Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension



Similar documents
Physics Kinematics Model

Exam 1 Review Questions PHY Exam 1

Physics: Principles and Applications, 6e Giancoli Chapter 4 Dynamics: Newton's Laws of Motion

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

8. As a cart travels around a horizontal circular track, the cart must undergo a change in (1) velocity (3) speed (2) inertia (4) weight

Chapter 3 Falling Objects and Projectile Motion

B) 286 m C) 325 m D) 367 m Answer: B

2After completing this chapter you should be able to

1 of 7 9/5/2009 6:12 PM

Speed A B C. Time. Chapter 3: Falling Objects and Projectile Motion

Review Chapters 2, 3, 4, 5

Ground Rules. PC1221 Fundamentals of Physics I. Kinematics. Position. Lectures 3 and 4 Motion in One Dimension. Dr Tay Seng Chuan

Physics 2A, Sec B00: Mechanics -- Winter 2011 Instructor: B. Grinstein Final Exam

1 of 10 7/29/2014 7:28 AM 2 of 10 7/29/2014 7:28 AM

PHYS 117- Exam I. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

In order to describe motion you need to describe the following properties.

Catapult Engineering Pilot Workshop. LA Tech STEP

Speed, velocity and acceleration

Tennessee State University

Work, Energy & Momentum Homework Packet Worksheet 1: This is a lot of work!

Web review - Ch 3 motion in two dimensions practice test

Conceptual Questions: Forces and Newton s Laws

Chapter 7: Momentum and Impulse

Physics 125 Practice Exam #3 Chapters 6-7 Professor Siegel

Uniformly Accelerated Motion

Scalar versus Vector Quantities. Speed. Speed: Example Two. Scalar Quantities. Average Speed = distance (in meters) time (in seconds) v =

2008 FXA DERIVING THE EQUATIONS OF MOTION 1. Candidates should be able to :

Curso Física Básica Experimental I Cuestiones Tema IV. Trabajo y energía.

Freely Falling Objects

Chapter 4: Newton s Laws: Explaining Motion

1.3.1 Position, Distance and Displacement

Projectile Motion 1:Horizontally Launched Projectiles

AP Physics C Fall Final Web Review

5. Unable to determine m correct. 7. None of these m m m m/s. 2. None of these. 3. Unable to determine. 4.

AP Physics B Practice Workbook Book 1 Mechanics, Fluid Mechanics and Thermodynamics

Graphing Motion. Every Picture Tells A Story

Physics 2048 Test 1 Solution (solutions to problems 2-5 are from student papers) Problem 1 (Short Answer: 20 points)

Chapter 3 Practice Test

CHAPTER 6 WORK AND ENERGY

SPEED, VELOCITY, AND ACCELERATION

Physics Notes Class 11 CHAPTER 3 MOTION IN A STRAIGHT LINE

III. Applications of Force and Motion Concepts. Concept Review. Conflicting Contentions. 1. Airplane Drop 2. Moving Ball Toss 3. Galileo s Argument

Chapter 07 Test A. Name: Class: Date: Multiple Choice Identify the choice that best completes the statement or answers the question.

Motion Graphs. It is said that a picture is worth a thousand words. The same can be said for a graph.

Experiment 2 Free Fall and Projectile Motion

Motion Graphs. Plotting distance against time can tell you a lot about motion. Let's look at the axes:

Physics 11 Assignment KEY Dynamics Chapters 4 & 5

TEACHER ANSWER KEY November 12, Phys - Vectors

TIME OF COMPLETION DEPARTMENT OF NATURAL SCIENCES. PHYS 1111, Exam 2 Section 1 Version 1 October 30, 2002 Total Weight: 100 points

F N A) 330 N 0.31 B) 310 N 0.33 C) 250 N 0.27 D) 290 N 0.30 E) 370 N 0.26

Newton s Laws. Physics 1425 lecture 6. Michael Fowler, UVa.

Projectile motion simulator.

