. Review Packet

CCR Biology - Chapter 7 Practice Test - Summer 2012

Biology 1406 Exam 4 Notes Cell Division and Genetics Ch. 8, 9

Biology Notes for exam 5 - Population genetics Ch 13, 14, 15

Genetic Mutations. Indicator 4.8: Compare the consequences of mutations in body cells with those in gametes.

Continuous and discontinuous variation

Name: 4. A typical phenotypic ratio for a dihybrid cross is a) 9:1 b) 3:4 c) 9:3:3:1 d) 1:2:1:2:1 e) 6:3:3:6

Human Blood Types: Codominance and Multiple Alleles. Codominance: both alleles in the heterozygous genotype express themselves fully

CHROMOSOMES AND INHERITANCE

The Developing Person Through the Life Span 8e by Kathleen Stassen Berger

Tuesday 14 May 2013 Morning

Genetics Test Biology I

Genetics Module B, Anchor 3

B2 Revision. Subject Module Date Biology B2 13 TH May (am)

Cell Growth and Reproduction Module B, Anchor 1

Chapter 13: Meiosis and Sexual Life Cycles

AP: LAB 8: THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Genetics Lecture Notes Lectures 1 2

Meiosis is a special form of cell division.

The correct answer is c A. Answer a is incorrect. The white-eye gene must be recessive since heterozygous females have red eyes.

MCB41: Second Midterm Spring 2009

Genetics for the Novice

Reproductive System & Development: Practice Questions #1

somatic cell egg genotype gamete polar body phenotype homologous chromosome trait dominant autosome genetics recessive

Problems 1-6: In tomato fruit, red flesh color is dominant over yellow flesh color, Use R for the Red allele and r for the yellow allele.

BioBoot Camp Genetics

DNA Determines Your Appearance!

12.1 The Role of DNA in Heredity

Summary Genes and Variation Evolution as Genetic Change. Name Class Date

PSI Biology Mitosis & Meiosis

Chapter 3. Chapter Outline. Chapter Outline 9/11/10. Heredity and Evolu4on

LAB : THE CHI-SQUARE TEST. Probability, Random Chance, and Genetics

Biology Behind the Crime Scene Week 4: Lab #4 Genetics Exercise (Meiosis) and RFLP Analysis of DNA

Cystic Fibrosis Webquest Sarah Follenweider, The English High School 2009 Summer Research Internship Program

NATIONAL SENIOR CERTIFICATE GRADE 12

Forensic DNA Testing Terminology

LAB 8 EUKARYOTIC CELL DIVISION: MITOSIS AND MEIOSIS

Mitosis, Meiosis and Fertilization 1

This fact sheet describes how genes affect our health when they follow a well understood pattern of genetic inheritance known as autosomal recessive.

Why are some drugs only available on prescription? Depressants. Pain killers. Stimulants. Performance enhancers. Hallucinogens

Practice Problems 4. (a) 19. (b) 36. (c) 17

CHROMOSOME STRUCTURE CHROMOSOME NUMBERS

GCSE Additional Science Biology Contents Guide

BIOLOGY HIGHER LEVEL

4.2 Meiosis. Meiosis is a reduction division. Assessment statements. The process of meiosis

Saffiyah Y. Manboard Biology Instructor Seagull Alternative High School

A and B are not absolutely linked. They could be far enough apart on the chromosome that they assort independently.

AS Biology Unit 2 Key Terms and Definitions. Make sure you use these terms when answering exam questions!

Mendelian Genetics in Drosophila

XII. Biology, Grade 10

Bio 102 Practice Problems Mendelian Genetics and Extensions

Genetics Part 1: Inheritance of Traits

Mechanisms of Evolution

Essentials of Human Anatomy & Physiology 11 th Edition, 2015 Marieb

Class Time: 30 minutes. Other activities in the Stem Cells in the Spotlight module can be found at:

Basic Concepts Recombinant DNA Use with Chapter 13, Section 13.2

F1 Generation. F2 Generation. AaBb

Influence of Sex on Genetics. Chapter Six

Mendelian inheritance and the

Evolution (18%) 11 Items Sample Test Prep Questions

Process 3.5. A Pour it down the sink. B Pour it back into its original container. C Dispose of it as directed by his teacher.

