Energy efficiency requirements for charging technology



Similar documents
International External Power Supply Regulations

47000 SERIES - ELECTRONIC TRANSFORMERS

0.9V Boost Driver PR4403 for White LEDs in Solar Lamps

Product Profile: Battery Chargers

DRIVE CIRCUITS FOR POWER MOSFETs AND IGBTs

INFO. Legally binding regulations on relating to energy efficiency and environmental protection. Eco-Design Directive and EC-Commission Regulation

98% Efficient Single-Stage AC/DC Converter Topologies

REVIEW STUDY ON COMMISSION REGULATION (EC) NO. 278/2009 EXTERNAL POWER SUPPLIES

Application Guide. Power Factor Correction (PFC) Basics

DISCUSSION PAPER ECODESIGN FOR ENERGY RELATED PRODUCTS INTEGRATED INTO OTHER ENERGY RELATED PRODUCTS

Optimizing Power Efficiency in Point-of-Load Regulators Using SLLM (Simple Light Load Mode) Control. White Paper.

The Different Types of UPS Systems

Solutions to Bulb questions

Green Product Management

Phase-Control Alternatives for Single-Phase AC Motors Offer Smart, Low-Cost, Solutions Abstract INTRODUCTION

High Efficiency Battery Charger using Power Components [1]

The Different Types of UPS Systems

"Charging Lithium-Ion Batteries: Not All Charging Systems Are Created Equal"

TOPOLOGIES FOR SWITCHED MODE POWER SUPPLIES

Understanding Delta Conversion Online "Power Regulation" - Part 2

Chapter 20 Quasi-Resonant Converters

All in One PC Power Supply Reference Design

E-WERK Bike-mobile hub dynamo powered supply unit for electronic devices. Instruction manual. Please study carefully before using E-WERK!

Torfino Enterprises, Inc.

Code of Conduct on Energy Efficiency of External Power Supplies

Chapter 19 Resonant Conversion

Isolation of Battery Chargers Integrated Into Printed Circuit Boards

H a r d C o m m u t a t i o n o f P o w e r M O S F E T

3-Phase Synchronous PWM Controller IC Provides an Integrated Solution for Intel VRM 9.0 Design Guidelines

HDTV Anywhere USER MANUAL / HDTV Anywhere ALL RIGHTS RESERVED MARMITEK

Design a Phase Interleaving PFC Buck Boost Converter to Improve the Power Factor

Properties of electrical signals

The Interaction of Contactors with PLCs

Designing Applications with Lithium-Ion Batteries

Introduction to Power Supplies

O p t i m u m M O S F E T S e l e c t i o n f o r S y n c h r o n o u s R e c t i f i c a t i o n

Chapter 4. LLC Resonant Converter

UPS Applications and VRLA Battery Sizing

36V 14.5Ah ezee Flat Battery

Hand Crank Generator (9 May 05) Converting a Portable Cordless Drill to a Hand Crank DC Generator

= V peak 2 = 0.707V peak

Constructing a precision SWR meter and antenna analyzer. Mike Brink HNF, Design Technologist.

AN2389 Application note

DC/DC power modules basics

Bi-directional FlipFET TM MOSFETs for Cell Phone Battery Protection Circuits

Chapter 6: Converter circuits

Reduce the cost of communication with ComAp. Telecom tower solutions

Hybrid shunter locomotive

Simple PWM Boost Converter with I/O Disconnect Solves Malfunctions Caused when V OUT <V IN

Focus. Impact of the

A MULTILEVEL INVERTER FOR SYNCHRONIZING THE GRID WITH RENEWABLE ENERGY SOURCES BY IMPLEMENTING BATTERY CUM DC-DC CONERTER

VARTA EasyPack. design-in handbook. The easy way to power portable devices! See also:

#178 Maintenance and Care of 3M Powered Air Purifying Respirator (PAPR) Battery Packs

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

Technical Article. Markus Luidolt and David Gamperl

Fairchild On-Line Design Tool: Power Supply WebDesigner Step-by-Step Guide

TEA1024/ TEA1124. Zero Voltage Switch with Fixed Ramp. Description. Features. Block Diagram

Philosophy of Topology and Components Selection for Cost and Performance in Automotive Converters.

