SiC activities at Linköping University



Similar documents
Optical Hyperdoping: Transforming Semiconductor Band Structure for Solar Energy Harvesting

Conductivity of silicon can be changed several orders of magnitude by introducing impurity atoms in silicon crystal lattice.

High. Thickness. epitaxial Silicon. Carbide Detectors. INFN - Gruppo V 2009

Introduction to VLSI Fabrication Technologies. Emanuele Baravelli

Types of Epitaxy. Homoepitaxy. Heteroepitaxy

Semiconductor doping. Si solar Cell

h e l p s y o u C O N T R O L

Solid State Detectors = Semi-Conductor based Detectors

A Remote Plasma Sputter Process for High Rate Web Coating of Low Temperature Plastic Film with High Quality Thin Film Metals and Insulators

Graphene a material for the future

Lezioni di Tecnologie e Materiali per l Elettronica

Silicon Sensors for CMS Tracker at High-Luminosity Environment - Challenges in particle detection -

Broadband THz Generation from Photoconductive Antenna

NANO SILICON DOTS EMBEDDED SIO 2 /SIO 2 MULTILAYERS FOR PV HIGH EFFICIENCY APPLICATION

Applied Physics of solar energy conversion

Hard Condensed Matter WZI

FUNDAMENTAL PROPERTIES OF SOLAR CELLS

WŝŽŶĞĞƌŝŶŐ > ĞdžƉĞƌŝĞŶĐĞ ƐŝŶĐĞ ϭϵϳϰ WŝĐŽƐƵŶ ^he > Ρ ZͲƐĞƌŝĞƐ > ƐLJƐƚĞŵƐ ƌŝěőŝŷő ƚśğ ŐĂƉ ďğƚǁğğŷ ƌğɛğăƌđś ĂŶĚ ƉƌŽĚƵĐƟŽŶ d, &hdhz K& d,/e &/>D /^, Z

MOS (metal-oxidesemiconductor) 李 2003/12/19

Chapter 5. Second Edition ( 2001 McGraw-Hill) 5.6 Doped GaAs. Solution

The Physics of Energy sources Renewable sources of energy. Solar Energy

Dose enhancement near metal electrodes in diamond X- ray detectors. A. Lohstroh*, and D. Alamoudi

NANOSTRUCTURED ZnO AND ZAO TRANSPARENT THIN FILMS BY SPUTTERING SURFACE CHARACTERIZATION

Advanced VLSI Design CMOS Processing Technology

Solar Photovoltaic (PV) Cells

Luminescence study of structural changes induced by laser cutting in diamond films

Figure Process flow from starting material to polished wafer.

Gamma and X-Ray Detection

DOE Solar Energy Technologies Program Peer Review. Denver, Colorado April 17-19, 2007

CVD SILICON CARBIDE. CVD SILICON CARBIDE s attributes include:

organismos internacionales

Graduate Student Presentations

Lecture 12. Physical Vapor Deposition: Evaporation and Sputtering Reading: Chapter 12. ECE Dr. Alan Doolittle

Quantitative Photoluminescence. Studies in. a-si:h/c-si Solar Cells

High power picosecond lasers enable higher efficiency solar cells.

How MOCVD. Works Deposition Technology for Beginners

The study of deep-level emission center in ZnO films grown on c-al 2 O 3 substrates

The Application of Density Functional Theory in Materials Science

Arizona Institute for Renewable Energy & the Solar Power Laboratories

Radiation Enhanced Diffusion of Nickel in Silicon Diodes

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Physical Properties and Functionalization of Low-Dimensional Materials

OLED display. Ying Cao

Semiconductors, diodes, transistors

USING OPTICAL EMISSION SPECTROSCOPY TO IMPROVE EQUIPMENT UPTIME FOR AN AL2O3 ALD PROCESS *

CONTENTS. Preface Energy bands of a crystal (intuitive approach)

Neuere Entwicklungen zur Herstellung optischer Schichten durch reaktive. Wolfgang Hentsch, Dr. Reinhard Fendler. FHR Anlagenbau GmbH

Coating Thickness and Composition Analysis by Micro-EDXRF

Vacuum Evaporation Recap

CSCI 4974 / 6974 Hardware Reverse Engineering. Lecture 8: Microscopy and Imaging

Reliability investigations Lifetime measurements and degradation mechanisms

Silicon, the test mass substrate of tomorrow? Jerome Degallaix The Next Detectors for Gravitational Wave Astronomy Beijing

Novel inkjettable copper ink utilizing processing temperatures under 100 degrees C without the need of inert atmosphere

High Open Circuit Voltage of MQW Amorphous Silicon Photovoltaic Structures

CRYSTAL DEFECTS: Point defects

Exciton dissociation in solar cells:

Al 2 O 3, Its Different Molecular Structures, Atomic Layer Deposition, and Dielectrics

Chemical Synthesis. Overview. Chemical Synthesis of Nanocrystals. Self-Assembly of Nanocrystals. Example: Cu 146 Se 73 (PPh 3 ) 30