1 Mutation and Genetic Change

FOR TEACHERS ONLY. The University of the State of New York REGENTS HIGH SCHOOL EXAMINATION LIVING ENVIRONMENT

Genetic Technology. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

240Tutoring Life Science Study Material

Activity 4 Probability, Genetics, and Inheritance

Bio 101 Section 001: Practice Questions for First Exam

Campbell Biology in Focus Correlation for AP Biology Curriculum Framework

Additional Science. Biology BL2FP. (Jun15BL2FP01) General Certificate of Secondary Education Foundation Tier June 2015.

The chemical reactions inside cells are controlled by enzymes. Cells may be specialised to carry out a particular function.

Mark Scheme (Results) Summer GCSE Biology 5BI2H/01

hij GCSE Additional Science Biology 2 Higher Tier Biology 2H SPECIMEN MARK SCHEME Version 1.0

1. When new cells are formed through the process of mitosis, the number of chromosomes in the new cells

GCSE BITESIZE Examinations

A Correlation of Pearson Miller & Levine Biology 2014 To the Utah Core State Standards for Biology Grades 9-12

Two copies of each autosomal gene affect phenotype.

Deterministic computer simulations were performed to evaluate the effect of maternallytransmitted

B2 1 Cells, Tissues and Organs

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers 5090 BIOLOGY. 5090/22 Paper 2 (Theory), maximum raw mark 80

Inheritance of Color And The Polled Trait Dr. R. R. Schalles, Dept. of Animal Sciences and Industry Kansas State University

PLANT EVOLUTION DISPLAY Handout

Mark Scheme. Additional Science 4408 / Biology General Certificate of Secondary Education. BL2HP Unit Biology examination June series

Draw one line from each structure in List A to the correct information about the structure in List B.

Transcription:

Scheme of work Cambridge IGCSE Biology (0610) Unit 8: Inheritance and evolution Recommended prior knowledge Basic knowledge of Unit 1 cell structure is required, and also an understanding of the processes involved in sexual reproduction. Context This unit builds on the topic of sexual reproduction, covered in Units 6 and 7. Outline The unit begins with the introduction of several new terms, before moving on to genetics and inheritance. Variation, affected by both genotype and phenotype, is investigated, before considering the ideas of natural selection and evolution. (Please note: (S) in bold denotes material in the Supplement (Extended syllabus) only) Syllabus ref Learning objectives Suggested teaching activities Learning resources III 3 8.1 Inheritance Define inheritance as the transmission of genetic information from generation to generation Students to come up with a possible definition of inheritance. Overview Genes and inheritance: www.abpischools.org.uk/page/mod ules/genome/index.cfm III 3.1 8.2 Chromosomes Define the terms: - chromosome as a thread of DNA made up of a string of genes - gene as a length of DNA that is the unit of heredity and codes for a specific protein A gene may be copied and passed on to the next generation: - allele as any of two or more alternative forms of a gene - haploid nucleus as a nucleus containing a single set of Students should know that a chromosome is a length of DNA, and that each chromosome carries a large number of genes. They may be interested to discuss the human genome project, which has mapped all the genes on the human chromosomes. Students may be familiar with the terms haploid and diploid when considering the processes involved in sexual reproduction. A haploid cell is one with a single set of chromosomes (for example a gamete) while a diploid cell has two complete sets. Meiosis produces haploid cells from a diploid cell. It is important to use the terms 'gene' and 'allele' correctly right from the start. Nelson Thornes 2009 p202 203 The Human Genome Project: www.genome.gov/education/ Includes factsheets and information on all aspects of genetics. Introduction to DNA/ chromosomes: www.learn.genetics.utah.edu/conte nt/begin/tour/ v1 2Y05 Cambridge IGCSE Biology (0610) 1