Chapter 6 Work and Energy

Exam Three Momentum Concept Questions

PHY121 #8 Midterm I

P211 Midterm 2 Spring 2004 Form D

9. The kinetic energy of the moving object is (1) 5 J (3) 15 J (2) 10 J (4) 50 J

Despite its enormous mass (425 to 900 kg), the Cape buffalo is capable of running at a top speed of about 55 km/h (34 mi/h).

PHY231 Section 2, Form A March 22, Which one of the following statements concerning kinetic energy is true?

Work, Power, Energy Multiple Choice. PSI Physics. Multiple Choice Questions

Inertia, Forces, and Acceleration: The Legacy of Sir Isaac Newton

Physics Section 3.2 Free Fall

PHY231 Section 1, Form B March 22, 2012

Downloaded from

Practice final for Basic Physics spring 2005 answers on the last page Name: Date:

MOTION DIAGRAMS. Revised 9/ LC, tlo

WORK DONE BY A CONSTANT FORCE

Practice Test SHM with Answers

Supplemental Questions

1. Large ships are often helped into port by using two tug boats one either side of the ship. April 5, 1989 (Anchorage Daily News / Erik Hill)

AP Physics 1 Midterm Exam Review

Chapter 5 Using Newton s Laws: Friction, Circular Motion, Drag Forces. Copyright 2009 Pearson Education, Inc.

Review Assessment: Lec 02 Quiz

Chapter 10: Linear Kinematics of Human Movement

C B A T 3 T 2 T What is the magnitude of the force T 1? A) 37.5 N B) 75.0 N C) 113 N D) 157 N E) 192 N

Acceleration Introduction: Objectives: Methods:

AP Physics C. Oscillations/SHM Review Packet

Friction and Gravity. Friction. Section 2. The Causes of Friction

Practice TEST 2. Explain your reasoning

Problem Set 1. Ans: a = 1.74 m/s 2, t = 4.80 s

KE =? v o. Page 1 of 12

1. Mass, Force and Gravity

2 ONE- DIMENSIONAL MOTION

DISPLACEMENT & VELOCITY

Magnetism. d. gives the direction of the force on a charge moving in a magnetic field. b. results in negative charges moving. clockwise.

Free Fall: Observing and Analyzing the Free Fall Motion of a Bouncing Ping-Pong Ball and Calculating the Free Fall Acceleration (Teacher s Guide)

10.1 Quantitative. Answer: A Var: 50+

HW Set VI page 1 of 9 PHYSICS 1401 (1) homework solutions

To define concepts such as distance, displacement, speed, velocity, and acceleration.

Work Energy & Power. September 2000 Number Work If a force acts on a body and causes it to move, then the force is doing work.

Worksheet #1 Free Body or Force diagrams

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Problem s s o v o t 1 2 a t2. Ball B: s o 0, v o 19 m s, a 9.81 m s 2. Apply eqn. 12-5: When the balls pass each other: s A s B. t 2.

A Determination of g, the Acceleration Due to Gravity, from Newton's Laws of Motion

Force on Moving Charges in a Magnetic Field

1. Units of a magnetic field might be: A. C m/s B. C s/m C. C/kg D. kg/c s E. N/C m ans: D

All About Motion - Displacement, Velocity and Acceleration

AP Physics - Chapter 8 Practice Test

SQA Higher Physics Unit 1 Mechanics and Properties of Matter

Transcription:

Physics: Principles and Applications, 6e Giancoli Chapter 2 Describing Motion: Kinematics in One Dimension Conceptual Questions 1) Suppose that an object travels from one point in space to another. Make a comparison between the displacement and the distance traveled. A) The displacement is either greater than or equal to the distance traveled. B) The displacement is always equal to the distance traveled. C) The displacement is either less than or equal to the distance traveled. D) The displacement can be either greater than, smaller than, or equal to the distance traveled. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.1 2) When is the average velocity of an object equal to the instantaneous velocity? A) always B) never C) only when the velocity is constant D) only when the velocity is increasing at a constant rate 3) A new car manufacturer advertises that their car can go "from zero to sixty in 8 s". This is a description of A) average speed. B) instantaneous speed. C) average acceleration. D) instantaneous acceleration. Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 4) An object moving in the +x axis experiences an acceleration of 2.0 m/s2. This means the object is A) traveling at 2.0 m in every second. B) traveling at 2.0 m/s in every second. C) changing its velocity by 2.0 m/s. D) increasing its velocity by 2.0 m/s in every second. Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 5) Suppose that a car traveling to the East (+x direction) begins to slow down as it approaches a traffic light. Make a statement concerning its acceleration. A) The car is decelerating, and its acceleration is positive. B) The car is decelerating, and its acceleration is negative. C) The acceleration is zero. D) A statement cannot be made using the information given. Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 6) Suppose that a car traveling to the West (-x direction) begins to slow down as it approaches a traffic light. Make a statement concerning its acceleration. A) The car is decelerating, and its acceleration is positive. B) The car is decelerating, and its acceleration is negative. C) The acceleration is zero. D) A statement cannot be made using the information given. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 1

7) Suppose that an object is moving with a constant velocity. Make a statement concerning its acceleration. A) The acceleration must be constantly increasing. B) The acceleration must be constantly decreasing. C) The acceleration must be a constant non-zero value. D) The acceleration must be equal to zero. Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 8) If the velocity of an object is zero, does it mean that the acceleration is zero? Support your answer with an example. A) no, and an example would be an object starting from rest B) no, and an example would be an object coming to a stop C) yes, because of the way in which velocity is defined D) yes, because of the way in which acceleration is defined Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 9) Can an object's velocity change direction when its acceleration is constant? Support your answer with an example. A) No, this is not possible because it is always speeding up. B) No, this is not possible because it is always speeding up or always slowing down, but it can never turn around. C) Yes, this is possible, and a rock thrown straight up is an example. D) Yes, this is possible, and a car that starts from rest, speeds up, slows to a stop, and then backs up is an example. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 10) Suppose that an object is moving with constant acceleration. Make a statement concerning its motion with respect to time. A) In equal times its speed increases by equal amounts. B) In equal times its velocity changes by equal amounts. C) In equal times it moves equal distances. D) A statement cannot be made using the information given. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 11) Can an object have increasing speed while its acceleration is decreasing? Support your answer with an example. A) No, this is impossible because of the way in which acceleration is defined. B) No, because if acceleration is decreasing the object will be slowing down. C) Yes, and an example would be an object falling in the absence of air friction. D) Yes, and an example would be an object released from rest in the presence of air friction. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 12) Suppose a can, after an initial kick, moves up along a smooth hill of ice. Make a statement concerning its acceleration. A) It will travel at constant velocity with zero acceleration. B) It will have a constant acceleration up the hill, but a different constant acceleration when it comes back down the hill. C) It will have the same acceleration, both up the hill and down the hill. D) It will have a varying acceleration along the hill. Diff: 3 Type: BI Var: 1 Page Ref: Sec. 2.4 2