Using Cell Balancing to Maximize the Capacity of Multi-cell Li-Ion Battery Packs

Energy efficient lighting for your home find out more.

Luminaire efficiency: what mandatory and voluntary labels achieve, and what they should achieve in the future

Charger Output AC Ripple Voltage and the affect on VRLA batteries

Maximizing UPS Availability

7-41 POWER FACTOR CORRECTION

Welcome to this presentation on Switch Mode Drivers, part of OSRAM Opto Semiconductors LED Fundamentals series. In this presentation we will look at:

Mobile Data Power Model: MDP-25

UM TEA1721 isolated 3-phase universal mains flyback converter demo board. Document information

VICOR WHITE PAPER. The Sine Amplitude Converter Topology Provides Superior Efficiency and Power Density in Intermediate Bus Architecture Applications

Electricity and Power Supplies Chapter #4

Analog & Digital Electronics Course No: PH-218

CHARGING METHODS. Methods of Charging the Valve Regulated (Sealed) Lead-Acid Battery. 19 Valve Regulated (Sealed) Lead-Acid Batteries

PERFORMANCE OF MPPT CHARGE CONTROLLERS A STATE OF THE ART ANALYSIS

A COMPARISON OF TYPICAL UNINTERRUPTIBLE POWER SUPPLY (UPS) DESIGNS IN TODAY S MARKETS

Constant Voltage Charger Selection for VRLA Batteries

MOSFET TECHNOLOGY ADVANCES DC-DC CONVERTER EFFICIENCY FOR PROCESSOR POWER

IMPACT LifeSaver Series IPT Lithium Polymer IMPACT LifeSaver Series Impact Power Technologies, LLC

Guide to ecodesign requirements for computers and computer servers. Are you a manufacturer or importer of computers and/or computer servers?

Resistors in Series and Parallel

Basics of LED drivers. Functions Requirements Selection

EGSTON Standard E2xFxWx 12W

Zero Voltage Switch with Adjustable Ramp. R 2 (R sync ) 220 k (250 V~) Synchronization. Full wave logic Pulse amplifier. 58 k N

SECTION 1: REQUIREMENTS FOR CERTIFICATES OF COMPLIANCE FOR CLASSES OF RADIATION APPARATUS

Energy Efficiency Standards and Labeling in India

Single-Stage High Power Factor Flyback for LED Lighting

DC Traction Power Supply. Powerful, efficient and safe. siemens.com/mobility

Desktop and Integrated Desktop Computer Product Environmental Information Declaration Form for COMMISSION REGULATION (EC) No 617/2013

Semiconductor Technology

Radiometrics Guide to FCC & Canada Compliance. for Unintentional Radiators

Mild Hybrids. Virtual

CONSUMER INTERESTS IN ECO-DESIGN OF COMPLEX SET TOP BOXES

PSC-A5 Solar Charge Controller Manual

IGBT or MOSFET: Choose Wisely by Carl Blake and Chris Bull, International Rectifier

UNDERSTANDING POWER FACTOR AND INPUT CURRENT HARMONICS IN SWITCHED MODE POWER SUPPLIES

Zero voltage drop synthetic rectifier

High voltage power supply (1 to 20 KV)

Transcription:

Energy efficiency requirements for charging technology By Arno Reinhard

Compliance with energy efficiency standards plays an increasingly important role for electronics. Statutory requirements for "pure" power supplies have long been established worldwide. Now chargers have increasingly begun to capture the legislature's attention. The article describes the standards for the energy efficiency requirements for charging technology and circuitry solutions to conform with them. Around the globe power supply engineers encounter a multitude of standards for energy efficiency. In addition to voluntary programs for energy conservation such as Energy Star, or the Code of Conduct (CoC), there are also specific legal requirements for the efficiency of devices in local markets. For example, the ErP (Energy-related Products) specifications must be met for the European market to distribute the products. The U.S. market, however, requires EISA standards (Energy Independence and Security Act), MEPS applies to Australia (Minimum Energy Performance Standards), and Korea asks for KEMCO (Korea Energy Management Corporation). An example of the constant regulatory tightenings can be found in China, where currently a legal obligation instead of the previously voluntary China Energy Conservation Program (CECP) is being discussed. Basically, all these programs differentiate their regulations in the product categories EPS (External Power Supplies) and BCS (Battery Charging Systems). EPS refers to voltage and current power supplies for external devices, BCS to a battery charging system, i.e. a charger with attached battery plus charging control. The BCS category also includes devices with a fixed battery, which can be charged via a charging device and an EPS device. Almost all mandatory energy efficiency standards ascertain that charging systems are currently specifically excluded from the regulations. Thus, for example, article 1, "Purpose and scope" of the EuP Directive 2009/125/EC in paragraph 2 states: "This Regulation shall not apply to: a) voltage converters b) uninterruptible power supplies c) battery chargers d) converters for halogen lamps e) external power supplies for medical devices" The requirements of efficiency programs for EPS, can however be often found in the customer's product specifications. Most of them can be neglected due to the lack of legal necessity; nevertheless existing energy-efficient concepts of pure power supplies help to comply with the standards for battery chargers. Here is a brief summary of vital issues which need to be observed: To check the efficiency standards for compliance, efficiency and no-load losses of the device must be tested. A decisive factor for determinating the minimum energy efficiency for all standards are the specifications on the type label of the unit. FRIWO Gerätebau GmbH Arno Reinhard Page 1 of 7

During testing, the specified test method is to be observed: - Selection of three test devices at random. - Adjustment of the mains voltage to the rated voltage of the device. - Recording of all readings after thirty minutes of operation. - Testing of the equipment under four load conditions: 25 % / 50 % / 75 % / 100 %. - The mean average of the efficiencies, measured for all four loads must be in accordance with the standard. - The no-load losses shall comply with the standard. It should be noted that the specifications of the efficiency programs Energy Star and ErP also differ in regard to standard and low voltage devices. The current limit values can be found in the following table: Current limit values acc. to ErP2 (2009/125/EC) and EnergyStar Standard power supplies Low voltage power supplies (<6V; >550mA) Efficiency Output (Po) ErP2 EnergyStar ErP2 EnergyStar Po 1 W 0,48 * Po + 0,14 0,48 * Po + 0,14 0,497 * Po + 0,067 0,497 * Po + 0,067 1 W < Po 51 W 0,063 + In(Po) + 0,622 0,075 * In(Po) + 0,0561 1 W < Po 49 W 0,626 + In(Po) + 0,622 0,075 * In(Po) + 0,561 > 51 W 0,87 0,86 > 49 W 0,87 0,86 No load power consumption Output (Po) ErP2 EnergyStar ErP2 EnergyStar Po 51 W 0,3 0,3 Po > 51 W 0,5 0,5 Po < 50 W 0,3 0,3 Po 50 W 0,5 0,5 FRIWO Gerätebau GmbH Arno Reinhard Page 2 of 7