CryoEDM A Cryogenic Neutron-EDM Experiment. Collaboration: Sussex University, RAL, ILL, Kure University, Oxford University Hans Kraus

III. Wet and Dry Etching

For Touch Panel and LCD Sputtering/PECVD/ Wet Processing

Preparation of ZnS and SnS Nanopowders by Modified SILAR Technique

Coating Technology: Evaporation Vs Sputtering

Nanometer-scale imaging and metrology, nano-fabrication with the Orion Helium Ion Microscope

Electron Beam and Sputter Deposition Choosing Process Parameters

How To Implant Anneal Ion Beam

1. Photon Beam Damage and Charging at Solid Surfaces John H. Thomas III

Avalanche Photodiodes: A User's Guide

How To Understand Light And Color

Silicon Wafer Solar Cells

Short overview of TEUFEL-project

Electronic transport properties of nano-scale Si films: an ab initio study

Physics 441/2: Transmission Electron Microscope

Tecnologie convenzionali nell approccio top-down; I: metodi e problematiche per la deposizione di film sottili

Photochromism of vacancy-related centres in diamond

INFRARED MONITORING OF 110 GHz GYROTRON WINDOWS AT DIII D

The CVD diamond booklet

Solar Cell Parameters and Equivalent Circuit

Lecture 3: Optical Properties of Bulk and Nano. 5 nm

Surface characterization of oxygen deficient SrTiO 3

THIN FILM MATERIALS TECHNOLOGY

Solid-State Physics: The Theory of Semiconductors (Ch ) SteveSekula, 30 March 2010 (created 29 March 2010)

Chapter 1 Introduction to The Semiconductor Industry 2005 VLSI TECH. 1

ELEC 3908, Physical Electronics, Lecture 15. BJT Structure and Fabrication

2. Nanoparticles. Introduction to Nanoscience,

Molecular Beam Epitaxy

Structure and properties of transparent conductive ZnO films grown by pulsed laser

Contamination. Cleanroom. Cleanroom for micro and nano fabrication. Particle Contamination and Yield in Semiconductors.

Basics of LED drivers. Functions Requirements Selection

MEMS mirror for low cost laser scanners. Ulrich Hofmann

Steps to the exploitation of millimeter and sub-millimeter wave generation and detection for communication, sensing, and imaging

Simultaneous data fitting in ARXPS

. Tutorial #3 Building Complex Targets

SUPERCONDUCTIVITY. PH 318- Introduction to superconductors 1

Photonic components for signal routing in optical networks on chip

To meet the requirements of demanding new

Transcription:

SiC activities at Linköping University A. Henry and E. Janzén

SiC : Prof. Erik Janzen growth (bulk and epi) defect and characterisation Nitride : Prof. Bo Monemar growth optical characterisation Electronic Structure : Prof. L. Johansson photoemission Spintronic : Prof. Weimin Chen Magneto-optic measurements Compound Semiconductors : Prof. Per-Olof Holtz optical characterisation

SiC activities Growth Bulk Sublimation High temperature CVD Epitaxy Horizontal Hot Wall CVD Vertical Hot Wall CVD Sublimation Epitaxy LPE Simulation Characterization Optical PL, PLE, Time resolved PL, FTIR, FTPL, CL Electrical Hall, IV, CV, DLTS, MCTS Magnetic resonance ODMR, EPR Structural XRD, Lang topograph Theoretical calculation S-Science : Sensor application Thin Film : TEM

High-Power diode SiC diodes Contacts p n Junction Termination Passivation Si IGBTs N + Substrate Active layer 2.5kV : 30 µm thick CVD n - 1.5E15 cm -3

Horizontal Hot-Wall CVD epilayer Quartz tube Insulation Graphite Substrate Coil Gas Inlet H 2 carrier SiH 4 + C 3 H 8 Doping (N 2, TMA ) Growth Temperature: 1600 o C in horizontal Growth Pressure: 50-00 mbar O. Kordina C. Hallin : surf. prep., precursor U. Forsberg :MESFET Ö. Danielsson :Simulation

Simulation Ö. Danielsson Temperature Doping concentration (cm -3 ) 18 17 Si-face C-face N Doping C/Si ratio 1.0 2.0 3.0 4.0 5.0 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Inlet C 3 H 8 flow (ml/min) Growth Rate Growth rate (µm/h) Doping concentration (cm -3 ) 6 5 4 3 2 1 00 mbar 13 l/min 1 2 3 4 0 0 20 40 60 80 0 Position along gas flow direction (mm) 20 19 18 Inlet C 3 H 8 flow (ml/min) 0.4 0.8 1.2 1.6 2.0 2.4 Si-face C-face 0.4 0.8 1.2 1.6 2.0 Inlet SiH 4 flow (ml/min)

Degradation : Drift of the forward current 200 Virgin device Intermediate Stressed Creation and expansion of stacking faults Cathodoluminescence CL X-ray Topography 150 Ja[A/cm2] 0 50 0 2 2,5 3 3,5 4 4,5 Va[V] P. Bergman