13) Under what condition is average velocity equal to the average of the object's initial and final velocity? A) The acceleration must be constantly changing. B) The acceleration must be constant. C) This can only occur if there is no acceleration. D) This is impossible. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 14) Objects A and B both start at rest. They both accelerate at the same rate. However, object A accelerates for twice the time as object B. What is the final speed of object A compared to that of object B? A) the same speed B) twice as fast C) three times as fast D) four times as fast Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 15) Objects A and B both start from rest. They both accelerate at the same rate. However, object A accelerates for twice the time as object B. What is the distance traveled by object A compared to that of object B? A) the same distance B) twice as far C) three times as far D) four times as far Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 16) When an object is released from rest and falls in the absence of friction, which of the following is true concerning its motion? A) The speed of the falling object is proportional to its mass. B) The speed of the falling object is proportional to its weight. C) The speed of the falling object is inversely proportional to its surface area. D) None of the above is true. Diff: 1 Type: MC Var: 1 Page Ref: Sec. 2.7 17) When an object is released from rest and falls in the absence of friction, which of the following is true concerning its motion? A) Its acceleration is constant. B) Its velocity is constant. C) Neither its acceleration nor its velocity is constant. D) Both its acceleration and its velocity are constant. Diff: 1 Type: MC Var: 1 Page Ref: Sec. 2.7 18) Suppose a ball is thrown straight up. Make a statement about the velocity and the acceleration when the ball reaches the highest point. A) Both its velocity and its acceleration are zero. B) Its velocity is zero and its acceleration is not zero. C) Its velocity is not zero and its acceleration is zero. D) Neither its velocity nor its acceleration is zero. 3

19) Suppose a ball is thrown straight up. What is its acceleration just before it reaches its highest point? A) zero B) slightly less than g C) exactly g D) slightly greater than g 20) Suppose a ball is thrown straight up, reaches a maximum height, then falls to its initial height. Make a statement about the direction of the velocity and acceleration as the ball is going up. A) Both its velocity and its acceleration point upward. B) Its velocity points upward and its acceleration points downward. C) Its velocity points downward and its acceleration points upward. D) Both its velocity and its acceleration points downward. 21) A ball is thrown straight up, reaches a maximum height, then falls to its initial height. Make a statement about the direction of the velocity and acceleration as the ball is coming down. A) Both its velocity and its acceleration point upward. B) Its velocity points upward and its acceleration points downward. C) Its velocity points downward and its acceleration points upward. D) Both its velocity and its acceleration point downward. 22) Suppose a ball is thrown downward in the absence of air resistance. Make a statement concerning its acceleration. A) Its acceleration is constantly increasing. B) Its acceleration is constant. C) Its acceleration is constantly decreasing. D) Its acceleration is zero. 23) Suppose a skydiver jumps from a high-flying plane. What is her acceleration when she she reaches terminal velocity? A) It is essentially zero. B) It is in the upward direction. C) It is approximately 9.8 m/s2 downward. D) It is a constant pointing upward. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.7 24) A ball is thrown vertically upward with a speed v. An identical second ball is thrown upward with a speed 2v (twice as fast). What is the ratio of the maximum height of the second ball to that of the first ball? (How many times higher does the second ball go than the first ball?) A) 4:1 B) 2:1 C) 1.7:1 D) 1.4:1 Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.7 4

25) Ball A is dropped from the top of a building. One second later, ball B is dropped from the same building. As time progresses, the distance between them A) increases. B) remains constant. C) decreases. D) cannot be determined from the information given. Diff: 3 Type: BI Var: 1 Page Ref: Sec. 2.7 26) Ball A is dropped from the top of a building. One second later, ball B is dropped from the same building. As time progresses, the difference in their speeds A) increases. B) remains constant. C) decreases. D) cannot be determined from the information given. Diff: 3 Type: BI Var: 1 Page Ref: Sec. 2.7 27) Two objects are thrown from the top of a tall building. One is thrown up, and the other is thrown down, both with the same initial speed. What are their speeds when they hit the street? A) The one thrown up is traveling faster. B) The one thrown down is traveling faster. C) They are traveling at the same speed. D) It is impossible to tell because the height of the building is not given. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.7 28) A brick is dropped from the top of a building. A second brick is thrown straight down from the same building. They are released at the same time. Neglect air resistance. Compare the accelerations of the two bricks. A) The first brick accelerates faster. B) The second brick accelerates faster. C) The two bricks accelerate at the same rate. D) It is impossible to determine from the information given. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.7 29) An object is moving with constant non-zero velocity in the +x axis. The position versus time graph of this object is A) a horizontal straight line. B) a vertical straight line. C) a straight line making an angle with the time axis. D) a parabolic curve. 30) An object is moving with constant non-zero acceleration in the +x axis. The position versus time graph of this object is A) a horizontal straight line. B) a vertical straight line. C) a straight line making an angle with the time axis. D) a parabolic curve. 5