CEC World's only binding standard for chargers Currently the only global mandatory standard for energy efficiency for chargers is Title 20 of the California Code of Regulations (paragraphs 1601-1608). This title covers almost all consumer electrical devices that contain circuits for battery charging. The spectrum ranges from notebooks through power tools to ebike chargers. From 2017 onwards, the standard also regulates applications which are not attributable to the consumer sector. The standard was defined by the Ministry of Energy of the State of California, the California Energy Commission (CEC). Since this authority is solely responsible for the energy policy and planning within the California state boundaries, a high regional consideration could be assumed. A closer look reveals, however, that this standard is relevant for the entire U.S. market: companies which export their products to the USA, cannot exclude the distribution and use of the equipment in the state of California - and therefore should comply with the standard from the outset. But which energy efficiency limits are ruled by the CEC title? Attention should be made to the fact, that the standard distinguishes between the categories of large chargers (large BCS), with an input power of more than 2 kw and small chargers (small BCS), with a lower input power. For the following, the regulation for small chargers should be given special attention. For a better understanding of the regulations and the following optimization of a charger, it is necessary to clarify some important CEC terms: Active charge mode: Battery maintenance mode (P m ): 24h charge and maintenance energy (E 24h ): No battery mode (P stby ): Main charge until the battery is fully charged Trickle charge. The battery is charged but stays connected to the charger Total energy in watt hours which is consumed within 24 hours by the charging system (during main charge and trickle charge) Standby usage without battery Figure: Energy consumption of a charge system acc. to CEC FRIWO Gerätebau GmbH Arno Reinhard Page 3 of 7

With their standard, the CEC sets two mandatory key figures: firstly a fixed maximum watt hours (Wh) for the "24h charge and maintenance energy", on the other hand a maximum value for the total "battery maintenance mode" and "no battery mode". With the help of the energy content of the battery (E b ) used and the number of charging bays of the charger used (N), the limit values can be determined according to CEC. The corresponding formulas are shown in the following table: Current limit values acc. to CEC Maximum 24h charge and maintenance energy (E 24h ) For charging systems with E b 2,5 Wh 16 * N For charging systems with E b > 2,5 Wh and 100 Wh 12 * N + 1,6 E b For charging systems with E b > 100 Wh and 1.000 Wh 22 * N + 1,5 E b For charging systems with E b > 1.000 Wh 36,4 * N + 1,486 E b Maximum power for maintenance mode and no battery mode (P stby + P m ) Limit value for total of P m and P stby in W N + 0,0021 * E b A typical e-bike charging system, for example, with a single charging bay (N = 1) and a battery with 36 V and 11 A (E b = 36 V 11 A = 396 W) generates the following threshold values which need to be met: (1) E 24h = 22 1 + 1,5 396 = 616 Wh (2) P stby + P m = 1 + 0,0021 396 = 1,83 W In the area of classical power tools, a typical charging system might look like this: A charging slot (N = 1), associated battery 18 V / 2,6 Ah (E b = 18 V 2.6 A = 46.8 W). According to CEC the following threshold values are to be maintained: (3) E 24h = 12 1 + 1,6 46,8 Wh = 86,88 Wh (4) P stby + P m = 1 + 0,0021 46,8 W = 1,09 W CEC requires special tests for multiple chargers, which can load batteries with different voltages and capacities. The charging processes of three predefined types of batteries have to be checked, each must comply with the threshold limit values, so that the total system meets the standard. The following battery types must be checked: - Lowest voltage / lowest capacity - Highest voltage / lowest capacity - Largest energy content The different cell chemistries like SLA, NiCd, NiMH or Li are not relevant when selecting the batteries. FRIWO Gerätebau GmbH Arno Reinhard Page 4 of 7

Circuits to optimize energy efficiency If the threshold values defined by the CEC are not reached by the existing charging system, the battery charger must be optimized. There are several suitable starting points for the fulfillment of the values. For compliance with the limit E 24h the efficiency of the power unit is critical. A very good efficiency can be primarily achieved by the choice of an efficient topology, eg. LLC, flanked by other measures such as a synchronous rectification. If the observance of the limit value (P stby + P m ) turns out to be problematic, the no-load losses must be reduced. In this case an auxiliary power supply is recommended. Figure: Set-up of a charging system Efficiency by LLC topology In comparison with the flyback converter used in classic chargers, the LLC topology generates higher efficiencies. The advantage lies in a voltage-free switching of the MOSFETs, the so-called Zero Voltage Switching (ZVS). Compared to conventional switching, switching losses can be significantly reduced by ZVS, which leads to a higher efficiency of the entire system. Another advantage is the soft switching. In this case, the switching interferences can be minimized, which in turn allows a smaller EMC filter and leads to lower efficiency loss in the filter circuit. LLC also stands for lower voltage stress on the primary sided MOSFETs and the secondary-sided rectifiers. This allows the use of more powerful semiconductors, resulting in further minimization of efficiency loss. FRIWO Gerätebau GmbH Arno Reinhard Page 5 of 7