P. Bergman Lang topo [1,-1,] PL at 77K Cathodoluminescence CL X-ray Topography 6 x 4 5 Low Temperature PL Normal Spectra New Defect Emission PL Intensity 4 3 2 1 0 380 400 420 440 Photon Wavelength (nm)

Today (2 inch diam) Thickness typically 30-40 µm (80 µm) Unif = σ/mean < 8% Background doping level n-type (nitrogen) 1-2E14 N-doping 1E15 5E18 Unif < 20% Al-doping 5E15 1E19 Unif <20% Typical lifetime (35 um, 2E15) > 250 µs Future work related to SiC-CVD - Degradation : reduction of critical defects - Lifetime limiting defects - growth on non-standard surface - δ-doped layers - Regrowth - Other dopant : P, As, B, V

High Temperature CVD Bulk Seeded Sublimation Growth O. Kordina A. Ellison Insulation 1 Seed Crystal RF Coil RF Coil Source T process: 20 2300 C Seed Heater Crucible Quartz tube Graphite Foam HTCVD advantages: high vacuum high purity of the sources gases continuous supply of the source material possibility to adjust C/Si Gas Inlet Helium carrier SiH + C H 4 2 4

Id (ma) 30 25 20 15 5 High Frequency Device SiC MESFET with Commercial S.I. substrate Degradation of I-V static characteristics Vgs=0V, -2V/step I DS (ma) 40 30 20 V GS = 0 V SiC MESFET with PURER SUBSTRATE (HTCVD) (80 V STRESS) I DS (V DS ) Light ON Light OFF MESFET 1 0 µm V GS = -2 V/step 4522 0 0 20 30 40 Vds (V) 0 0 20 30 40 V DS (V) C. Brilinski ECSCRM 2000 + JESICA PROJECT

2-inch diameter 4H-SiC substrates pilot products SI on- and off-axis P+ N+ off-axis off-axis

Future work related to HTCVD Characterization : - identification of defects in SI SiC and understand their properties - Support to Okmetic (SI, N and P substrates)

Characterization Most studied defects in SiC after irradiation / implantation and annealing (2 MeV T>1200 C) Optical Electrical D 1 : Speudo-donor Z 1,2 PL intensity (arb.units) PL L 1 1S (T. Egilsson) PLE M 1 1 E C L 1 62 mev 2900 2920 2940 2960 2980 Photon Energy (mev) 2S 3S4S S-like P-like 0 P -like +/ - series limit 4H-SiC C/C (arb. units) HS1 E V +0.35 ev MCTS (hole trap) DLTS (e lectron trap ) Z ½ E C -0.68 ev 4H -SiC 0 200 300 400 500 Temperatu re (K) (L. Storasta)

- Association D1 HS1-3 Z 1/2 (cm ) -3 HS1 (cm ) PL L /Q 1 0 0 500 00 1500 200 0 Annealing temperature ( C) (L. Storasta) - 3 DLTS & MCTS concentrat ion (cm ) 4H Si C PL L /Q 1 0 + 2s, 2p 1s L 1 0.35 ev CB 2.9 ev VB 62 mev HS1

Characterization Defect study : Atom displacement C : 90 kev Si: 220 kev Face dependent? N-type 2.5E15 cm -3 epi Low energy electron irradiation 80-300 kev L. Storatas DLTS/MCTS signal (arb.units) Electron traps Hole traps HS2 EH1 Z 1/2 EH3 DLTS MCTS EH6 160 240 320 540 660 Temperature (K)

Si-face 4H epilayer Introduction rate (arb.units) HS2 EH1 EH6 EH3 Z 1/2 C/Si face concentration ratio 1 EH1, EH3, Z 1/2 HS2 150 200 250 300 Irradiation energy (kev) 0 120 140 160 180 200 220 Irradiation energy (kev) L. Storatas C related centers

Photoluminescence F. Carlsson PL Intensity (a.u.) log(plintensity) (a.u.) 5 4 L 1 L 1 g 2 g 2 g 1 g 1 f1 e1 e 1 120 kev 160 kev TEM electrons 120keV c 2 d 1 c 1 d 1 c 2 c 1 b1 b 1 Si-Side Si-side a 1 C-Side C-side 4260 4280 4300 4320 4340 4360 4380 4400 4420 Wavelength ( Å) 4260 4340 4420 Wavelength (Å) a 1 PL Intensity (a.u.) PL Intensity (a.u.) 5 4 3 L 1 L 1 g 2 g 1 g 2 g 1 e2 e 1 e 1 c 2 d 1 c 1 c 1 d1 c 2 PCB990 min TEM irradiation 160keV b 1 b 1 a 1 a 1 d 1 phonon band c 1 phonon band Si-Side b 1 phonon band b 1 (78meV) b 1 phonon band b 1 (78meV) 4300 4350 4400 4450 4500 4550 Wavelength (Å) 4300 4440 4500 Wavelength (Å) 4H-SiC T=2K Si-side C-side C-Side