31) An object is moving with constant non-zero velocity in the +x axis. The velocity versus time graph of this object is A) a horizontal straight line. B) a vertical straight line. C) a straight line making an angle with the time axis. D) a parabolic curve. 32) An object is moving with constant non-zero acceleration in the +x axis. The velocity versus time graph of this object is A) a horizontal straight line. B) a vertical straight line. C) a straight line making an angle with the time axis. D) a parabolic curve. 33) The slope of a position versus time graph gives A) position. B) velocity. C) acceleration. D) displacement. 34) The slope of a velocity versus time graph gives A) position. B) velocity. C) acceleration. D) displacement. 35) The area under a curve in an acceleration versus time graph gives A) acceleration. B) velocity. C) displacement. D) position. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.8 36) The area under a curve in a velocity versus time graph gives A) acceleration. B) velocity. C) displacement. D) position. Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.8 6

37) If the position versus time graph of an object is a horizontal line, the object is A) moving with constant non-zero speed. B) moving with constant non-zero acceleration. C) at rest. D) moving with infinite speed. 38) If the position versus time graph of an object is a vertical line, the object is A) moving with constant non-zero speed. B) moving with constant non-zero acceleration. C) at rest. D) moving with infinite speed. 39) If the velocity versus time graph of an object is a horizontal line, the object is A) moving with constant non-zero speed. B) moving with constant non-zero acceleration. C) at rest. D) moving with infinite speed. 40) If the velocity versus time graph of an object is a straight line making an angle of 30 degrees with the time axis, the object is A) moving with constant non-zero speed. B) moving with constant non-zero acceleration. C) at rest. D) moving with infinite speed. Quantitative Problems 1) An object moves 15.0 m north and then 11.0 m south. Find both the distance traveled and the magnitude of the displacement vector. A) 6.0 m, 26.0 m B) 26.0 m, 6.0 m C) 26.0 m, 26.0 m D) 6.0 m, 6.0 m Diff: 1 Type: BI Var: 4 Page Ref: Sec 2.1 2) A boat can move at 30 km/h in still water. How long will it take to move 12 km upstream in a river flowing 6.0 km/h? A) 20 min B) 22 min C) 24 min D) 30 min Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.1-2.3 7

3) 55 mi/h is how many m/s? (1 mi = 1609 m.) A) 25 m/s B) 49 m/s C) 90 m/s D) 120 m/s Diff: 1 Type: BI Var: 4 Page Ref: Sec. 2.2-2.3 4) What must be your average speed in order to travel 350 km in 5.15 h? A) 66.0 km/h B) 67.0 km/h C) 68.0 km/h D) 69.0 km/h Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.2-2.3 5) A runner ran the marathon (approximately 42.0 km) in 2 hours and 57 min. What is the average speed of the runner in m/s? A) 14.2 103 m/s B) 124 m/s C) 3.95 m/s D) 14.2 m/s 6) A car travels 90 km/h. How long does it take for it to travel 400 km? A) 4.1 h B) 4.2 h C) 4.3 h D) 4.4 h Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.2-2.3 7) A ly (light year) is the distance that light travels in one year. The speed of light is 3.00 108 m/s. How many miles are there in a ly? (1 mi = 1609 m, 1 yr = 365 d.) A) 9.46 1012 mi B) 9.46 1015 mi C) 5.88 1012 mi D) 5.88 1015 mi 8) If you are driving 72 km/h along a straight road and you look to the side for 4.0 s, how far do you travel during this inattentive period? A) 18 m B) 20 m C) 40 m D) 80 m Diff: 1 Type: BI Var: 4 Page Ref: Sec. 2.2-2.3 8