unpaired chromosomes (e.g. sperm and egg) - diploid nucleus as a nucleus containing two sets of chromosomes (e.g. in body cells) Describe the inheritance of sex hormones (XX and XY chromosomes) At Cambridge IGCSE level, it is enough to define a gene as a length of DNA giving instructions for a certain characteristic. However, teachers may say that a gene carries instructions for making a particular protein. An allele is a variety / an alternative form of a gene, and many genes have many different alleles. Students can draw the structures and write the definition beside the diagram to help them to learn the words and their definitions. Flash cards can be useful for students to quiz themselves when working in small groups. Build a DNA molecule: learn.genetics.utah.edu/content/beg in/dna/builddna/ Practical Biology DNA: www.nuffieldfoundation.org/practica l-biology/extracting-dna-livingthings DNA extraction: www.ncbe.reading.ac.uk/ncbe/proto cols/pracbiotech/oniondna.html It may be sufficient to state that males have XY sex chromosomes and females have XX sex chromosomes and to return to their inheritance later in Unit 8.3 Monohybrid inheritance. Extension DNA extraction. Simple gel electrophoresis using coloured dyes. Oct/Nov 2008 Paper 0610/02 question 4 III 3.4 8.3 Monohybrid inheritance Define the following terms: - genotype as the genetic makeup - of an organism in terms of the alleles present (e.g. Tt or GG) - phenotype as the physical or other features of an organism due to both its genotype and its environment - (e.g. tall plant or green seed) - homozygous as having two identical alleles of a particular It is best to consider the meanings of these terms before thinking about inheritance. They can best be illustrated and explained with reference to a particular characteristic. Choose something simple, and that is likely to appeal to students, such as coat colour of an animal. It should involve a gene with two alleles, one dominant and one recessive. Students should learn that one letter is used to represent these alleles, with an upper case letter for the dominant allele and a lower case letter for the recessive allele. They should also learn to write the dominant allele first. They will know that most cells are diploid and so should be Nelson Thornes 2009 p208 209 Genotype and phenotype: www.brooklyn.cuny.edu/bc/ahp/bioi nfo/gp/definition.html Video clips Inheritance: www.bbc.co.uk/learningzone/clips/i nheritance-of-eyecolour/10651.html v1 2Y05 Cambridge IGCSE Biology (0610) 2

gene (e.g. TT or gg). Two identical homozygous individuals that breed together will be pure breeding - heterozygous as having two different alleles of a particular gene (e.g.tt or Gg) and are not pure breeding - dominant as an allele that is expressed if it is present - (e.g. T or G) - recessive as an allele that is only expressed when there is no dominant allele of the gene present (e.g. t or g) Calculate and predict the results of monohybrid crosses involving 1 : 1 and 3 : 1 ratios able to understand that they therefore carry two copies of each gene. The terms genotype, phenotype, homozygous and heterozygous can be introduced and defined in relation to simple genetic crosses. It is a good idea to spend some time with such examples, using a Punnett square for clarity especially with the Core students. Ensure that students are thoroughly confident using the terminology, before beginning to think about how inheritance occurs. Students should be reminded that gametes are haploid cells, and therefore carry only one copy of each gene. They can be asked to work out what kind of gametes will be produced by organisms with a range of different genotypes. It is good practice, and avoids confusion, if a circle is drawn around each gamete or the genotype when writing out a genetic cross. Discourage students from automatically writing down two gametes from each parent. This is only necessary if the parent is heterozygous and producing two different kinds of gamete. If it is homozygous, then only one kind of gamete is made, and only one needs to be written down. Students can then be introduced to the idea of random fertilisation, in which any kind of gamete from the male parent can fuse with any kind of gamete from the female parent. The offspring now have two copies of each gene again. Drawing lines from gamete to gamete often causes errors drawing a Punnett square is easier for students to understand. In the boxes, ensure that students understand that what they have worked out is the probability of particular genotypes being produced. The fact that, for example, four different genotypes are present amongst the offspring does not mean that the parents will have four children. Students need to be familiar with the monohybrid crosses 1:1 and 3:1. www.bbc.co.uk/learningzone/clips/d ominant-and-recessivecharacteristics/4197.html v1 2Y05 Cambridge IGCSE Biology (0610) 3