Efficiency by synchronuous rectifiers A large part of the charger's power losses, is caused by rectifiers in the output stage. The following rule applies: the higher the output current, the greater the losses. In times like these, where high output currents and thus short charging times play an increasingly important role: Cyclists do not want to take unnecessarily long breaks with their e-bikes, craftsmen wish to use their tools after a short charging time. In order to meet the CEC threshold values despite high output currents, these power losses must be limited as far as possible. This could be done by a synchronous rectification. Here the rectifier of the classic charger concept - typically a diode - is replaced by a switched FET. The advantage of the MOSFET is a considerably lower voltage drop at high output currents. Figure: Equivalent circuit of a synchronous rectification Efficiency by auxiliary power supply Even if the threshold values comply with CEC for E 24h, the compliance (P stby + P m ) could turn out to be problematic. Due to strong dependencies on factors such as battery chemistry or permanent battery displays, the power consumption during the "battery maintenance mode" P m can hardly or not at all be influenced by the charger. To comply with the threshold value (P stby + P m ) the optimization of standby losses is crucial. Generally speaking: The lower the battery capacity, the more important the standby issue for CEC standard compliance (see table Current limit values acc. to CEC ). An auxiliary power supply might solve the problem. With a low capacity power supply, the power unit of a charger can be actively switched off, which significantly reduces the no-load losses of a charging system. Hence, charger engineers can profit from existing circuit concepts of very efficient small power supplies according to ErP / Energy Star specifications. FRIWO Gerätebau GmbH Arno Reinhard Page 6 of 7

Submission and marking in accordance with CEC If the charging system needs to be approved for the State of California, proof must be furnished by a CEC certified testing agent that the threshold values are reached. The agent will forward the test results directly to CEC for examination. If the results are positive, the manufacturers have to safeguard, in the context of a self-certification, the labeling of their charging systems. To this end, each approved charging system must be marked with the certification mark "BC", which can be done either on the type label of the unit or on the individual packaging and instructions for use. The CEC maintains a database of all approved devices, which is publicly available online: http://www.appliances.energy.ca.gov/quicksearch.aspx Standards for charging systems in the future Due to the problems in defining where the product shall be distributed in the US (the local Californian or the total U.S. market), it is probably only a matter of time before the CEC standard will become mandatory for the entire USA. It is therefore strongly recommended to already comply with the standards today. In addition to the CEC mandatory standard for battery chargers there is the voluntary efficiency standard EnergyStar of the Environmental Protection Agency (EPA). Originally, new threshold values were planned for EnergyStar 2.0. Since the stricter CEC policy has already become effective and no further savings can be identified, the plan was abandoned. Accordingly, EPA has decided to phase out the EnergyStar program for charging systems by December 31 st, 2014. Energy efficiency guidelines for battery chargers are currently being discussed also for the European market. The ErP directive, which currently still excludes chargers, is supposed to be expanded accordingly. So far no concrete proposals for threshold values are known. In the course of globalization, however, it can be assumed that the ErP's parameters will follow those of the CEC. Dipl. Ing. Arno Reinhard studied electrical engineering at the Ruhr University Bochum. He started with FRIWO in 1995 as engineer for switch mode power supplies and changed to pre-development in 1999. Since 2002 he heads the engineering group "chargers" with a focus on customized solutions. FRIWO Gerätebau GmbH Arno Reinhard Page 7 of 7