9) If you run a complete loop around an outdoor track (400 m), in 100 s, your average velocity is.25 m/s. B) 4.0 m/s. C) 40,000 m/s. D) zero. 10) A polar bear starts at the North Pole. It travels 1.0 km south, then 1.0 km east, then 1.0 km north, then 1.0 km west to return to its starting point. This trip takes 45 min. What was the bear's average speed? km/h B) 0.09 km/h C) 4.5 km/h D) 5.3 km/h Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.2-2.3 11) A polar bear starts at the North Pole. It travels 1.0 km south, then 1.0 km east, then 1.0 km north, then 1.0 km west to return to its starting point. This trip takes 45 min. What was the bear's average velocity? km/h B) 0.09 km/h C) 4.5 km/h D) 5.3 km/h 12) You are driving home on a weekend from school at 55 mi/h for 110 miles. It then starts to snow and you slow to 35 mi/h. You arrive home after driving 4 hours and 15 minutes. How far is your hometown from school? A) 180 mi B) 190 mi C) 200 mi D) 210 mi 13) A motorist travels 160 km at 80 km/h and 160 km at 100 km/h. What is the average speed of the motorist for this trip? A) 84 km/h B) 89 km/h C) 90 km/h D) 91 km/h 14) A motorist travels for 3.0 h at 80 km/h and 2.0 h at 100 km/h. What is her average speed for the trip? A) 85 km/h B) 88 km/h C) 90 km/h D) 92 km/h 9

15) An airplane travels at 300 mi/h south for 2.00 h and then at 250 mi/h north for 750 miles. What is the average speed for the trip? A) 260 mi/h B) 270 mi/h C) 275 mi/h D) 280 mi/h 16) In a 400-m relay race the anchorman (the person who runs the last 100 m) for team A can run 100 m in 9.8 s. His rival, the anchorman for team B, can cover 100 m in 10.1 s. What is the largest lead the team B runner can have when the team A runner starts the final leg of the race, in order that the team A runner not lose the race? A) 2.0 m B) 3.0 m C) 4.0 m D) 5.0 m Diff: 3 Type: BI Var: 1 Page Ref: Sec. 2.2-2.3 17) A car decelerates uniformly and comes to a stop after 10 s. The car's average velocity during deceleration was 50 km/h. What was the car's deceleration while slowing down? A) 10 km/h-s B) 8.0 km/h-s C) 5.0 km/h-s D) 4.0 km/h-s Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 18) An airplane increases its speed from 100 m/s to 160 m/s, at the average rate of 15 m/s2. How much time does it take for the complete increase in speed? A) 17 s B) 0.058 s C) 4.0 s D) 0.25 s Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 19) A car traveling 60 km/h accelerates at the rate of 2.0 m/s2. How much time is required for the car to reach a speed of 90 km/h? A) 15 s B) 30 s C) 45 s D) 4.2 s Diff: 1 Type: BI Var: 1 Page Ref: Sec. 2.4 20) A cart starts from rest and accelerates at 4.0 m/s2 for 5.0 s, then maintain that velocity for 10 s, and then decelerates at the rate of 2.0 m/s2 for 4.0 s. What is the final speed of the car? A) 20 m/s B) 16 m/s C) 12 m/s D) 10 m/s Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 10