The inheritance of sex can be dealt with in the same way as the inheritance of genes, but this time the symbols X and Y are used to indicate whole chromosomes, not alleles of a gene. Students should be able to draw genetic crosses to show the expected 1:1 ratio. III 3.4 (S) 8.3 Explain codominance by reference to the inheritance of ABO blood groups and phenotypes, A,B,AB and O blood groups and genotypes I A, I B and 1 o Extension Students could try the Genetics Breeding Game. Oct/Nov 2010 Paper 0610/21 question 6 Oct/Nov 2010 Paper 0610/22 question 8 Oct/Nov 2009 Paper 0610/02 question 10 May/June 2008 Paper 0610/02 question 7 Codominance is the combination of two different alleles that will produce an effect that is a mixture of both of them. The correct use of symbols should be encouraged; where codominance exists, the gene is shown with an upper case letter, with superscripts to represent the different alleles. It is helpful to write down a list of all the possible genotypes for blood groups and the resulting phenotypes before attempting to deal with any crosses. Ensure that the correct symbols, as used in the syllabus, are automatically used by students. Genetic Breeders: www.puzzling.caret.cam.ac.uk/gam e.php?game=15&age=2 Nelson Thornes, 2009 p210 211 The Biology Project Blood types: www.biology.arizona.edu/human_bi o/problem_sets/blood_types/intro.ht ml May/June 2011 Paper 0610/31 question 4c May/June 2011 Paper 0610/32 question 4 Oct/Nov 2010 Paper 0610/32 question 6 Oct/Nov 2009 Paper 0610/31 question 5 III 3.5 8.4 Variation State that continuous variation is influenced by genes and environment, resulting in a wide range of phenotypes between two extremes: - e.g. height in humans Continuous variation can be illustrated by almost any characteristic that is measurable on a human: height length of middle finger wrist circumference will each give a good range of results and not cause any embarrassment. Nelson Thornes, 2009 p214 217 Practical Biology Variation in humans: www.nuffieldfoundation.org/practica l-biology/introducing-ideas-aboutinheritance v1 2Y05 Cambridge IGCSE Biology (0610) 4

State that discontinuous variation is caused by genes alone and results in a limited number of distinct phenotypes with no intermediates: - e.g. A, B, AB, O blood groups in humans Define mutation as a change in a gene or chromosome Describe mutation as a source of variation, as shown by Down's syndrome Outline the effects of ionising radiation and chemicals on the rate of mutation Leaves or other plant material can also be used to generate a range of results. Students can see that a range of values is obtained. To show them graphically, they will need to decide on 6 or 7 ranges and then draw up a tally chart to show how many values fit into each range. These can then be plotted on a histogram. A common misconception is that 'continuous variation' means something that changes through your life. Although this is true of the measurements students are likely to have made to illustrate this, it is not the correct meaning of the term. Use other features, such as hair or eye colour, to emphasise the real meaning of continuous variation. Students studying the supplement will already be familiar with the A, B, AB and O blood groups. Blood groups are a good example of discontinuous variation. Students can draw bar charts to show the relative proportions of people with the four blood groups. They will not find it difficult to understand that everyone fits into one of these four categories, with no inbetweens, and this is therefore an example of discontinuous variation. A second example is gender. Students should understand that discontinuous variation is caused purely by genes but continuous variation often involves influence by the environment as well. Mutation can be defined as an unpredictable change in the DNA content of a cell. It can affect a single gene, or whole chromosomes, and can happen at any stage, not only during cell division. Mutations can be positive for an organism, as in bacteria that developed resistance to certain antibiotics. Refer to Unit 8.4 Selection. Down's syndrome is used to illustrate a mutation that occurs during meiosis and affects the number of chromosomes in a cell. Students could look at karyotypes of people with Down's Practical Biology Variation in Ivy leaves: www.nuffieldfoundation.org/practica l-biology/recording-variation-ivyleaves Variation continuous and discontinuous: www.bbc.co.uk/scotland/learning/bit esize/standard/biology/inheritance/ Video clip Variation: www.bbc.co.uk/learningzone/clips/v ariation-and-inheritance/5519.html Sources of variation: learn.genetics.utah.edu/content/vari ation/sources/ Inheritance patterns in monogenic disorders: www.geneticalliance.org.uk/educati on2.htm Down s syndrome as an example of mutation: www.bbc.co.uk/health/physical_hea lth/conditions/downssyndrome1.sht ml v1 2Y05 Cambridge IGCSE Biology (0610) 5

syndrome, and compare them with karyotypes of males and females with the normal number of chromosomes. Ionising radiation and mustard gas can be given as examples of factors that may cause mutations. Chernobyl in 1984 is an example of radiation that caused mutations in hundreds of people and unborn babies. The Fukushima nuclear disaster in Japan in 2011 may cause mutations. III 3.5 (S) 8.4 Describe sickle cell anaemia and explain its incidence in relation to that of malaria May/June 2011 Paper 0610/21 question 5b May/June 2011 Paper 0610/22 question 5 May/June 2010 Paper 0610/22 question 3 Oct/Nov 2008 Paper 0610/02 question 3 Sickle cell anaemia can be explained as the result of a mutation in the gene that codes for the production of haemoglobin. The effects of this on the carriage of oxygen, and the consequences for respiring cells in body tissues can be discussed. Its inheritance can also be considered. Students can look at maps showing the distribution of malaria and of sickle cell anaemia. Some students may have some degree of sickle cell anaemia and will be able to talk about it to the class. It is a good way to introduce the ideas of selection pressures, and natural selection. Sickle cell anaemia: www.bbc.co.uk/health/physical_hea lth/conditions/sicklecell1.shtml May/June 2009 Paper 0610/31 question 5 III 3.6 8.5 Selection Describe the role of artificial selection in the production of varieties of animals and plants with increased economic importance Students are already aware that variation occurs within populations of organisms, and they will not find it difficult to think how humans may choose a particular variety of an animal or plant and use this to breed from. Examples include: Jersey cattle that have a high milk yield Wheat that has high seed yield and shorter stems that are easier to harvest. Rice that has roots tolerant to lactic acid in the water. Nelson Thornes 2009 p218-220 Practical Biology Modelling natural selection: www.nuffieldfoundation.org/practica l-biology/modelling-naturalselection v1 2Y05 Cambridge IGCSE Biology (0610) 6

Define natural selection as the greater chance of passing on of genes by the best adapted organisms III 3.6 (S) 8.5 Describe variation and state that competition leads to differential survival of, and reproduction by, those best fitted to the environment Assess the importance of natural selection as a possible mechanism for evolution Describe the development of strains of antibiotic resistant bacteria as an example of natural selection Maize has been bred to be able to adapt to low carbon dioxide concentrations. It should be made clear that this selection needs to continue for many generations, and does not produce immediate results. The favourable characteristics are expressed in the phenotypes in some of the offspring and these offspring may be better able to survive and reproduce in a particular environment. If students have already studied sickle cell anaemia, they will already have thought about the ideas of differential survival and selection. These will pass on their alleles to their offspring, so that the alleles that confer the advantageous characteristics gradually become more common. Over time, this could lead to a change in the overall characteristics of the species. Extension Natural selection activity. The development of antibiotic-resistant strains of bacteria makes a good example to illustrate the ideas in the previous section. Changes in a species through natural selection over time are gradual due to environmental changes and can be a mechanism for evolution. Students are interested in this topic and groups within the class could present some ideas to the whole class. Bacteria reproduce rapidly and a slight mutation during asexual reproduction can produce some variation within the population. Bacteria that survive and reproduce may develop a resistance to the antibiotic that was meant to kill them. This successful, mutated bacterium will reproduce and pass on the antibiotic resistant gene to its offspring. Artificial vs natural selection: learn.genetics.utah.edu/content/vari ation/artificial/ Natural selection game: www.biology4all.com/resources_libr ary/source/200.doc A selection of excellent resources explaining the process of evolution: learn.genetics.utah.edu/content/vari ation/ MRSA: www.dnadarwin.org/casestudies/9/ (advanced, but contains some useful information) Antibiotic resistance: www.abpischools.org.uk/page/mod ules/infectiousdiseases_medicines/i ndex.cfm v1 2Y05 Cambridge IGCSE Biology (0610) 7

May/June 2011 Paper 0610/31 question 6 May/June 2010 Paper 0610/32 question 4 May/June 2008 Paper 0610/31 question 4 III 3.7 8.6 Genetic Engineering Define genetic engineering as taking a gene from one species and putting it into another species Use simple diagrams of bacteria containing circular DNA to show how a section of human DNA can be inserted into the bacterial DNA. Extension Students could research recent advances in biotechnology and report back. This might lead to student participation in the STEM project Talking about genetics (Science Across the World). Nelson Thornes 2009 p221 Science Across the World Genetic modification: www.nationalstemcentre.org.uk/elib rary/resource/1750/talking-aboutgenetics (S) 8.6 Explain why, and outline how, human insulin genes were put into bacteria using genetic engineering Explain that DNA can be cut in certain places using different restriction enzymes to select the correct gene. If the same restriction enzyme is used to cut the bacterial DNA then the ends of the human and bacterial DNA will stick together. Extension simple gel electrophoresis. Biotechnology: www.abpischools.org.uk/page/mod ules/biotech/index.cfm Information and animation of Genetic engineering: www.abpischools.org.uk/page/mod ules/geneng/index.cfm v1 2Y05 Cambridge IGCSE Biology (0610) 8