21) A car travels at 15 m/s for 10 s. It then speeds up with a constant acceleration of 2.0 m/s2 for 15 s. At the end of this time, what is its velocity? A) 15 m/s B) 30 m/s C) 45 m/s D) 375 m/s Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.4 22) A cart with an initial velocity of 5.0 m/s experiences a constant acceleration of 2.0 m/s2. What is the cart's displacement during the first 6.0 s of its motion? A) 10 m B) 55 m C) 66 m D) 80 m Diff: 1 Type: BI Var: 1 Page Ref: Sec 2.5-2.6 23) A bullet moving horizontally to the right (+x direction) with a speed of 500 m/s strikes a sandbag and penetrates a distance of 10.0 cm. What is the average acceleration, in m/s2, of the bullet? A) -1.25 106 B) -2.50 106 C) -1.25 103 D) -2.50 103 Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 24) A jet fighter plane is launched from a catapult on an aircraft carrier. It reaches a speed of 42 m/s at the end of the catapult, and this requires 2.0 s. Assuming the acceleration is constant, what is the length of the catapult? A) 16 m B) 24 m C) 42 m D) 84 m Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 25) A car starting from rest moves with constant acceleration of 2.0 m/s2 for 10 s, then travels with constant speed for another 10 s, and then finally slows to a stop with constant acceleration of -2.0 m/s2. How far does it travel? A) 200 m B) 300 m C) 400 m D) 500 m Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 26) A car goes from 40 m/s to 80 m/s in a distance of 200 m. What is its average acceleration? A) 8.0 m/s2 B) 9.6 m/s2 C) 12 m/s2 D) 24 m/s2 Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 11

27) An object starts from rest and undergoes uniform acceleration. During the first second it travels 5.0 m. How far will it travel during the third second? A) 5.0 m B) 15 m C) 25 m D) 45 m Diff: 2 Type: BI Var: 2 Page Ref: Sec. 2.5-2.6 28) An object is moving in a straight line with constant acceleration. Initially it is traveling at 16 m/s. Three seconds later it is traveling at 10 m/s. How far does it move during this time? A) 30 m B) 39 m C) 48 m D) 57 m Diff: 2 Type: BI Var: 4 Page Ref: Sec. 2.5-2.6 29) A car starts from rest and accelerates uniformly at 3.0 m/s2. A second car starts from rest 6.0 s later at the same point and accelerates uniformly at 5.0 m/s2. How long does it take the second car to overtake the first car? A) 12 s B) 19 s C) 21 s D) 24 s Diff: 3 Type: BI Var: 1 Page Ref: Sec. 2.5-2.6 30) A car with good tires on a dry road can decelerate at about 5.0 m/s2 when braking. Suppose a car is initially traveling at 55 mi/h. (a.) How much time does it take the car to stop? (b.) What is the stopping distance? Answer: (a.) 4.9 s (b.) 60 m Diff: 1 Type: ES Var: 1 Page Ref: Sec. 2.5-2.6 31) At the instant a traffic light turns green, a car that has been waiting at the intersection starts ahead with a constant acceleration of 2.00 m/s2. At that moment a truck traveling with a constant velocity of 15.0 m/s overtakes and passes the car. (a.) Calculate the time necessary for the car to reach the truck. (b.) Calculate the distance beyond the traffic light that the car will pass the truck. (c.) Determine the speed of the car when it passes the truck. Answer: (a.) 15.0 s (b.) 225 m (c.) 30.0 m/s Diff: 3 Type: ES Var: 1 Page Ref: Sec. 2.5-2.6 12

32) An object is thrown upward with a speed of 12 m/s on the surface of planet X where the acceleration due to gravity is 1.5 m/s2. What is the maximum height reached by the object? A) 8.0 m B) 18 m C) 48 m D) 144 m Diff: 1 Type: BI Var: 4 Page Ref: Sec. 2.7 33) An object is thrown upward with a speed of 12 m/s on the surface of planet X where the acceleration due to gravity is 1.5 m/s2. How long does it take for the object to reach the maximum height? A) 8.0 s B) 11 s C) 14 s D) 16 s Diff: 1 Type: BI Var: 4 Page Ref: Sec. 2.7 34) An object is thrown upward with a speed of 15 m/s on the surface of planet X where the acceleration due to gravity is 2.5 m/s2. How long does it take for the object to return to where it is thrown? A) 6.0 s B) 8.0 s C) 10 s D) 12 s Diff: 1 Type: BI Var: 4 Page Ref: Sec. 2.7 35) An object is thrown upward with a speed of 14 m/s on the surface of planet X where the acceleration due to gravity is 3.5 m/s2. What is the speed of the object after 8.0 s? A) 7.0 m/s B) 14 m/s C) 21 m/s D) 64 m/s Diff: 1 Type: BI Var: 2 Page Ref: Sec. 2.7 36) Human reaction time is usually greater than 0.10 s. If your friend holds a ruler between your fingers and releases it without warning, how far can you expect the ruler to fall before you catch it? A) at least 3.0 cm B) at least 4.9 cm C) at least 6.8 cm D) at least 9.8 cm 37) A ball is thrown upward at a velocity of 19.6 m/s. What is its velocity after 3.00 s? A) 9.8 m/s upward B) 9.8 m/s downward C) zero D) 19.6 downward 13

38) A bullet shot straight up returns to its starting point in 10 s. What is the initial speed of the bullet? A) 9.8 m/s B) 25 m/s C) 49 m/s D) 98 m/s 39) A ball is thrown straight up with a speed of 36.0 m/s. How long does it take to return to its starting point? A) 3.67 s B) 7.35 s C) 11.0 s D) 14.7 s 40) A ball is thrown downward from the top of a building with an initial speed of 25 m/s. It strikes the ground after 2.0 s. How high is the building? A) 20 m B) 30 m C) 50 m D) 70 m Diff: 2 Type: BI Var: 1 Page Ref: Sec. 2.7 41) A ball is thrown straight up with a speed of 30 m/s. (a.) How long does it take the ball to reach the maximum height? (b.) What is the maximum height reached by the ball? (c.) What is its speed after 4.2 s? Answer: (a.) 3.1 s (b.) 46 m (c.) 11 m/s Diff: 1 Type: ES Var: 1 Page Ref: Sec. 2.7 42) A foul ball is hit straight up into the air with a speed of 30.0 m/s. (a.) Calculate the time required for the ball to rise to its maximum height. (b.) Calculate the maximum height reached by the ball. (c.) Determine the time at which the ball pass a point 25.0 m above the point of contact between the bat and ball. (d.) Explain why there are two answers to part c. Answer: (a.) 3.06 s (b.) 45.9 m (c.) 0.995 s and 5.13 s (d.) One value for the ball traveling upward; one value for the ball traveling downward. Diff: 2 Type: ES Var: 1 Page Ref: Sec. 2.7 14

FIGURE 2-1 43) In Fig. 2-1, what is the velocity at t = 1.0 s? B) 10 m/s C) 20 m/s D) -40 m/s 44) In Fig. 2-1, what is the velocity at t = 2.5 s? B) 10 m/s C) 20 m/s D) -40 m/s 45) In Fig. 2-1, what is the velocity at t = 4.0 s? B) 10 m/s C) 20 m/s D) -40 m/s 46) In Fig. 2-1, what is the velocity at t = 5.5 s? B) 10 m/s C) 20 m/s D) -40 m/s 15

47) In Fig. 2-1, what is the average velocity from 0 to 4.0 s? B) 10 m/s C) 20 m/s D) -40 m/s 48) In Fig. 2-1, what is the average velocity from 0 to 6.0 s? B) 10 m/s C) 20 m/s D) -40 m/s 49) In Fig. 2-2, what is the acceleration at 1.0 s? B) 2.0 m/s2 C) -2.5 m/s2 D) 10 m/s2 50) In Fig. 2-2, what is the acceleration at 3.0 s? B) 2.0 m/s2 C) -2.5 m/s2 D) 10 m/s2 FIGURE 2-2 16

51) In Fig. 2-2, what is the average acceleration from 0 to 5.0 s? B) 2.0 m/s2 C) -2.5 m/s2 D) 10 m/s2 52) In Fig. 2-2, what is the average acceleration from 0 to 8.0 s? B) 2.0 m/s2 C) -2.5 m/s2 D) 10 m/s2 53) In Fig. 2-2, what is the displacement from 0 to 8.0 s? A) 20 m B) 40 m C) 60 m D) 80 m 17